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Abstract

When managing projects with considerable uncertainty suchas those arising in construction, defense,

and new product development, it is customary for a manufacturer (project manager) to offer contracts

under which each supplier (contractor) receives a pre-specified payment when she completes her task.

However, there are recent cases in which the manufacturer imposes “delayed payment” contracts under

which each supplier is paid only when all suppliers have completed their tasks. By considering a model

of one manufacturer andn≥ 2 identical and independent suppliers with exponential completion times,

we analyze the impact of both a delayed payment regime and a nodelayed payment regime on each

supplier’s effort level and on the manufacturer’s net profitin equilibrium. When the suppliers work rates

are unadjustable, we conjecture that the manufacturer is actually worse off under the delayed payment

regime. However, when the suppliers work rates are adjustable, we obtain a different result: the delayed

payment regime is more profitable for the manufacturer either when the project revenue is sufficiently

small or when the number of suppliers is sufficiently large.
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1 Introduction

The growing importance of effective project management hasled to the development of many project man-

agement tools since the 1950s such as Critical Path Method (CPM), Project Evaluation and Review Tech-

niques (PERT), and cost-time tradeoff analysis (Klastorin(2004)). These tools are effective when there is

little uncertainty in project completion times and/or operating costs. However, relatively little is known

about ways to manage projects with considerable uncertainty such as those arising in construction, defense,

and new product development. Although we have witnessed an increased research interest in examining

supply contracts under uncertainty (Cachon (2003)), little research has been done in the area of project

management contracts under uncertainty.

Consider a manufacturer who manages a project consisting ofn ≥ 2 separate and independent tasks

that can be performed by different suppliers in parallel. The manufacturer’s contract with each supplier

specifies both the payment to the supplier and the payment terms. In practice, we observe two different

payment regimes: no delayed payment and delayed payment. Under the conventional or no delayed payment

regime, a supplier receives her payment immediately after she has completed her task. Under the delayed

payment regime, however, each supplier receives her payment only whenall suppliers have completed

their tasks. We offer three examples to illustrate the existence of both payment regimes in practice. First,

consider a translation agency that offers one-stop writtentranslation services to customers who need to

translate customer-specific materials such as employee handbooks, safety manuals, and web site content

from a source language (e.g., English) to multiple target languages (e.g., Spanish and Italian). Typically,

the agency receives full payment from the customer upon the completion of the entire translation project.

Most agencies outsource the translation work associated with each target language to an external translator.

According to our discussion with the managing director of Inline Translations Services (www.inlinela.com)

based in Los Angeles, both payment regimes are common in practice. Second, consider a home warranty

company that offers comprehensive home repair services to home owners. Upon receiving a repair service

request from a customer, the company outsources the actual repair tasks to different independent contractors

who specialize in different types of repair services (e.g.,electrical, plumbing, flooring). For example, when

one of the authors requested a home warranty company to repair his kitchen after an accidental flood, the

home repair company managed his request by coordinating different repair tasks performed by a plumber,

an electrician, a carpenter, and a carpet installer. According to a manager of First American Home Buyers
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Protection Corporation (www.homewarranty.firstam.com),both payment regimes are common in practice.

Third, when Boeing developed its 737 and 747 aircrafts, Boeing offered the no delayed payment regime to its

suppliers. When developing the 787 aircraft, however, Boeing imposed the delayed payment regime (also

known as the “risk-sharing” contract) upon its strategic suppliers. As reported in Greising and Johnsson

(2007), the risk-sharing contracts stipulate that these strategic suppliers will not receive payments from

Boeing to recoup their development costs until thefirst 787 plane is developed, certified, and delivered to

Boeing’s first customer (Japan’s All Nippon Airways).

Even though both payment regimes exist in practice, we are unaware of any formal study regarding

the rationale behind each payment regime. Based on our discussion with two translation agencies, various

translators, and two major Boeing suppliers who request anonymity, we learned of the following issues.

First, all suppliers believe that the no delayed payment regime is fair because the timing of each supplier’s

payment depends only upon her own performance (completion time). Because the timing of the payment to

each supplier depends on the completion times of all suppliers under the delayed payment regime, there is a

consistent perception among suppliers that the delayed payment regime penalizes those suppliers who finish

early. Consequently, some suppliers are incentivized to work slower under the delayed payment regime.