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We analyzed the planning problem for HIV screening, testing, and care. This problem consists of determining the optimal
fraction of patients to be screened in every period as well as the optimum staffing level at each part of the healthcare
system to maximize the total health benefits to the patients measured by quality-adjusted life-years (QALY's) gained. We
modeled this problem as a nonlinear mixed integer programming program comprising disease progression (the transition
of the patients across health states), system dynamics (the flow of patients in different health states across various parts of
the healthcare delivery system), and budgetary and capacity constraints. We applied the model to the Greater Los Angeles
(GLA) station in the Veterans Health Administration system. We found that a Centers for Disease Control and Prevention
recommended routine screening policy in which all patients visiting the system are screened for HIV irrespective of risk
factors may not be feasible because of budgetary constraints. Consequently, we used the model to develop and evaluate
managerially relevant policies within existent capacity and budgetary constraints to improve upon the current risk based
screening policy of screening only high risk patients. Our computational analysis showed that the GLA station can achieve
substantial increase (20% to 300%) in the QALYs gained by using these policies over risk based screening. The GLA
station has already adapted two of these policies that could yield better patient health outcomes over the next few years.
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1. Introduction

Veterans Health Administration (VHA), one of the com-
ponents of the Veterans Administration, is the largest inte-
grated healthcare provider in the United States of America.
The VHA is funded by the federal government and serves
the medical and social support needs of more than eight
million active duty and honorably discharged veterans over
their entire lifetime. The VHA provides these services
through 128 stations. For the purpose of this paper, we shall
focus on the Greater Los Angeles (GLA) station as the unit
of analysis.

The VHA is the largest provider of HIV care in the
United States. As of 2011, the VHA reported more than
25,271 HIV infected patients, an increase of 3.7% from
2007. The VHA is also a leader in quality of care pro-
vided to HIV infected Patients, with high adherence to
the Department of Health and Human Services clinical
guidelines across all regions. An important aspect of HIV
care is early diagnosis and treatment, which are known
to lower cost and improve patient outcomes (Palella et al.
2003). In addition, this reduces the incidence of secondary
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complications, which are very costly to treat if HIV itself
is not treated in a timely manner (Schackman et al. 2006).
Prior studies at the VHA (Nayak et al. 2012) show that a
major factor impeding the early diagnosis and treatment of
HIV is the policy of risk based screening. Under this pol-
icy, patients are tested for HIV only if they display certain
risk factors, such as injection drug use, or if they present
symptoms of opportunistic infections. Owens et al. (2007)
found that only 36% of at-risk patients had ever been tested
for HIV. The main operational barriers cited for insufficient
coverage of screening and late diagnosis of HIV infection
were constraints on provider time and insufficient capacity
of trained counselors (Goetz et al. 2008a).

An alternative policy recommended by the Centers for
Disease Control and Prevention (CDC) is to implement
routine HIV screening, in which a patient visiting the
healthcare facility would be offered an HIV test irrespec-
tive of risk factors or symptoms. Several recent studies in
the public health literature have found that such routine
HIV screening is “cost-effective”! compared to risk based
testing even in settings with very low prevalence of HIV
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(Paltiel et al. 2005). In 2009, the VHA proposed to imple-
ment the routine screening policy across its stations.?> Con-
sequently, it was important to understand if such a policy
would be feasible given the capacity and budgetary con-
straints at any particular station and, if necessary, to con-
sider alternative policies to improve upon their current risk
based screening policy. In response, we developed an opti-
mization model to achieve these goals at the GLA station.
Consistent with the mission of the VHA of providing high
quality care over the lifetime of veterans, the objective of
this model is to maximize the total quality-adjusted life-
years (QALYs) of all the patients at this station. To achieve
this objective, this model determines the optimal fraction
of patients to be screened (i.e., offered the test) and also
determines the optimum staffing levels at different parts
or locations of the station. This model explicitly captures
patient flow and the associated disease progression through
system dynamics constraints. In addition, it also incorpo-
rates budget and capacity constraints.

We first used this model to evaluate the current risk based
screening policy and the proposed routine screening pol-
icy at the GLA station. We found that the cost-effective
routine screening policy may not be feasible in the current
budgetary environment at this station. Therefore, we devel-
oped four other policies within the framework of our model
that improved upon the current risk based screening policy.
An extensive computational analysis provided a benchmark
value for each policy and provided guidance in terms of the
fraction of patients to be screened in every period as well
as the number of healthcare workers that need to be staffed
at each part of the system in order to implement a pol-
icy. Thus, unlike conventional cost-effective analyses, our
approach provided a feasible plan that can be implemented.

Optimization based models have been used to evaluate
prevention and treatment policies for HIV at different deci-
sion making levels (Kahn et al. 1998, Rauner and Brandeau
2001). Population level studies evaluate the cost effective-
ness of policy interventions (Zaric et al. 2000, Long et al.
2010), whereas studies at an individual patient level opti-
mize clinical decision making to maximize patient wel-
fare (Shechter et al. 2008, Roberts et al. 2010). Health-
care systems face the problem of integrating cost effective
policies with clinical decisions subject to organizational
and budgetary constraints. Blount et al. (1997), Zaric and
Brandeau (2001), and Brandeau et al. (2003) evaluate gen-
eral formulations of this problem with budget constraints to
decide optimal intervention for prevention of infectious dis-
eases. Their approximations lead to formulations that can
be solved by linear programming and convex optimization
techniques. More recently, Kucukyaciki et al. (2011) and
Deo et al. (2013) combine clinical models of disease pro-
gression for chronic diseases with operational models of
the health system. However, none of these papers considers
different parts of the healthcare system with capacity con-
straints and do not jointly optimize screening and staffing
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decisions, which are the key features of the decision prob-
lem faced by the VHA.

Our paper makes the following contributions. First, it
models a very relevant but complex problem at the inter-
face of operations management and public health. It then
develops methods for the efficient computation of bounds
and managerially relevant solutions for this problem. Sec-
ond, to the best of our knowledge, this is the first planning
model that determines the fraction of patients that needs to
be screened along with the staffing requirements at screen-
ing, testing, and care while including disease progression
and flow of patients in different health states across various
parts of a constrained healthcare system. Third, we explic-
itly consider capacity and budget constraints and illustrate
their impact on screening and staff allocation decisions.
Fourth, we apply the model to data collected from the
GLA station to analyze various policies. Our computa-
tional analysis shows that GLA station can achieve sub-
stantial increase (20% to 300%) in the QALYs gained by
using these policies and our model provides guidance for
its effective implementation. Fifth, the insights from our
model have influenced planning decisions at this station.

The remainder of the paper is organized as follows. In
§2, we describe the healthcare system, patient health states,
disease progression, and system dynamics. These form the
basis of our optimization model, which is formulated in §3.
We also discuss structural properties, construct an upper
bound, and develop four policies that serve as lower bounds
for this model. In §4, we describe various primary and sec-
ondary sources of data used in the model. Section 5 ana-
lyzes several policies for HIV screening, testing, and care
that can be evaluated within the framework of our model.
Section 6 describes the application and qualitative impact
of this work.

2. Problem Description

The GLA station is one of the largest and the most complex
stations in the VHA consisting of three ambulatory care
centers, a tertiary care facility, and 10 community based
clinics. The GLA serves veterans residing in Los Angeles,
Kern, Santa Barbara, Ventura, and San Louis Obispo coun-
ties. We elected to conduct a station level analysis because
it was difficult to estimate the budget for individual facili-
ties within the station. Further, such an analysis could lead
to effective staff reallocation because there was consider-
able flexibility in adjusting the staffing levels across facili-
ties within a station. From a managerial perspective, these
aspects were considered more important than any potential
downside due to loss of granularity in terms of patient flow
and staffing.

As discussed before, the primary benefit of routine
screening is early diagnosis of HIV positive patients and
their connection to care before they become symptomatic.
This benefit arises because the healthcare cost of asymp-
tomatic HIV patients (including HIV treatment and other
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hospitalization) is much lower and their quality of life is
much better than that of symptomatic HIV patients (Kaplan
et al. 2009). In order to capture this effect, we constructed
a compartmental model of patients with each compartment
corresponding to a combination of the health state of the
patients and part of the healthcare system to which they
belong. Below, we describe the healthcare system, patient
health states, disease progression, and system dynamics.

2.1. Healthcare System

We divided the healthcare system at the station into three
distinct parts: (1) primary care (facilities such as outpa-
tient clinics and hospitals where patients are screened or
are offered an HIV test and blood samples are collected if
they agree to be tested), (2) laboratory (a central location
where samples collected during screening are tested), and
(3) infectious disease specialty care (where HIV positive
patients are referred for monitoring or treatment). Primary
and specialty care could be staffed by up to three worker
types, physicians, nurses, and counselors, whereas the lab-
oratory is only staffed by the laboratory technician. Staffing
levels are fixed during the budget horizon of one year to
provide certainty and foster a stable work environment for
all the staff.

To provide a precise definition of the healthcare sys-
tem, let 7 € [T] = {1,2,...,T} denote the budget peri-
ods each corresponding to a year and let 7 € M, = {1 +
12(t — 1), ..., 127} index the set of discrete time peri-
ods corresponding to a month within the budget period.
Further, let k € W = {phys, nurse, couns, lab} index the set
of worker types, and / € & = {P, L, S} index the set of
parts or locations where P denotes primary care facility, L
denotes laboratory and S denotes infectious diseases spe-
cialty care. Each location / is staffed by n, ; health care
workers of type k, each of whom earns a wage w, in each
period and spends a total of y, , time units on average with
the patient. Since the healthcare workers have other tasks
associated with other diseases and conditions, we assume
that the total time available with the resource of type k in
location [ for the HIV routine screening program is limited
and denoted by A, ;.

2.2. Patient Health States

Following earlier work in the modeling of disease pro-
gression in HIV patients (Freedberg et al. 1998, Mauskopf
et al. 2005), we use different ranges of CD4 cell count® and
the presence or absence of opportunistic infections (OI) to
define a set of health states of HIV infected patients. In
addition, we include uninfected and dead as two additional
health states. Table 1 provides the definition of the result-
ing 14 health states based on CD4 count range and their
associated states of OI. These states are indexed by i and
Jj in the model.

In addition, the VHA identifies incoming patients as
either high risk or low risk depending on their observable
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Table 1. Health states.

CD4 count range
(cells/mm?) with-

CD4 count range
(cells/mm?) with

Health state  out opportunistic Health state opportunistic
index (i-j) infections index (i - j) infections
0 Uninfected 7 500+

1 500+ 8 350-499

2 350499 9 200-349

3 200-349 10 100-199

4 100-199 11 50-99

5 50-99 12 0-49

6 049 13 Death

characteristics such as previous Hepatitis B or C infec-
tion, injection drug use, or homelessness. These risk cate-
gories are indexed by r € & = {1, 2}, where r = 1 signifies
patients of higher risk of infection of HIV and r =2 sig-
nifies those with a lower risk of infection. At the GLA
station, 25% of the patients were classified as high risk,
and the remaining 75% were classified as low risk (Goetz
et al. 2013).

2.3. Disease Progression

In single patient models, the transition between health
states is typically modeled as a discrete time Markov
chain in which the probability of transitioning from state
i to state j is conditionally independent of the history
of earlier transitions. However, this approach is analyti-
cally intractable for a multiperiod aggregate or population
level model like ours that also considers multiple parts of
the healthcare system while optimizing screening and staff
allocation decisions. Hence, we approximate the disease
progression model by using deterministic transition rates in
which we assume that a fixed fraction of the number of
patients moves from one health state to the other in each
period.* This deterministic approximation of transition rates
is reasonable here since the unit of our analysis is the GLA
station and the population of patients in each state is rela-
tively large. We use Oi” 7 to denote the fraction of patients in
health state i that move to health state j in one month. This
fraction depends on the patient risk category r and the treat-
ment status w € & = {treat, untreat}, where treat refers to
undergoing antiretroviral treatment and untreat represents
not undergoing treatment, respectively.

Four processes govern the transition across health states:
(1) HIV infection, (2) HIV infection progression (treated
and untreated), (3) OI, and (4) OI recovery. We used clini-
cal data to estimate the transition rates associated with each
of these processes separately. For certain transitions that
require more than one process simultaneously, we assumed
that the rate of one process does not depend on the other.
Details on the calculations of the transition rates are pro-
vided in the electronic companion (available as supplemen-
tal material at http://dx.doi.org/10.1287/opre.2015.1353).
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2.4. System Dynamics

In this section, we describe the system dynamics obtained
by combining disease progression with patient flows to rep-
resent how patients move across different health states as
well as various parts of the healthcare system over time. In
particular, we track the number of patients in each risk cat-
egory r, each health state i, at each location /, and in each
time period ¢. Figure 1 shows the flow of patients through
various parts of the health care system.

Primary Care—Screening. The process starts with
patients who are unaware of their HIV status, whom we
call unscreened patients. Let U/ , denote the total number
of unscreened patients in risk category r, in health state i,
and at time period ¢. All patients with an opportunistic
infection (i € ¥, =1{7,8, ..., 13}) are immediately offered
the HIV test and their acceptance rate is 100%. A fraction
a of the remaining asymptomatic patients who do not have
Ol (ie ¥,=1{0,1,...,6}) visit a primary care facility in
period ¢ for other conditions. Let S, , represent the fraction
of patients of risk category r in period ¢ that are screened or
offered the HIV test. A fraction 3 of these patients accepts
the test. The number of unscreened patients in the next time
period U’ 141 18 given by

Url t+1 7 ( Z 61 untreat(l aBSr,t)Ui,>

J€Tw

+NI L1+l +R? 199 llmlreat Vr’i’t (1)
The first term (3.5, 0 e (1 — aBS,,,)Ufi’t) of this
equation is derived by summing three types of patient flows
shown in Figure 1: (a) the asymptomatic patients who do
not visit the clinic; (b) those who visit and do not get
screened; and (c) those who visit, get selected for a test,
and refuse to be tested. This sum is appropriately weighted
by the rates of transition from state j to state i as deter-
mined by the disease progression model. The second term
N/ ., is the number of new patients in health state i and
r1sk category r who enter in period (z + 1). The third term
(R, ,’umm[) is the number of uninfected patients who
receive a negative HIV test at the beginning of period ¢ and
join the pool of unscreened population in the next period.

Laboratory—Testing. The blood samples collected
from patients who accept the offered test are then sent to
the lab where the actual test is conducted and the results
are communicated back to the patient. Here, we allow for a
lag between the collection of the sample and return of the
results due to congestion at the lab. Let W), represent
the number of patients in health state i and risk category r
who are waiting to receive their results at the beginning of
the period ¢+ 1 in the laboratory. This is given by

Jj pli Jj oplii
r t+1 - Z Wr,tgr,umreat + Z aBSr tU or untreat

jes Jj€Ty

+ Z U] 0{, :mtreat Z R] 91 imtreat V}", it (2)

jed, jeg
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W/ ., consists of four terms. The first term (3., Wi, -
Hf!umreat) represents the number of patients waiting at
the beginning of period r who have undergone dis-
ease progression, where ¥ = ¥, U .f,. The second
term (3.5, aBS, Ul 07 o) represents the number of
asymptomatic patients who accept the test offer at the
beginning of period 7. The third term (3, U0 eat)
represents the number of symptomatic patients who directly
proceed to testing. The fourth term (3,5 R] 07 L sear) TED-
resents the patients who receive their results and who either
exit the system because their tests are negative (i.e., j =0)
or who are now transferred to care (i.e., j #0). As before,
multiplication by 6. in each term represents disease
progression in one period.

Specialty Care—Monitoring and Treatment. Pa-
tients who receive positive test results are connected to
infectious diseases specialty care for monitoring and treat-
ment. Again, we allow for a lag between the receipt of
results and being connected to care. Let I;, denote the
number of patients of risk category r and health state i who
are initiated into care. Of these, depending on the stage of
their disease progression, IM , are initiated under moni-
toring and /D! , are immediately initiated into treatment.
Let E/ | denote the number of patients at the beginning
of the perlod t+ 1 who are waiting to be enrolled in care.
This is given by

rH—l Z RJ 01 imtredt—i_ Z EJ 0,/ lumredt
JjeI\{0} JjeI\{0}

Z IM} 9; llmtreat Z IDJ O'J ireat
JjeI\{0} jes\{0}

vr,i,t (3)

The first term (3-;c5/10 R, ,0, wea) is the number of
patients who received pos1t1ve HIV test results at the begin-
ning of period 7. The second term (3_;c 50 E, ,0, b treat) 18
the number of patients who were waiting to be enrolled into
care at the beginning of period 7. The third and fourth terms
(Zje)’/{o} IMi ;0;{, :mtreat’ Zje.?/{o ID HJ treat) are the number
of people who were enrolled at perlod t into monitoring and
treatment, respectively. Patients who are enrolled into treat-
ment now undergo disease progression under the parameter
0r wear iNStead of 0} untreat

The decision to initiate patients under monitoring or
under treatment depends on the health state of the patient
and current clinical guidelines described in §4.2. We use a
binary indicator parameter z' to capture the clinical deci-
sion whether all patients at health state i are initiated under
treatment (z° = 1) or monitoring (z' = 0). Then the number
of patients who are initiated into treatment and monitoring
at time period ¢ is given by the following equations:

ID, =1z Vr,it “)
ML, =1 (1=2") Vr,izt ®)
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Figure 1. (Color online) Flow of patients through different parts of the healthcare system in the greater Los Angeles
station.
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Next, consider M] ,,,, the number of patients of risk cat-
egory r under monitoring in state i at the beginning of

period ¢+ 1. This is given by

r t+l - Z r untreat
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Z M / ZJ‘9r treat

jeg/{0} Jje5/{0}
+ Z IMr zar untreat Vr’ i?t (6)
Jje5/{0}

The first term in Equation (6) represents the number of
patients in health state i who remain under monitoring at
the beginning of period ¢, the second term represents those
who enter treatment from monitoring, and the third term
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(Dl H—])

represents the newly diagnosed patients who enter care
under monitoring.

Finally, let D, represent the number of patients under
treatment in state i at the beginning of period ¢. This is
given by

lr,t+1= Z Dj
Jje5/{0}

+ Z IDi zei’treat
JjeJ {0}

J l
er treat T Z MJ ;Zj er treat

jes/{0}
Vr,i, t

™

The first term in Equation (7) represents the number of
patients under treatment in period ¢ in a particular health
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state, the second term denotes the number of patients who
enter treatment from the pool of monitored patients, and
the third term is the number of newly diagnosed patients
who enter treatment.

In formulating the system dynamics (1) through (7), we
have made the following simplifying assumptions. First,
once patients enter the system and are tested, they can
exit the system only if they are uninfected or if they
die. Second, all primary care locations fully comply with
the screening policy. Third, the treatment protocol is well
defined and is followed by all physicians at the infectious
diseases specialty care. These assumptions were validated
by prior internal studies at the GLA station. Given the
health care system, patient health states, disease progres-
sion, and system dynamics the overall objective of the GLA
station is to maximize the aggregated QALYs across all
patients in the system. This can be done by appropriately
choosing the screening fraction and consequently the num-
ber of patients to be screened, tested, and cared for in every
period and by determining the staffing level at each part of
the healthcare system to execute this choice. While doing
this, the station faces organizational constraints relating to
capacity and budget availability. We next develop an opti-
mization model for this decision problem.

3. Model

In this section, we start by describing the objective func-
tion and the organizational constraints related to budget and
capacity. These together with the previously described sys-
tem dynamics form a discrete time planning model. We
characterize key properties of this model and use them to
develop an upper bound that can be employed to evaluate
the quality of any given solution. Finally, we develop man-
agerially relevant heuristics or policies to solve this model.
Table 2 summarizes all notations that are used in the model,
including those that have already been introduced in the
previous section.

3.1. Objective Function

In accordance with the existing literature on economic eval-
uation of health interventions and programs (Dolan et al.
2005), we choose the objective function of maximizing the
total QALYs gained for the entire patient population over
the problem horizon. Note that using this measure ensures
that aggregate survival as well as quality of life of patients
is considered. Although QALYs is not an operational met-
ric that is used regularly for planning and scheduling deci-
sions within the VHA, this seemed a reasonable objective
because it is consistent with the mission of the VHA.
Calculating QALYS involves first associating each health
state i with a quality of life (QOL) utility ¢’ and then
multiplying the QOL utility of each health state with the
corresponding number of patients in that state. These are
calculated by using Equations (1) through (7) developed in
§2.4. The QOL utility is a measure of health related utility
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of patients and ranges between 0 and 1, where O corre-
sponds to death and 1 corresponds to perfect health. Finally,
the total QALYs are calculated over the entire period of
analysis. Using this approach, the objective function can be
represented by

> q'(U. ,+ W, ,+E  +M +D,))

ief, reR, tedl,, e[T]

3.2. Organizational Constraints

We consider two main sources of organizational constraints
in our model. The first is concerned with total annual
HIV related budget at the level of a station, and the sec-
ond defines service level constraints in various parts of the
healthcare system within the station.

Budget Constraint. The budget at the GLA station
consists of three components: the screening cost, healthcare
costs associated with a patient in a particular system state,
and the cost of wages. This is represented by the following
set of inequalities:

> CSaBS, U, + > cs'Ul,
i€ I \(13}, reR, tel,

i yi
CyX,. .+ Z My, 1 Wy
e, ke, tedl,

i€, reR, tedl,

+ 2

i€ I \13}, reR, tedl,, Xe¥
<B(r) V7 (®)

The first two terms in Equation (8) correspond to the
screening costs. This is obtained by multiplying the cost
of screening per patient in health state i (CS') with
Yjes, aBU; ,, representing the asymptomatic patients who
accepted the offered HIV test and with 3, ; \(13 Uy,
denoting the number of symptomatic HIV patients who
were transferred straight to testing. Both these terms are
aggregated across all risk categories and time periods up to
one year. The third term represents the cost of providing
healthcare services to patients in different system states.
This cost is composed of several components that depend
on the system state of the patient. For example, if a patient
is in treatment, the cost components would be pharmacy,
testing, inpatient, outpatient, and overhead costs. Further,
the magnitude of this component will also depend on the
health state of the patients. For instance, more critically
ill patients with lower CD4 counts would typically incur
higher pharmacy costs. We combine all such cost compo-
nents into one parameter, C;, representing the cost of hav-
ing one patient in health state i at system state X. Here, X €
*={U,W,E, M, D} = {Unscreened, Waiting for results,
Waiting to be Enrolled, Monitoring, Treatment}. The fourth
term in the equation above is the labor cost, which is the
salary by resource type k multiplied by the staffing level of
that resource type at a particular location /.

Service Level Constraints. In addition to the budget
constraint, the GLA station would also like to ensure timely
service of patients and avoid long delays. We model this
requirement using a constraint P{W, < 7;} > o, VI € &,
where W, is the random waiting time at location /. This
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Table 2. Notations.

Te[T]={1,2,...,T}
ted,={1+12(t—1),..., 71}
k € W = {phys, nurse, couns, lab}
le¥={P,L,S}

i,jeJ,={0,1,...,6}
ijed,=1{7,8,...,13}

1,je g, ug,=5={0,1,..., 13}
w € S = {treat, untreat}

ref{l,2}

X € % = (UWEMD)

i

Py

i, Jj
Br,w

S

Indices

Number of years

Number of months

Resource type

Location within healthcare system: P: primary care facility, L:laboratory, S: infectious diseases
subspecialty

Health states corresponding to patients without OI

Health states corresponding to patients with OI

Health state of all patients

Treatment status

Risk category

System state: U: Unscreened, W: Waiting for results, £: Waiting to be enrolled into monitoring
or treatment, M: Monitoring, D: Treatment

Parameters (related to patient flow)
Fraction of patients in risk category r of health state i in the new patient population
Fraction of asymptomatic patients who visit healthcare facility
Fraction of patients who accept screening
Fraction of patients in risk category r and under treatment status w moving from health state i to
health state j in one month
Quality of life score for patients in health state i
Number of new patients entering the system in period ¢
A binary parameter indicating whether patient of health state i is initiated under monitoring
(z' =0) or treatment (z' =1)

Parameters (related to resource utilization)
Time required per patient of healthcare worker of type k at location /
Total time available for HIV screening program of healthcare worker of type k at location /
Per period wages of healthcare worker of type k
Cost of screening per patient
Cost per patient in system state X
Total annual budget available for HIV related activities in year 7

State variables

Number of unscreened patients of risk category r in health state i at the beginning of period ¢

Number of patients of risk category r in health state i waiting for their results at the beginning of
period ¢

Number of patients of risk category r in health state i who receive their results in period ¢

Number of patients of risk category r in health state i waiting to be enrolled at the beginning of
period ¢

Number of patients of risk category r in health state i who are under monitoring at the beginning
of period ¢

Number of patients of risk category r in health state i who are under treatment at the beginning
of period ¢

Number of patients of risk category r in health state i who are initiated under treatment in
period ¢

Number of patients of risk category r in health state i who are initiated under monitoring in
period ¢

Number of patients of risk category r who are initiated under care (monitoring and treatment) in
period ¢

Decision variables
Fraction of asymptomatic patients of risk category r visiting a primary care facility in period ¢
who are screened or offered the HIV test
Number of healthcare workers of type k to be staffed at location [

can be interpreted as the probability that the waiting time
is less than a specified quantity 7, and must be greater than
a certain threshold «,. Here, the tuple (7, ;) was specified
at each location based on the organizational goals at the
VHA. We use an M/M/1 queuing model to approximate
P{W,<7}=1—e W21 >q VieZ (Kleinrock 1975).
Here, A, denotes the arrival rate at location /, whereas w;
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denotes the service rate at location /. Using the natural
logarithm operator, this can be reformulated as

1
A<+ - In(1 —a)) (9a)
1

Since the second term on the right-hand side of constraint
(9a) is negative, this constraint is tighter than the tradi-



Downloaded from informs.org by [164.67.163.3] on 10 April 2015, at 21:47 . For personal use only, all rights reserved.

294

Deo et al.: Planning for HIV Screening, Testing, and Care
Operations Research 63(2), pp. 287-304, © 2015 INFORMS

tional capacity feasibility condition A; < u;, which does not
impose any requirements on waiting times. Note that reduc-
ing quantity 7, or increasing threshold ¢, reduces the effec-
tive capacity i, = u,;+(1/7,) In(1 — ;) and further tightens
this constraint. To operationalize (9a), we need to com-
pute (A, u;) V1. The capacity of resource k at location / is
given by n; ;A; ;/¥., patients. Therefore, we approximate
the service rate at location [/ as the minimum or bottleneck
capacity across all the resource or worker types available at
that location given by u, = min,{n, ;A; ,/y; ;}. Below we
use the system dynamics developed in §2.4 to calculate A,
and derive the service level constraints for each location.

Primary Care: (I = P). Observe from Figure 1 that the
number of patients to be screened in period ¢ is given
by Yicsy.rem aBSr,rUlr,,. + Yies 3} ren Uy, - Therefore,
Ap=2ics, ren aBSr,tUlrJ + Xies 13y, ren Uy, and pp =
min, {n, pA, p/¥; p}. Substituting these in inequality (9a),
we get the service level constraint for screening as

>, aBs, UL+ Y U

i€fy,rek i€ I \{13}, reR
. 1
grnkln{nk,PAk,P/yk,P}'i_T_ln(l —ap) Vi )
P

Laboratory: (I = L). Figure 1 shows that the number
of patients who receive their results is ) ;c 5\ (13}, re 4R,
which is also the input rate, under the assumption of
stability. Therefore, A, = Yicp\i3). e R, and p;, =

min, {n, ;A /¥y .} Substituting these in inequality (9a),
we get the service level constraint for laboratory as

> er ' rnkin{nk,LAk,L/yk,L}
ieJ/{13},re®h

+iln(1—aL) \2; (10)

TL

Specialty Care: (I = S). In each period there are two
kinds of patients who visit the infectious diseases specialty,
patients under monitoring and patients under treatment,
given by M , and D, respectively. Patients of health state i
who are under monitoring and treatment visit the healthcare
system during a given period with frequency ¢}, and ¢}, re-
spectively Therefore, As=3 c n\(13).c (M, @3 + D} ,@})
and ug=min, {n, ¢A, ¢/ s} Substituting these in inequal-
ity (9a), we get the service level constraint at the infectious
diseases specialty as

Z ( 1¢M +D£’,t¢iD)
ie I\{13}, reR

. 1
<111]}n{”k,sAk,s/Yk,s}+T_ln(l —ag) Vit (11)
s

3.3. Planning Problem

Using the above described objective function, system
dynamics, and organizational constraints, the planning prob-
lem faced by the GLA station can be formulated as the fol-
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lowing nonlinear mixed integer program, which we describe
as the QALY Maximizing Planning Problem (QMPP).

(QMPP)

Maximize > (U, +W +E,,

i€, red, tedl,, re[T] . .
+M;,+D,,)

Subject to: (1) through (11) and
0<S,, <1 Vr, ¢t (12)
UL W, R E. .M,.D,

D, I, IM.  eR, Vr,iz (13)

n €N, Vk, 1 (14)

Here, as developed in §2.4, constraints (1) through (7)
describe the system dynamics. As described in §3.2, con-
straints (8) represent the budgetary constraints, whereas
constraints (9) through (11) represent the service level con-
straints. Constraints (12) represent the range for the screen-
ing variable, and constraints (13) and (14) represent the
domains for the other variables.

Observe that the QMPP contains a knapsack problem
defined by constraints (8). Thus, we need to solve instances
of an NP-complete problem and it may not be always pos-
sible to solve real sized problems to optimality. We ver-
ified this in our computational experiments in §5. Con-
sequently, to solve this problem, we elected to develop
effective heuristics that are both computationally tractable
and managerially intuitive. We also develop relaxations to
the problem to obtain an upper bound on the objective func-
tion that is used to evaluate the performance of the heuris-
tics. If we replace aBS, U}, with V! in constraints (1),
(2), (8), and (9) of the QMPP and add the definitional
constraint V‘ =apfs, U, Vr,i,t, then the QMPP can
be transformed into the following integer bilinear program
QMPPB. This will be useful in developing a tight upper
bound for the QMPP.

(QMPPB)
Maximize > qi(Uri,; + W:,r

icf, reR, tedl,, ve[T]
+E, ,+M, ,+D;,)
Subject to (3) through (7), (10) through (14), and

r t+1 < Z 0r umredt ot V:r))

Jj€Iw

i 0 0,i . ,
+N f+1+Rr 10r untreat Vr, it (1)
i gl
r t+1 - Z W 0r untreat
jes
j pi-i
+ Z V 0’ untreat + Z Ur,ter,untreat
j€Tw jes
Jj gl . ,
- Z Rr,ter, untreat Vr,i, t (2 )
jeg
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> CsV L+ > cs'vl,

ieFy.reR. tedl, ieF,\{13}, reR, tedl,

+ > Cx X, ,
ie\{13}, reR, tell,, XX
+ > mw<B(1) VT (8"
e, keW, tedl,
Z Vri,t_l— Z Uri,rgrnkin{nk,PAk,P/yk,P}
i€y, reR i€ N\{13}, re®
1
+—In(l—ap) Vr,i,t 9)
Tp
Vi,=aBSs, U, Vr,ict (15)
Vi,eR, Yr,iz (16)

Observe that in the integer bilinear program QMPPB, all
the nonlinearity in the problem is now captured by bilinear
constraints (15).

PROPOSITION 1. The objective function of the QMPPB can
be written as

K, + 3 m D'

icf, reR, tedl,, ve[T]

where Ky and ), = f(07' weu> 0} unirear» 4'» 1) are constants.

All proofs are provided in the electronic companion.
Proposition 1 implies that the QALYs in the system can-
not be maximized by increasing the screening rate alone,
as advocated by both the risk based and routine screening
policies, unless that increase can be translated to patients
treated. This is consistent with observations in population
level studies (Long et al. 2010). However, the number of
patients treated is often constrained by the budgetary and
capacity constraints. Thus, the focus should be on deter-
mining how many patients can be optimally treated and
this in turn should be used to determine the screening rates.
This is accomplished by the QMPPB. Let U/ , be a lower
bound and l_],‘l, be an upper bound on Ur"’t. The computa-
tions of these bounds are described in the appendix. The
following proposition helps in reducing the complexity of
the search space for heuristics to solve the QMPPB.

PROPOSITION 2. The screening rate is bounded by the fol-
lowing two inequalities:

Z O-r,tSrth(T)_KT_ Z piDi,t VT
red, te, ’ ieI\(13}), red, te,
. aBs, U,

iefy, reR, tedl,

2 Z Di,r_ Z Uri,t

i€ I\{13}, reR, tedl, i€f,, reR, tedl,
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where, K, p', and o, , are given by

k= v (5o - (2 na-ay

ke, redt, Lics, App kPTP

WY
- (A:s:'s> In(1— as)}

+ > QUL+ Y csuL

i€, reR, tedl, i€y, , reR, tedl,

i i Wiy i
P :CD+Z<#>¢D

rew \Ar pTp

0= Z { Z (l:kyk>gri,t + CSil—]:,t}

ieIy kel k, P

Further, for a stationary screening policy for which S, =
Sr Vt’ Sr < (B(T) - KT)/ Zte/l’l,. Ur,t'

Note from Proposition 2 that for a given screening rate,
the total number of patients that can be treated is bounded
by (1) the residual budget left over for treatment after the
screening, staffing, and the patient state costs and (2) the
number of screened asymptomatic patients who test pos-
itive and symptomatic patients being treated. Further, the
total number of patients who actually are treated will be
determined by whichever of these two conditions becomes
tight. Given that typically budgets are scarce and there is
a large population of patients, it is likely that the budget
constraint would be tighter. This implies that while set-
ting screening rates, one has to understand budgets and its
implications on treatment. This is consistent with the public
health literature (Martin et al. 2010).

3.4. Relaxations and Upper Bounds

To develop an upper bound on the QMPPB, we replace
bilinear constraints (15) by convex over and under estima-
tors of the bilinear terms using the approach proposed by
McCormick (1976).

Let U', and U/, represent the upper and lower bound
on the variable Ur”, , respectively. Then it follows from (15)
that

Vi, >aBs, U, Vr.it (15a)
Vri,tgaBSr,)‘U:,; Vr, it (15b)

Note that aBU!, < apU/, < aBU!, and 0< S, , < 1
Vr,i,t. Then aBS, U, +aBU., — aBU!, =(S,,—1)-
apU; ,+aBU; < (S,,—DaBU]  +aBU} =S, ,apU,
=V . Thus,

Vi.>apS, U, +aBU ,—aBU, Vr,it (15¢)
Similarly, aBS, ,U! ,+aBU; ,—aBU! = (S, ,—1)aBU; ,
+aBU; > (S, ,— DaBU; ,+aBU; =S, ,aBU; =V, .
Thus,

Vi, <aBS, U, +apU,—aBU., Vrit (15d)
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Observe that constraints (15a) through (15d) provide a lin-
ear relaxation to bilinear constraints (15). This substitution
reduces this problem to a linear mixed integer program
that can now be solved to optimality using commercial
solver such as the GUROBI solver (Gurobi Optimization
Inc. 2010). We call this formulation the RQMPPB and note
that the optimal solution to the RQMPPB provides an upper
bound to the QMPPB and consequently the QMPP.

The quality of this upper bound strongly depends on the
bounds of U/ ,. A recent improvement to the McCormick
relaxation is introduced by Wicaksono and Karimi (2008).
We adapt this technique to do an ab initio partitioning on
U,fﬁ ,» apply a set of under and over estimators to each par-
tition, and introduce a logical constraint to limit the par-
titioned variable to one active partition. To achieve this,
let Ur"’t be separated into m equally spaced partitions as
Qri,t = ai,t(l) << ai,t(m) < ai,t(m + 1) = Urlt The
choice of parameter m is based on comparing the reduc-
tion in the value of the bound with the increased time it
takes to compute the bound when m is incremented by one
starting with m = 1 and is described in the electronic com-
panion. Define binary variable & (m) so that £ ,(m) =1
if U}, €[a, (m),a. (m+1)] and & ,(m) =0 otherwise.
This leads to the following constraints:

Ur",t>ai’,(m)§£,t(m)+l_]fy,[l— ;t(m)] Vr,i,t,m (15¢e)
U, <d, (m+1)E (m)+U] [1-¢ ,(m)]
Vr,i,t,m (15f)

SE (m=1 Vi (159)

& (m)e{0,1} Vr,i,t,m (15h)

Next, we introduce constraints of the type (15a) through
(15d) for each partition by replacing Ur’l , with @l (m+1)
and U/, with a. (m). Depending on & ,(m), the appro-
priate set of constraints would be activated, thus providing
tight relaxation to the bilinear terms. This leads to the fol-
lowing constraints:

Vr"J}aBS,,tai’,(m)—K[l—§£’,(m)] Vr,i,t,m  (152")
V!, <aBs, a, (m+1)+K[1-¢ (m)]

Vr,i,t,m (15b)
V., >aBs, a, (m+1)+aBU!  —aBa; (m+1)

—K[1— ;l(m)] Vr,i,t,m (15¢")
Vi, <aps, a (m)+aBU!, —aBd, (m)
+K[1- jt(m)] Vr,it,m (15d")

The value of parameter K is set sufficiently large to
deactivate these constraints if U/, does not belong to that
particular partition. To provide a tighter upper bound on
the QMPPB, we solve the RQMPPB by replacing (15a)
through (15d) with (15a") through (15d") and (15¢) through
(15h). The performance of this bound is evaluated in §5.
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3.5. Heuristics and Lower Bounds

In this section, we discuss several possible heuristic solu-
tion methods to the QMPPB that correspond to poten-
tial implementation policies at the GLA station. They can
broadly be classified as fixed staffing heuristics and variable
staffing heuristics.

Fixed Staffing Heuristics. Here, we do not optimize
over the staffing variables n, ; Yk, [ and these are set to
existing levels corresponding to the risk based screening
policy. In this case, QMPPB reduces to a continuous bilin-
ear program. We then develop two heuristics depending
on how the screening rate varies over time. In the first
heuristic, we add constraint S, , =S, Vr,? to ensure that
the recommended screening policy is stationary. Although
apparently restrictive, it is easy to implement and thus was
appealing. To solve the resulting problem we iteratively
narrow down on the optimal stationary fixed screening
using the search algorithm described in the electronic com-
panion. Note that this algorithm is quite simple to imple-
ment because evaluation of the QMPPB given the screening
rates is now a linear program and can be solved very effec-
tively using several commercially available solvers such as
the GUROBI solver. Further, Proposition 2 enables us to
reduce the solution space of this algorithm. We refer to this
heuristic as the Fixed Staffing Stationary Screening (FSSS)
heuristic.

In the second heuristic, we allow the screening rate to
vary over time so that the resulting screening policy is
nonstationary. The resulting problem reduces to a continu-
ous bilinear program which is solved by using the gener-
alized reduced gradient algorithm (Abadie and Carpentier
1969). This algorithm has been shown to be very effec-
tive for large sparse dynamic nonlinear optimization prob-
lems (Drud 1985). We refer to this heuristic as the Fixed
Staffing Nonstationary Screening (FSNS) heuristic. Clearly
this heuristic is less restrictive than the FSSS is and hence
can be expected to perform better. We verify this in §5.

Variable Staffing Heuristics. Next, we describe two
heuristics, where we allow the staffing levels to change and
again consider either stationary or nonstationary screening
rates. We refer to these as the Variable Staffing Stationary
Screening (VSSS) and the Variable Staffing Nonstationary
Screening (VSNS) heuristic, respectively. The solution pro-
cedure for the VSSS heuristic is very similar to that of the
FSSS heuristic, with the key difference being that the evalu-
ation of the QMPPB for a given screening rate in the search
algorithm would now require solving a mixed integer pro-
gram. Although this potentially can be more complicated,
we found that the GUROBI solved this problem very effec-
tively. The solution to the VSNS heuristic is complicated
as it involves solving a nonlinear mixed integer program.
We employ the combined penalty and outer approximation
method (Vishwanathan and Grossman 1990) to solve this
problem. Given that we can optimize both staffing levels
and the screening rates in the variable staffing heuristics,
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we expect both of them to outperform the corresponding
fixed staffing heuristics. However, the magnitude of the gap
between these heuristics is not apparent. Similarly, whether
the VSSS outperforms the FSNS or vice versa is not obvi-
ous a priori. We investigate these issues in the computa-
tional experiments in §5.

Finally, observe that the QMPPB is not jointly convex
in the decision variables. Thus, this sequential approach in
the FSSS and the VSSS provides a feasible but not neces-
sarily an optimal solution. Similarly, given the complexity
of the QMPPB, the algorithms used to execute the FSNS
and VSNS provide feasible but not optimal solutions.

4. Data Collection and Model Validation

The data required for our model can be divided into two
broad categories. The first category includes operational
data concerning costs, budgets, incoming patient character-
istics, time required for various activities, time available,
and service level parameters. These data are specific to the
GLA station and were collected from a variety of sources
including direct observation, administrative databases, and
clinical studies. The second category includes clinical data
on visit frequency under HIV care, the quality of life
estimates for HIV patients in different health states, and
treatment decisions. We use published estimates for these
parameters from the existing clinical literature that are more
broadly applicable. Below we describe each of these cat-
egories in greater detail. We then use the data to validate
our model both in the context of the literature and the GLA
station.

4.1. Operational Data

Costs. Primary drivers for variable cost in our model
are cost of HIV screening cost (CS’), system state cost
(Ci) per patient, and wages (w,). The screening cost CS’
consists of the material cost of screening. The screening
cost per patient was estimated to be $80. The system state
cost per patient Ci is composed of several components.
Therefore, its estimation is more involved and discussed in
the Electronic Companion. Because the staffing levels are
endogenous to the model, the other relevant cost component
are the wages paid to the healthcare workers of different
types (w,). At the GLA station, these costs are fixed and
do not vary based on the patient load. These are shown in
Table 2A in the electronic companion.

Budget. The VHA allocates the budget to the GLA sta-
tion annually, and this budget does not carry over to the
next year. To provide a more stable and a long range plan,
we conduct our analysis for a period of two years, where
the budget for year 7 is given by B(7), 7 € {1,2}. Note
that our model can be easily extended for 7 > 2 without
any changes to the methodology by the appropriate choice
of T, where 7 € [T]={1,2,...,T}. This is described in
the electronic companion. However, extending the model
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beyond two years was not realistic in our application con-
text because there was significant uncertainty in the costs
of screening and treatment, the population of veterans that
would be served at this station, and the incidence and preva-
lence rates. To incorporate the uncertainty in these param-
eters, the model can be solved every year with a two-year
horizon using updated parameters.

Because of various complexities in estimation, the annual
GLA station budget was not broken down to the level for
HIV related activities, which is the focus of our analy-
sis. Therefore, we imputed a budgetary range [ B(7), B(7)]
using the risk based screening policy currently followed
at VHA (ie., S;,=1and S, , =0 V¢). The lower bound
of this range corresponds to the smallest annual budget at
which the risk based screening policy is feasible. The upper
bound corresponds to the smallest value of the annual bud-
get at which no further gains in QALYs can be accrued
from the risk based screening policy. This approach to cal-
culate [B(7), B(7)] is formalized in the budget imputation
algorithm provided in the electronic companion. We con-
duct our analysis on all the proposed policies in §3.5 within
this budgetary range.

Incoming Patient Characteristics. Let N, denote the
number of new patients entering the station in time period ¢
and p’ be the fraction of these patients in risk category r
and health state i. The number of new patients in each
risk category and health state in each period who enter
the station is thus given by N} =N p. To estimate N,
we calculated the mean of historical data of total incom-
ing patients over the past 12 months. The variation around
the mean was negligible and we did not detect any tem-
poral trends (such as increasing or decreasing over time)
for the number of new patients. The parameter p' is the
proportion of patients in each risk and CD4 category. We
calculate p° = (1 — prev,), where prevalence rate (prev,)
is estimated by Paltiel et al. (2005) and shown in Table
3A in the electronic companion. The proportion of patients
who are infected (prev,) is further divided into different
CD4 counts in a fraction estimated for the VHA by Gandhi
et al. (2007), thus determining p', Vi # 0. We report this in
Table 4A in the Electronic Companion. We were provided
with U,, the total number of patients currently enrolled at
the GLA station. Thus, the number of unscreened patients
in each risk category and each health state would be given
by Uri,l =p,U,.

The fraction of patients who visit a healthcare facility for
non-HIV related reasons o was estimated by dividing the
total number of unique patients who visited the inpatient or
the outpatient facilities for non-HIV related reasons by the
total number of patients registered in the station. Using this
approach, we estimated o = 0.5. The proportion of patients
who accept screening 8 was assumed to be 50% based on
prior studies (Goetz et al. 2008a).
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Table 3. QOL weights.

Health QOL Health QOL
state (i) weight (g')* state (i) weight (g')**
0 1 5 0.81

1 0.94 6 0.79

2 0.94 7-12 0.60

3 0.94 13 0

4 0.87

Sources. *Mauskopf et al. (2005), **Freedberg et al. (1998).

Time Required, Time Available, and Service Level
Parameters. To estimate y, ,, the time required per
patient of healthcare worker of type k at location /, we used
an observational time and motion study conducted in the
emergency department in the VA West Los Angeles Med-
ical Center within the GLA station (Gidwani et al. 2009).
These, data shown in Table 5A in the electronic com-
panion, were validated against other published estimates
(Silva et al. 2007). We note that these times would be very
similar for other care settings in the station such as the
primary care clinics, inpatient department, and outpatient
department.

The total time available at each resource at each location
per month, A, ; for activities associated with the routine
HIV screening program was based on estimates from the
GLA station. It took into account that healthcare work-
ers need to devote time to other clinical and administrative
activities as well. These estimates are shown in Table 6A
in the electronic companion.

Lastly, it was expected that at least 95% of all patients
should be processed at each location within a period of one
month. Thus, 7, =1, @, =0.95.

4.2. Clinical Data

Visit Frequency Under HIV Care. The outpatient
visit frequency for VHA was not directly available. We
used published estimates by Schackman et al. (2006) for
the frequency of outpatient visit under monitoring (¢',) and
under treatment (¢%)). This is reported in Table 7A in the
Electronic Companion.

Quality of Life (QOL) Utilities. The QOL utilities
were drawn from Freedberg et al. (1998) and Mauskopf
et al. (2005). These are summarized in Table 3 and more
details are provided in the Electronic Companion. Here, it
was assumed that the health related quality of life utili-
ties (¢') are directly associated with the underlying health
state represented by the CD4 count category and OI infec-
tion status rather than on the treatment status per se. This
is reasonable because the effect of treatment is eventually
reflected in patients being in better health states and hence
enjoying a higher QOL utility.

Treatment Decision. The treatment policy at the GLA
station was to initiate patients having CD4 cell count below
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350 cells/mm? and patients with opportunistic infection
irrespective of their CD4 count on treatment and retain the
rest on monitoring. From Table 1, this implies that z' =0
for i ={0, 1,2} and 7’ =1 otherwise.

4.3. Model Validation

In this section, we conduct analyses to validate the model
in the context of the literature and the GLA station. To
ensure an unbiased comparison with the literature (Paltiel
et al. 2005, Bishai et al. 2007), we removed all the organi-
zational constraints in the model so that it reduces to a pure
disease progression and treatment model as considered by
these papers. Bishai et al. (2007) calculate total QALY
gained from treatment over no treatment for HIV positive
patients. We used their treatment regimen in our model and
found that the total QALYs gained was comparable to their
work. Paltiel et al. (2005) calculates the amount spent per
QALY gained from going from no treatment to treatment
under various screening policies and found that this varied
between $63,000 and $113,000 spent per QALY gained.
We also used our model to calculate the amount spent per
QALY gained for the different policies in Paltiel et al.
(2005) and found it to be similar, ranging from $61,000 to
$111,000 spent per QALY gained. This validates that our
disease progression and treatment model is consistent with
the literature.

In the context of the GLA station, we considered the
entire model and the current risk based screening policy.
We found that the model estimates on the number of people
at each disease state, location, and time period were within
2% of the actual numbers at the GLA station. We also used
the resulting arrival rate A, and service rate w, at loca-
tion [ € {P, L, S} to estimate W, = 1/(u, — A,), the average
wait times at each location for a given time period under
the M/M/1 queuing model assumption used in deriving the
service level constraints (Kleinrock 1975). We found these
estimates were within 5% of the actual average wait times
for the corresponding locations and time period at the GLA
station. This supported the rationale for using the M/M/1
queuing model in developing the service level constraints.
These analyses also validate that our model effectively cap-
tures the operating environment at the GLA station and is a
necessary step to provide confidence in the policy analysis
described next.

5. Policy Analysis

In this section, we evaluate several policies for screening,
testing, and care within the framework of our model. We
start with analyzing the risk based screening policy that had
been the standard of care at the VHA when we started this
work. We then evaluate the impact of the routine screening
policy under consideration and also assess the performance
of the heuristics described in §3.5.

Recollect from §4.1 that the annual budget expenditure
required for HIV screening, treatment, and monitoring was
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not directly available. Therefore, we used the budget impu-
tation algorithm provided in the electronic companion to
first to impute the budget range [B(7), B(7)] for the risk
based screening policy in which §; ;=1 and §, , =0 Vzr.
Here, we found that B(7) = $10 million and B(7) = $20
million for 7 = 1 and 2. This implies that at least $10
million is needed annually to implement the risk based
screening program and any budget allocation over $20 mil-
lion will not improve the efficacy of this program further.
We also used this algorithm to find that an annual bud-
get of $35 million was required to implement the routine
screening policy in which S, , =1 Vr, t. Although this
estimate was instructive, this level of funding may not be
available in the foreseeable future. Therefore, the empha-
sis was in improving upon the risk based policy but within
the current budgetary range of $10 to $20 million. To per-
form this analysis and simplify the exposition, we con-
ducted all our subsequent analysis at three budget levels,
low, medium, and high corresponding to $14, $16, and $19
million, respectively. We tried to solve the QMPP for these
budget values using leading commercial solvers for nonlin-
ear mixed integer programs such as BARON and DICOPT
using the NEOS server (Dolan et al. 2002). However, in
all cases, these solvers could not even generate feasible
solutions after more than 40 hours of computation, and the
runs were aborted. This provides validation for developing
bounds and heuristics to address this problem.

5.1. Performance of Heuristic Policies

We solved the FSSS, FSNS, VSSS, and VSNS using
the approaches described in §3.5 and then calculated the
QALYs gained from these four heuristic policies. We used
the technique described in §3.4 to compute the upper
bounds for each of these budgetary levels. The computa-
tions for the risk based screening policy, the routine screen-
ing policy, FSSS, VSSS, and upper bounds were executed
with GUROBI, a general purpose LP/MIP solver using
the NEOS server. The computations for the FSNS and the
VSNS were implemented with DICOPT using the NEOS
server. All heuristics were solved in a few seconds, whereas
each computation of the upper bound took at most three
hours. Note that in computing the upper bounds for the
fixed staffing heuristics FSSS and FSNS, we fixed the
staffing levels at the current levels at the GLA station. This
ensured that these heuristics were being fairly compared
to an upper bound to the fixed staffing problem. We mea-
sured the performance of the heuristics using a percentage
gap defined as the difference between QALY's gained from
the upper bound and those gained from the heuristic policy
expressed as a percentage of the QALYS gained from the
upper bound. In all cases, QALYs gained were calculated
with the base case of no screening. Table 4 summarizes
the gaps for the four heuristics across the three budgetary
levels.

The percentage gaps described in Table 4 indicate that all
the heuristics perform very well. In particular, the average
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gap across these heuristics is 1.95% and ranges from 0.08%
to 5.15%. In general, for the fixed staffing heuristics, the
gaps increase as the budget level increases. This is because
the upper bounds increase at a greater rate than the heuristic
solution does. The rate of growth of the heuristic solution
is limited as the benefits from choosing the optimal screen-
ing rates at higher budget levels saturate because of fixed
staffing in which more patients cannot be treated because of
capacity and service level constraints. Conversely, for the
variable staffing heuristics, the gaps decline as the heuristic
solution increases at a greater rate than the upper bound.
This is because variable staffing allows more effective allo-
cation of staff at the higher budget levels to treatment and
allows more screened patients who are diagnosed with HIV
to be treated optimally and this improves the overall per-
formance of the heuristics.

We also conducted sensitivity analysis to understand how
parameters such as time available for HIV screening pro-
grams; service level parameters and the costs of wages,
screening, and treatment affect these gaps for the heuristics.
To perform this analysis, we first set the budget level to $16
million and changed each of these parameters one at a time
from their base level by —30% to 30% in increments of
10%. We then calculated the gap for each heuristic and the
appropriate change in the gap from the baseline reported
in Table 4. Across all heuristics and range of values of
these parameters, we found the average change in gaps was
3.3%, and this varied from 0.8% to 7.2%. This shows that
these heuristics and the upper bounds are robust across a
wide range of parameter values.

5.2. Improvements from Risk Based Screening

We computed the QALYs accrued at these budget levels
for the current risk based screening policy. We used this
to calculate the percentage improvement of the heuristics
from the risk based screening policy expressed as a per-
cent of the risk based screening policy solution. The results,
summarized in Table 4, lead to the following observations.
First, irrespective of the budget level, improvements from
risk based screening increased as we go from the FSSS to
the FSNS to the VSSS and finally to the VSNS heuristic.
In particular, the most improvement is obtained from the
VSNS because this policy synchronizes the screening deci-
sion with the staffing decision. This is important since it is
ineffective to screen as many patients as possible and not
have sufficient funding to treat them as necessary. Rather,
it is critical to screen as many patients that can be opti-
mally treated because the benefits arise only from treatment
and not screening. This was shown in Proposition 1. This
implies that one should first calculate how many people
can be optimally treated and then use this to appropriately
calculate the optimal screening rates. This approach is exe-
cuted by the solution method of the VSNS. Second, note
that the FSNS improves upon the FSSS by at most 3.47%
and this is only 0.14% in the most realistic low budget
scenario. This suggests that if staffing cannot be changed
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Table 4. Percentage gap of heuristics and percentage improvement from current practice.
Budget level: Low Budget level: Medium Budget level: High

% gap % improvement % gap % improvement % gap % improvement
FSSS 0 20.18 0.08 23.39 1.27 38.80
FSNS 0 20.21 0.2 24.13 1.33 40.15
VSSS 4.32 283.90 3.25 66.47 0.48 41.53
VSNS 7.05 305.30 5.15 69.69 3.9 42.94

because of organizational reasons, then it is better to keep
a stationary screening policy in the short term since it is
easier to implement. However, if the long term goal is to
accrue maximum benefit using the VSNS, the FSNS would
be a good approach to allow the staff to get acclimatized to
using non stationary screening rates prior to implementing
the more radical changes associated with variable staffing.
Third, the gains from varying staffing are more significant
than those obtained by varying screening across any bud-
get level. To see this, observe from Table 4 that the gains
from going from fixed to variable staffing (i.e., FSSS to
the VSSS or FSNS to the VSNS) are larger than the gains
from stationary to nonstationary screening (i.e., FSSS to
the FSNS or VSSS to the VSNS). Fourth, the benefit from
variable screening is greater if staffing is allowed to change
(i.e., the gains from VSNS-VSSS > FSNS-FSSS). Finally,
the greatest improvements from current practice occur in
low budgets or resource constrained environments. This is
because the optimization executing these policies ensures
that screening and staffing rates are chosen in such a way
that these scarce resources are used in the best possible
manner.

Finally, we again conducted sensitivity analysis to study
how the percentage improvement of the heuristics from the
risk based screening policy change with model parameters
such as time available for HIV screening programs, ser-
vice level parameters and the costs of wages, screening,
and treatment. To do so, we first set the budget level to
$16 million and changed each of these parameters one at a
time from their base level by —30% to 30% in increments
of 10%. In practice, such changes may be needed because
of organizational requirements. As expected, the QALYs
gains from all the heuristics declined as available time for
HIV programs (A, ;) and the service level parameter related
wait time at location / (7,) decreased. Similarly, the QALY's
gained from the heuristics declined as the service level
parameter related to the probability of meeting a wait time
at location [ («;), cost of wages, screening, and treatment
increased. However, in all these cases, the relative gain
from the benchmark risk based screening policy is increas-
ing as the optimization inherent in the heuristics allowed
them to better cope with diminished resources, higher ser-
vice level requirements, or increased costs. In addition, the
previously described order of improvement from FSSS to
FSNS to VSSS to VSNS was still preserved. This shows
that the comparative performance of the heuristics across a
wide range of parameters is quite consistent, and they are
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better in coping with changes in these parameters values
than the risk based screening policy.

5.3. Screening Rates and Staffing Allocation

We studied how the screening rates and staffing allocation
vary for each of these policies at different budget levels. We
start by discussing the screening rates across the policies.
Here, we found at low budget levels, the screening rates of
the variable staffing heuristics were higher than those of the
fixed staffing heuristics. This is because fixing the staffing
levels to those of the risk based screening policy resulted
in a large portion of the budget being committed, thereby
leaving little flexibility to increase screening rates. On the
other hand, at higher levels of budget, the screening rates of
the fixed staffing heuristics are now higher than the variable
staffing heuristics. This is because once the staffing levels
are fixed, the only way to utilize the additional budget and
improve the solution is to increase screening rates. In con-
trast, the variable staffing heuristics balances the screening
rates and staffing levels with the available budget in both
these budget scenarios and thus yields a better solution.
We also analyzed how screening rates vary over time in
the nonstationary screening rate policies (i.e., FSNS and
VSNS). Observe from Figure 2 that in both the FSNS and
VSNS policies, screening rates ramp up, saturate at a stable
level, and ramp down across a budget horizon. The ramp up
occurs because there is a large pool of unscreened patients
at the start of the horizon. Screening these patients at high
rates would require a large number of staff at screening and
thus less staff would be available at treatment. This would
lead to an undesirable outcome of screening patients with-
out treating them. To prevent this from happening, both
these policies ramp up screening rates to spread the work-
load over time with fewer staff at screening so that the
remaining staff can be effectively utilized in treatment. This
ramp up continues until the system reaches the desired
balance between screening and staffing; at this point, the
screening rate stabilizes. This screening rate is maintained
until the time horizon for the current budget cycle draws to
a close. At this point, the screening rates ramp down and
more resources are focused on the treatment of screened
patients to make sure that screened patients not treated in
this horizon do not congest treatment in the next horizon.
This is important because residual budgets from the current
cycle do not carry over to the next cycle.

Next, consider the staffing allocation between primary
care (i.e., where screening is conducted) and specialty care
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Figure 2. Screening rates over time for the nonstation-
ary screening rate policies.
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(i.e., where treatment is conducted) across policies. This is
summarized in Figure 3. From this figure, it can be seen
that more staff was allocated to primary care compared
to specialty care in the fixed staffing heuristics, whose
staffing levels are set to the current risk based screening
policy. This follows as in the risk based screening policy,
all high risk patients are screened without explicitly deter-
mining the staffing requirement for treatment. This leads
to lower QALYs in the system because many people are
screened but may not be effectively treated. Conversely,
the variable staffing policies allocated more staff to spe-
cialty care than primary care. This ensured that the number
of patients treated and the resulting systemwide QALYs
are maximized since, as shown in Proposition 1, these are
accrued from treatment and not from screening. Finally, we
observed that the staffing level in variable staffing heuristics
was actually lower than those in the fixed staffing heuris-
tics. This was a direct consequence of optimizing the allo-
cation between primary and specialty care in the variable
staffing heuristics based on the number of patients that can
be treated. This, in turn, reduced the staffing level needed
at screening to a greater extent than the increase in staff
needed at treatment.

To summarize, the policy analysis conducted in this sec-
tion has led to many organizational implications at the GLA
station. These are discussed next.

6. Application and Discussion

Several ideas developed in this paper have influenced deci-
sion making at the GLA station. A simplified version of the
FSSS and the FSNS has been used to compute screening
rates (Anaya et al. 2012). The rates ranged from 15% to
30% for the risk categories. These rates were considered to
be reasonable and achievable. Further, they are consistent
with research on HIV screening rates in other healthcare
settings (Martin et al. 2010). The rates from the FSSS and
the FSNS can be used to compute how many patients could
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Figure 3. Staffing allocation across policies.
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be estimated to be present at the primary care, laboratory,
and the infectious disease specialty over time. This infor-
mation can then be used in constraint (8) to estimate the
appropriate costs at different parts of the GLA station. This
could provide valuable input for planning in future bud-
getary cycles. In addition, our methods show how these
costs changed from the risk based screening policy to the
FSSS and the FSNS. This provides an important justifica-
tion in gaining the necessary funding in these budget cycles
to implement these policies.

The implementation of expanded testing programs such
as the FSSS and FSNS has led to early detection and early
transfer to care for an increased number of patients. This
in turn has resulted in better patient outcomes because they
are identified at a stage of disease where the more serious
manifestations of the illness are less common and when the
response to therapy is better (Goetz and Rimland 2011).
The challenges in implementing these policies include edu-
cating the patients about the procedure and benefits of
early testing, overcoming the reluctance of the providers to
screen and prescribe these tests to patients they considered
low risk or older and in stable monogamous relationships,
training the staff at primary care to execute screening cor-
rectly, ensuring tests are conducted and information passed
to care in a timely manner, and ensuring that patients are
connected to care in an effective manner. Once patients are
connected to care, it is important that there are sufficient
updates of their health state information to ensure effective
planning of staff for incoming patients in future periods. To
ameliorate the impact of these challenges, the GLA station
started implementation at its largest facility and used this
learning to roll out to the whole station and other stations
at the VHA (Goetz et al. 2011).

In addition, this work has had several managerial impli-
cations. It has shown that even though a policy such as
routine based screening may be cost effective from a soci-
etal point of view, its implementation may not be feasible
in an organization because of budgetary constraints. In par-
ticular, we show that at least a $15 million or 75% increase
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of annual budgetary outlays would be required to imple-
ment this policy from the risk based screening policy. This
may not be possible at the GLA station because of the
existing budgetary environment. Therefore, this provides
the motivation to improve upon the risk based screening
policy and we propose the FSSS, FSNS, VSSS, and the
VSNS policies. Our analysis of these policies (summarized
in Table 4) showed that optimizing the screening rate with
existing staffing levels could increase the QALYs gained
from risk based screening by 20% to 40%, or to 295 and
1,094 QALYs gained at the low and high budget levels,
respectively. Further, in the low budget scenario, optimiza-
tion of screening and staffing levels could increase QALY
gained from 245 for risk based screening’® to 995 or by
over 300%. The approach we propose improves on risk
based screening as it focuses on treatment, determines how
many patients can be treated effectively, and then decides
the appropriate screening rate. This is crucial because treat-
ment determines the QALY accrued in the system, in con-
trast to risk based screening where all high risk patients
are screened without consideration of the staffing implica-
tions for treatment. In particular, the staffing implications
of our variable staffing policies at the GLA station are more
staff should be allocated to specialty care, lesser to the pri-
mary care, and this allocation in fact lowered total staff
requirements. Although such staffing policies are harder
to implement from an organizational perspective, we show
this could result in significantly more gains, providing the
management with the justification to consider these poli-
cies. Furthermore, we find that greatest benefit under vari-
able staffing can be got by nonstationary screening. Here, it
is beneficial to initially ramp up the screening rate to even
the workload over time at treatment, allow this rate to sta-
bilize, and finally ramp down toward the end of the budget
cycle so that the remaining budget can be effectively used
for treatment of patients. Finally, it is encouraging to note
that the greatest gains can be achieved by these policies
from risk based screening at the most realistic low budget
scenario. In addition, the gains are increasing in order of
FSSS to FSNS to VSSS to VSNS and this is independent
of any budget scenario. Therefore our analysis provides
direct justification for the GLA station to next consider the
variable staffing policies (i.e., the VSSS and the VSNS) as
the logical extension of the FSSS and the FSNS. Further,
our method provides close to optimal staffing allocation
and screening rates to successfully execute such variable
staffing policies.

This work has the following limitations. First, our model
does not account for the societal benefits of early screening
by reducing transmission and ultimately prevalence rates.
However, it is not possible to analytically estimate this
reduction because it depends on individual behavior (i.e.,
whether one would take adequate precautions after being
diagnosed) and if the people affected by this individual are
a part of the VHA system. Therefore, we systematically
reduced prevalence rates to calculate the impact on budgets
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and QALYs gained. The results summarized in the elec-
tronic companion show that even small reduction in preva-
lence rates could significantly lower budget requirements
or increase QALYs gained. Second, we have assumed only
two risk categories in determining screening rates and do
not further stratify based on race and ethnicity because
there are no clinical studies that can then be used to esti-
mate transition rates between several health states. How-
ever, such divisions may increase the efficacy of our meth-
ods by early identification and treatment of certain patient
groups. Third, several model parameters such as visit fre-
quency, QOL utilities, incidence, and prevalence rates were
estimated using clinical literature based on the general HIV
population because they were not available specifically to
the GLA station. To improve the performance of our meth-
ods, these parameters need to be updated as results from
more current clinical studies become available or studies
specific to the GLA station are conducted. Finally, our anal-
ysis is conducted at the station level for budgetary and
staff allocation reasons. To keep this aggregate analysis
tractable, we assumed a compartmental model with deter-
ministic transitions between health states. However, this
approach leads to a loss of granularity in terms of patient
flows. Specifically, we do not consider the differences in
cost and treatment effectiveness of individual patients in a
particular health state. Further, we do not incorporate pri-
oritization decisions that may be made within a health state
due to presence of other health conditions of the patients
such as heart disease, diabetes, or cancer. To consider these
aspects in a shorter time horizon, one needs to consider a
more detailed scheduling model with stochastic transition
between disease states, and this is beyond the scope of our
study.

In conclusion, we developed a model to address the
screening and staffing decisions for HIV screening, test-
ing, and care at the GLA station of the VHA. We applied
this model to evaluate the risk based screening policy that
was being used and also showed that the cost effective
routine screening policy recommended by the CDC may
not be feasible in this organizational context because of
budgetary constraints. Therefore, we developed alternative
fixed staffing policies within the framework of our model
that are feasible and determined the relative improvement
from using these policies from the risk based screening pol-
icy. We also developed managerial insights to better under-
stand these policies and provided justification to the station
administration to further extend and enhance their use by
considering the variable staffing policies. This paper opens
up several opportunities for future work. First, further work
could improve the heuristic policies and the upper bound to
reduce the suboptimality gap. Second, this framework can
also be used to evaluate HIV screening, testing, and care in
other healthcare systems that have periodic patient follow
up and in which residual budgets do not carry over to future
periods (Petersen et al. 2007). In these settings, our existing
modeling framework may have to be changed to include
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alternative objective functions, system dynamics, and orga-
nizational constraints. This could require development of
different solution methods and bounds. Finally, a similar
modeling framework can be used to assess the feasibility
of other cost effective interventions (such as in tuberculosis
and cardiac care) and if needed, develop alternative poli-
cies that improve current practice and are feasible from an
organizational perspective.
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Appendix

Estimation of Bounds on U] ,

We describe the calculation of the lower bound U/, and the upper
bound U!, on U . These parameters are used in Proposition 2
to reduce the search space of the search algorithms and are also
important parameters in the method described in §3.4 used to
develop upper bounds on the QMPPB. From Equation (1), we get
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since S, , < 1.

If we can find a U/, < U. ,, then
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Therefore, we get the recursive formula

7:,1-;_1 = ( Z B}i:flnlreal(l - aB)QZ[) +Nri.l+l'
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Also, Ul | = U, p’. (both known numbers, explained in Incoming
Patient characteristics, §4.1). Then U! | = U} | and we recursively
build in the following manner. For t =1,

Qri,z = ( Z Gi:imtreal(l - aﬁ)gr’, 1) + Nri,Z'
i€Jy,

We repeat this step for all . Next, to calculate U/ ,, we run the

QMPBB for S, , =0 and use the U} , obtained from its solution

toset Ul ,=U} .
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Endnotes

1. A policy or intervention is said to be ‘“cost effective” if
the QALYs gained because of that intervention cost less than
$109,000 to $297,000 per QALY gained (http://www.cdc.gov/hiv/
prevention/ongoing/costeffectiveness/). The term QALYs is com-
monly used in the health economics and health policy literature
to assess the value of a medical intervention in terms of the num-
ber of years at a particular quality level added because of the
intervention (Dolan et al. 2005).

2. http://www.va.gov/vhapublications/ViewPublication.asp?
pub_ID=2056.

3. CD4'T helper cells are white blood cells essential to the
human immune system and are usually expressed as number of
cells per milliliter. Patients infected with HIV show reduced num-
ber of CD4 cells, and a lower number of CD4 indicates a greater
progression of the infection.

4. A similar approach is used in mathematical epidemiology
to model the spread of infectious diseases in the population
(Anderson et al. 1992).

5. This is consistent with the gains by risk based screening in
other studies (Paltiel et al. 2005).
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1. Proof of Propositions

Proof of Proposition 1: We first use induction on t to show the following equation (16) holds. Let Kri,t
and v.., be constants, then:

ULy +WEH +EL + ML+ DL =KL +Y ier vigDis Vit (16)
se{1,2,..,t}
Observe that for ¢ = 1, (16) is trivially true, since, U}, is a constant and W, EL ., M\, D, are all zero.

Next, assume that (16) holds for t. We show that (16) then holds for t + 1. From (1), (2), (3), (6) and (7)
for t + 1 we get,
U pr + Wieor + Ef g + My eyq + Dy
= > (UL AW+ B+ ML+ DL) 0 irear + ) DL [0firear = Ohuntreat]
J€7 jea
+ N;,t+1

— / j hj \ ji J Ji Ji i
- Kr,t + Z Vr,sD:'l.S gr,untreat + 2 Dr,t [er,treat - er,untreat] + N;,t+1
[ hed,se{1,2,...t} jeg
= Ki+ Y vDL

jed,sef1,2,...t+1}

Where, Kré,t+1 = Zj €J Kr],t grj,zntreat + Nré,t+1'vr{,lt+1 = [ez,ltreat - 97{,luntreat] and
ji _ hjpji

Vit = Zh€7,j€7,56{1,2,---,t} Vr,ser,untreat
This shows that if (16) holds for t it also holds for t + 1. Therefore, by induction (16) is true. We next
substitute (16) in the objective function of the QMPPB to get:
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Yierrer ten,ze[r] q" <Kr‘,t +Yjes, V#,SD#,S) Simplifying, we have:
Ko + Yierrerten, Ty Dfg,

. . . . i
Where, K, = Zie?,reﬁ,teMT,re[T] CILK;_t- and ﬂ;,t = Zjeﬂ,se{l,z,...,t} qlVr],s- n

Proof of Proposition 2 Consider inequality (9) of the QMPP:

. . _ 1
aBS Ui+ Y Ui S mimgfnepdep /yip) +—In(l - ap)
jemTeR i €9,/(13)reR P

This can be written as:

) : 1
apBSy Ure + z Ure < NipAip /Yip + T—ln(l —ap) Vk
ielgreR i€y /{13)reR P

Replacing Uri_t with its lower bound Q;t and rearranging terms, we get:

i - Yk.p
(Ykp/Arp ) Z apBSycUre + Z Ure |- 1.7 In(1—ap) <nyp vk
JEImTER i€7,/(T3)reRr kP P
Multiplying each term by w;, and summing across k constraints:
i j Wi Yi,p
Z (Wi Yip/Arp ) z aBS; U, + z Uu.|- 1 In(1 —ap)
feew jedmreR " ier,/(TBrer kp Tp
< z Wknk’p (1E)

Similarly using inequality (11) of the QMPP, we get:

i i WkYks
D A Ws/Aes) ). Db =2 In(1 - )

kew i €J/{0},reR ks Ts
< Z Wknk‘s (ZE)
kew
Consider inequality (8) of the QMPP:
CStapS, UL, + Z CSIUL, + Z CLXt,
i€0,, TER LEM, i€9,/{13},TER tEM, i€7 /{13},rER,tEML,XEX

+ z Ny Wi < B(1)
LELKEW, tEM,



Replacing Uri,t with its lower bound ert and since the other terms are positive, we get:

CS'aps, U, + Z CS'U°  + Z LU,
€7y, rERtEM, i€, /{13},rER tEM; i€7 /{13},TER tEM;

+ C[l) 7L',t + Z nk,ka < B(T)
i€ /{13},reRteM, leELkEW tEM

Substituting (1E) and (2E) in the above inequality:
CS'aBS, U+ Z Ccst U+ Z ck U,

i€7,, TER,LEM; i€7,/{13},TER LEM; i€7 /{13}TER,tEM;

> chi
i€7 J{13},TERtEM,

( / i \ _ WkYkp

+ Z (Wi Yip/Arp ) Z aBS, Uf e + Z Ure ﬁln(l
KEW TEM; \i el TeR i €9,/{13)reR / k.p P

. . Wi Yk,
—ap) ¢+ z (kak,S/Ak,S ) Z Il',tfpll:) —ﬁln(l _ aS)l < B(7)
J kew teMy k i €7y, TER kS s J
This simplifies to
OrtSrt < B(t) - K; - Z PiDri,t VT (3E)

TERLEM i €7 /{13}reRtEM;

This is the first inequality in the proposition with the associated definitions of K, pi and o, ;. Note that
the total number of patients treated in each risk category, has to be less than the total number of patients
screened and the total number of unscreened patients who get infected with OI. Thus:
ri,t = 2 aﬁsr,tv:”,t + Z v:”,t vr
ied,teM;, JETy LEM JETo tEM;
The above inequality can be rearranged to get the second inequality in the proposition.

For stationary screening, setting S, . = S, Vt and since p' r",t > 0 and 0,5, ¢ = 0, from (3E) we get

S < B(t)—-K; -

T —
ZtEMf Ort



2. Search Algorithm for Stationary Screening.

B(t)—K;

Start: AS, i< Ojc 0, Sy 0, Sy« 0, max— 0, N [L/AS], §lo=minf{ } Sy =

EteMT Olo,t
min {—B(T)_KT }
T (Zeere, Tnit
While i<N+1 and S;, < S,
Do,
SlO — Slo+iAS
j<0
While j<N+1 and Sy; < Sp;
Do,
Shi < SnitJAS
Evaluate QMPPB(Sy;, ;o)
If QMPPB is infeasible
then,
end do
If max< QMPPB(Sy;, Si0),
then
max— QMFS(Sy;, Si0)
Soptp; < Sh;
Sopt, < Sio
else
Jjejtl
end do
end do
return max, Sopty;, Sopt,,

3. Budget Imputation Algorithm

Start:
set Syor < 0,Shic < 1, AB « $0.5mn, counte 0, B 0, obj, B « 0, maxQ« 0, B « 0, exit— 0

/*to calculate B */
while (exit=0)
do,
evaluate QMPPB(S,.;, B)
if QMPPB(S,.+, B) is feasible
then,
B <~QMPPB(S, ¢, B)
exite 1
else,
count« count+1
B « B + AB * count
end if
end do

/*to calculate B*/
exit— 0 /*re-initialize exit flag*/
B<B




while (exit=0)
do,
evaluate QMPPB(S,, B)
if maxQ>QMPPB(S,;, B)
then,
B < QMPPB(S,.;, B)
exit< 0
else,
count«< count+1
B < B + AB * count
end if
end do

4. Procedure for choosing the number of partitions in the upper bound calculation

In determining the upper bound for the QMPP we need to choose parameter m, the number of partitions
on Ur",t. Note that as m increases, the value of the upper bound decreases (or becomes tighter) but its
computation time becomes larger. Our procedure chooses m by comparing this reduction of the bound
value with its increase in computation time. To initialize this procedure, we start with m = 1 and record
the value of the upper bound along with the time GUROBI takes to compute the bound. Next, we
increment m by 1 and calculate the % reduction of the value of the bound and the % increase in
computation time from the previous value of m. We then calculate the efficiency ratio defined as (%
reduction in bound value)/(% increase in computation time) and choose m corresponding to the highest
ratio. We applied this procedure to our data for m = 1 to 7 as GUROBI was unable to solve upper

bounds for m > 7. We found the best choice was at m = 5.

5. Estimation of system state costs C%
C}; is composed of the following:

1) In Patient costs (CI%): The average in-patient costs, (CI') per patient per month was collected

from VHA data. This cost is incurred on all the patients at each system state. Thus the in-patient cost is:
Cl'(aUt, + Wi, + EL, + ML, + DL}) (1E)

2) Monitoring costs (CM!): The monthly per-patient monitoring costs CM?, is incurred on patients

under monitoring Mri,t ,as well as treatment Dr",t. This is the cost of one CD4 cell count and one HIV-1

RNA quantitation, per quarter. Anaya et al. (2012) provide the cost of CD4 cell count and RNA

guantitation. The monitoring is:

CM'(ML, + DE,) (2E)




3) Treatment costs (CTY): The treatment cost per patient CT* is the cost of pharmacy for patients
undergoing treatment under HAART. The treatment cost is :

CT'D}, (3E)
4) Outpatient overhead costs (Cohk): The per patient overhead costs, Cohy , was not directly
available. Only the per-patient outpatient cost CO%, was available from VA. This cost however, was
inclusive of monitoring test costs and labor costs, which have already been accounted in the monitoring
costs described above and in wages. Thus, in order to calculate outpatient overhead costs, we need to

subtract the monitoring costs and the labor cost is:

Cohk = CO' — CM' — L
Here, L is the out-patient labor utilization cost per patient at system state X. Let ¥x x denote the labor
time of staff of type k, required per patient visit at system state X. Further let w;, denote the wage per time

of staff type k and the ¢ the frequency of visits. These are them used to calculate the labor cost incurred

per patient per month as

L = 0 Y (eawi)

kew
Since outpatient overhead cost is incurred on all patients in the system, the total outpatient overhead cost

for year T would be given by:

[(Cohl,aUk, + Cohly Wk, + CohLEF, + ConlyMf, + CohhDf,)]  (4E)
i€J/{13},rER tEM;

Summing equations (1E) through (3E) over all time periods, risk categories and health states and adding

equation (4E), we get:

|((cohlya + Cria)ui, + (Cohly + CIYW;, + (Cohf + CIVEL,
i€7/{13}TER tEM;
+ (Cohl; + CM' + CIYML, + (Cohb, + CI' + CM* + CTi)D;',t)]
Collecting the terms in order to simplify the notation the total costs can be written as,
[CiX7e]
i€7/{13},rER,LEM,XEX
where,
Cl = a(CI' + Coh})
Ci, = Cohl, + CI
CL = Cohk + CI*



Ci = Cohly, + CI' + CM?
Cl = Cohb + CI' + CM! + CT?
For brevity, we report C} Vi, X in Table 1A. Detailed breakdown are available upon request from the

authors.

6. Computation of Transition Rates

As discussed in the paper, there are four processes which govern the transition from one health state to
another: 1) HIV infection, 2) HIV infection progression (treated and untreated), 3) Opportunistic infection
(Ql), and 4) Ol recovery.

The first process is the HIV infection process which governs the transition from health state O
(uninfected) to health state 1 (>500cells/mm?). The monthly rate of transition under the HIV Infection

process is denoted by Hﬁﬁntreat, where Hf_'&ntreat = incid, /12, where incid,. is the annual incidence rate

of risk category r. We used the estimates provided by Paltiel et al. (2005) for the incidence rates (incid,)

This is shown in Table 3A in the Electronic Companion.

The HIV progression process governs progression from one infected state to a higher infected state. The
transition rate of this process varies depending on whether the patient is undergoing Highly Active Anti-
Retroviral Treatment (HAART) or not. This transition rate from infected stage i to infected stage j for

risk category r is given by 0 and 6Y for patients under HAART and not under treatment

r,treat runtreat
respectively. Mauskopf et al. (2005), calculate pé’f month the six month transition probabilities from one

health state to another without treatment. These 6 month transition probabilities are used to calculate

monthly rate as Hr";{mtreat =1-(1- pé‘{month)l/ ©. These transition rates are tabulated in Table 8A.

Mauskopf et al. (2005) also provide relative risk of transition (relrisk iT’{?) between states in different
treatment regimens (TRs), namely, First-line, Second-line, Salvage, and Optimized Background therapies,

(Table 9A). This relative risk is used to calculate the transition rates under each treatment regimen. The

transition rate under treatment regimen TR is given as 6,7, = 6,

) irear (L — Telrisk g). The overall

transition rate under treatment is given by average of the transition rates under different treatment

regimens or:

i,j ij ij
r.first—line + gr,second—line + er,salvage + gr,optimized)/4

0/ roar = (61

r,treat —



The third process is the Ol process that relates to patients infected with HIV who are susceptible to such
infections. The rate with which they can be infected with these infections depends on the nature of the

ei,i+6

opportunistic infection and the current CD4 state of the patient. This transition rate is given by 6,00,

and g4i+e where i € Jy,. Paltiel et al. (2005) provide the monthly risk of being infected with Ol by

r,untreat
CD4 stratum and shown in Table 10A. For each CD4 category, we sum across the different Ol to
calculate the average risk of infection of Ol. To illustrate, if we want to calculate 875, we note from

Table 1 that for i = 2 and j = 8 correspond to a CD4 count between 350-499. We then go to this column
in Table 10A and sum the appropriate column to get 2.27 x 1073 = 625.

Finally, the Ol recovery process governs the recovery from such infection. The transition rates here are
given by Hﬁf;f'eiat, wherei € Jy,. Kaplan et al. (2009) provide typical time required for recovery from each
Ol as listed in Table 11A. As shown in this table, the typical recovery times are converted to a weighted
average recovery time using the relative risk of incurring that Ol. This weighted average monthly
recovery time is converted to the fraction or rate of patients recovering every month by 1 — =196 =

0.654. Thus the transition rate from any Ol infected state to Ol uninfected state of the same CD4 bracket
OLtel i € Ty is 0.654. Finally, due to the nature of HIV, 6.55L . = 0,i € 7y

For transitions that require two processes to occur simultaneously such as transition between health states
and transition to an Ol status, we assume independence. Thus, the rates of the two processes occurring

simultaneously are the product of the rates of the individual processes.

Finally, there are a total of four transition rate matrices corresponding to the two risk categories (i.e., high
and low) and two treatment categories (treated vs. untreated). These transition rates are provided in
Tables 12A through 15A.

7. Estimation of Quality of Life Utilities

The Quality of Life (QOL) utilities are drawn from two sources, Mauskopf et al. (2005) and Freedberg et
al. (1998). Specifically, Mauskopf et al. provides 5 CD4 ranges, =500 cells/uL, 350-499 cells/uL, 200-
349 cells/pL, 100-199 cells/uL and 0-100 cells/uL and death. We further divide the range 0-100 cells/pL
into two, 50-99 cells/uL and 0-49 cells/uL because the treatment and system costs for these two CD4
ranges were different (Schackman et al., 2006). These health states are numbered 1 through 6 and death.
The QOL utilities for health states 1-4 was from Table 2 in Mauskopf et al (2005). The QOL utilities for

health states 5 and 6 were from Table 2 in Freedberg et al. By definition, the no infection state 0 has a

8



QOL utility 1 and the death state 13 has a QOL utility 0.

We also incorporated health states with opportunistic infections by adding health states 7 through 12.
As shown in Table 1, each of these states correspond to the same CD4 counts as in states 1 through 6
respectively, but have opportunistic infections. For example health state 7 (i.e., CD4 =500 cells/uL)
corresponds to the CD4 count of health state 1, health state 8 with health state 2, and so on. The QOL
utility for health states 7-12 were calculated from Table 2 in Freedberg et al. Here, we considered the
health related quality adjustment scores for the opportunistic infections by listed pathogen types (such as
Pneumocystis Carini, through other AIDS diagnoses). Ideally, one would have had to introduce additional
sub health states for each opportunistic infection within a CD4 count range. However, this could be
impractical to do since patients typically had more than one opportunistic infection, it was often not easy
to diagnose the pathogens and decide which one was most dominant. Further, the range of the scores
across these opportunistic infections was relatively narrow (i.e., 0.56 to 0.65). Therefore, it was
considered reasonable to calculate the quality utility for health states 7 through 12 by averaging the

quality scores across these opportunistic infections.

8. Model Extension to Longer Time Horizons

The model can be easily extended to longer time horizons with the appropriate choice of T, where t =
{1,2,..,T}. To illustrate, we consider a five year and a ten year horizon. For the five year horizon we set
T to 5, while in the 10 year horizon, we set T to 10. In both these cases, we use the upper bound
developed in Section 3.4 and the heuristics developed in Section 3.5 of the paper. The percentage gaps
and improvements from the risk based screening policy for the five year and ten year horizon are
described in Tables 16A and 17A respectively. Note that these are very comparable to the analysis of the
two year horizon as was reported in Table 4 of the paper.

To demonstrate the robustness and stability of the two year decision given a longer planning horizon,
we used the solution of the two year problem in the five and ten year horizon across the different policies
and budget levels. The reduction in the objective from its original value for the five year problem ranged
from 2% to 5% averaging around 3%. Similarly, the reduction in the objective from its original value for
the ten year problem ranged from 3% to 7% averaging around 5%. These results show that the two year
solution is stable and robust. In fact, these reductions would be even lower if the model parameters are

updated every year with the latest estimates as it would be done in practice.



9. Impact of Early Screening on Budgets and QALY gained.

Early screening could provide societal benefits by reducing transmission and ultimately prevalence rates.
This is because when HIV infected individuals know their status via early screening, they are less likely
to participate in unsafe sex and share syringes if they use intravenous drugs. However, it is not possible to
analytically estimate this reduction as it depends on individual behavior (i.e., whether one would take
adequate precautions after being diagnosed) and if the people affected by this individual are a part of the
VHA system. Thus, to understand the benefits of early screening via reduced transmission to the general
population, we systematically reduced prevalence rates by a fixed percentage in future periods. This
reduction in prevalence rates affects parameter pL, the proportion of patients in each risk and CD4
category (Paltiel et al. 2005; Gandhi et al. 2007) and Nri,t, the number of new patients in each risk
category and health state in each period who enter the station. We then used the risk based screening
policy to calculate: 1) The change in budget to achieve the level of QALY’s gained at the initial
prevalence rate and 2) The change in QALY gained if the budget levels are at the same level. These are
summarized in FigurelA. This figure shows that even small reduction in prevalence rate can significantly
reduce the budget required or increase the QALYs gained. We repeated this analysis for the policies
described in Section 3.5 and obtained similar results. Thus, this analysis provides a model based

justification for developing early screening programs.

Tables
Table 1A: System State Cost in $/per patient-month
Cx
Health State(i) c} Cly CL ch c},
0 0.00 0.00 0.00 55.00 55.00
1 26.45 52.60 60.86 104.48 312.59
2 25.44 50.50 60.86 101.59 308.47
3 59.34 118.27 129.93 168.86 550.88
4 74.99 149.58 160.98 200.28 553.43
5 75.06 149.71 160.98 200.46 550.83
6 119.73 239.02 251.60 289.27 840.93
7-12 0.00 0.00 0.00 55.00 1820.70
13 0.00 0.00 0.00 0.00 0.00
Table 2A: Wages
Resource Wage ($/month)
Physician 15,000
Nurse 11,000
Laboratory Assistant 7550
Counselor 6500
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Table 3A: Incidence and Prevalence Rate

Risk Category incid, prev,
1 (high risk) 0.012 0.03
2 (low risk) 0.0001 0.001

Table 4A: Incoming proportion by CD4 count

i pi P}
0 9.70E-01 | 9.99E-01
1 4.05E-03 | 1.35E-04
2 4.05E-03 | 1.35E-04
3 6.60E-03 | 2.20E-04
4 4.05E-03 | 1.35E-04
5 4.05E-03 | 1.35E-04
6 7.20E-03 | 2.40E-04
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0

Table 5A: Time Required by resource type and location y(k,l) in minutes/patient-visit

Physician Nurse Teclﬁﬁ?cian Counselor
P 7 7 0 0
L 0 0 25 0
S 10 10 0 8

Table 6A: Time Available per resource per month (in minutes/month) A(k,I)

P L S
phys 1600 0 2400
nurse 2000 0 3600
lab 0 6400 0
couns 0 0 3200
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Table 7A: Out-patient visit frequency

Monitoring Treatment

i (") (0h).
0 0.63 0.53
1 0.63 0.53
2 0.79 0.72
3 0.89 0.79
4 0.87 0.88
5 0.86 1

6 0.96 1

7 0.00 2.51
8 2.51 2.51
9 2.51 2.51
10 2.51 2.51
11 2.51 2.51
12 2.51 2.51
13 0 0

Table 8A: Transition Rates (Mauskopf et al. 2005)

Initial State to 6 month Monthly
State i to state j Final State rate rate
62 500+ to 350-499 0.37 0.07294117
350-499 to 200-
623 349 0.37 0.07294117
200-349 to 100-
93,4 199 0.37 0.07294117
6.5 100-199 to 50-99 0.51 0.11134859
6.>° 50-99 to <50 0.51 0.11134859
g3 <50 to death 0.51 0.11134859

Table 9A: Relative Risk of Transition between States (Mauskopf et al. 2005)

Relative risk of transition
between states
CD4+ gain | VL decrease (relrisk rg)
First-line 79 21.42 27%
Second-line 73 21.49 26.53%
Salvage therapy 76 21.697 22.80%
Optimized 32 20.763 51.95%
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Table 10A: Transition Probability for Ol (Paltiel et al. 2005)

0- 50- - 100 - 200 - 300 -
49/mm3 99/mm3 | 199/mm3 | 299/mm3 | 499/mm3 | > 500/mm3
PCP 3.70E-02 3.10E-02 | 9.60E-03 | 3.73E-03 | 8.50E-04 4.10E-04
MAC 1.22E-02 3.75E-03 | 1.01E-03 | 2.20E-04 | 5.50E-05 5.90E-05
Toxoplasmosis 2.70E-03 | 1.40E-03 | 6.70E-04 | 4.20E-04 | 9.20E-05 2.90E-05
Cytomegalovirus 1.86E-02 5.23E-03 | 2.14E-03 | 5.80E-04 | 1.29E-04 5.90E-05
Fungal infection 1.12E-02 5.91E-03 | 1.35E-03 | 2.90E-04 | 2.76E-04 8.80E-05
Other 3.94E-02 2.46E-02 | 7.16E-03 | 2.24E-03 | 8.70E-04 4.70E-04
Total 1.21E-01 | 7.19E-02 | 2.19E-02 | 7.48E-03 | 2.27E-03 1.12E-03
Table 11A: Recovery Rates from Ol
Infection Days of Recovery | Monthly Rate | Weight | Relative Risk
(MR) (Wt) (MR X Wt)
PCP 21 1.42 0.082 0.1179
MAC 14-28 1.42 0.0173 0.0247
Toxoplasmosis 42 0.71 0.0053 0.0038
Cytomegalovirus 21-28 1.22 0.027 0.0327
Fungal Infection 70 0.42 0.019 0.0082
Others 163 0.074 0.0274 0.002
Weighted Average 1.06
Table 12A: Transition Rates High Risk , untreated ei{'untreat
i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.999 | 0.001
1 0.926 | 0.073 0.001 | 0.000
2 0.925 | 0.073 0.002 | 0.000
3 0.920 | 0.072 0.007 | 0.001
4 0.869 | 0.109 0.019 | 0.002
5 0.825 | 0.103 0.064 | 0.008
6 0.781 0.108 | 0.111
7 0.606 | 0.048 0.321 | 0.025
8 0.606 | 0.048 0.321 | 0.025
9 0.606 | 0.048 0.321 | 0.025
10 0.581 | 0.073 0.307 | 0.039
11 0.581 | 0.073 0.307 | 0.039
12 0.581 0.307 | 0.111
13 1.000
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Table 13A: Transition Rates High Risk, Treated 8

ij

1,treat
i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0.999 | 0.001
1 0.964 0.035 0.001 | 0.000
2 0.963 0.035 0.002 | 0.000
3 0.958 | 0.035 0.007 | 0.000
4 0.925 | 0.053 0.021 | 0.001
5 0.878 | 0.050 0.068 | 0.004
6 0.831 0.115 0.054
7 0.631 0.023 0.334 | 0.012
8 0.631 0.023 0.334 | 0.012
9 0.631 | 0.023 0.334 | 0.012
10 0.619 | 0.035 0.327 | 0.019
11 0.619 | 0.035 0.327 | 0.019
12 0.619 0.327 0.054
13 1.000
Table 14A: Transition Rates Low Risk, untreated eg’funtreat
i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1.00 0.00
0 0 0
0.92
1 6 0.072 0.001 | 0.000
2 0.925 0.072 0.002 0.000
3 0.920 | 0.072 0.006 | 0.000
4 0.869 | 0.108 0.019 | 0.002
5 0.824 | 0.103 0.063 0.008
6 0.781 0.107 0.111
7 0.60 0.047 0.320 | 0.025
8 0.606 0.047 0.320 | 0.025
9 0.606 | 0.047 0.320 | 0.025
10 0.581 | 0.072 0.307 | 0.038
11 0.581 0.072 0.307 0.038
12 0.581 0.307 0.111
1.000
13 0
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Table 15A: Transition Rates Low Risk, Treated

0,

2,treat

i/j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1.000 | 0.000

1 0.964 | 0.035 0.001 | 0.000

2 0.963 0.035 0.002 | 0.000

3 0.958 | 0.035 0.007 | 0.000

4 0.925 | 0.053 0.021 | 0.001

5 0.878 | 0.050 0.068 | 0.004

6 0.831 0.115 0.054
7 0.631 | 0.023 0.334 | 0.012

8 0.631 0.023 0.334 | 0.012

9 0.631 | 0.023 0.334 | 0.012

10 0.619 | 0.035 0.327 | 0.019

11 0.619 | 0.035 0.327 | 0.019

12 0.619 0.327 0.054
13 1.000

Table 16A: % Gap of Heuristics and % Improvement from Current Practice for 5 year Horizon

Budget Level : Low

Budget Level : Medium

Budget Level : High

% % Improvement | % Gap | % Improvement % % Improvement
Gap Gap
FSSS 0.17 10.25 0.05 18.26 4.56 27.45
FSNS 0.87 17.37 0.59 19.33 4.48 38.22
VSSS 6.77 195.25 5.64 57.25 2.56 30.63
VSNS 8.18 278.28 7.45 56.36 5.34 38.77

Table 17A: % Gap of Heuristics and % Improvement from Current Practice for 10 year Horizon

Budget Level : Low

Budget Level : Medium

Budget Level : High

% % Improvement | % Gap | % Improvement % % Improvement
Gap Gap
FSSS 3.56 6.56 1.66 12.45 3.28 20.28
FSNS 3.87 12.66 1.67 16.32 6.48 35.36
VSSS 6.43 181.36 7.54 45.88 8.56 28.54
VSNS 9.78 266.54 9.33 47.36 9.34 33.28
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Figures

Figure 1A: Impact of Prevalence Rate Reduction on Budget and QALY gained
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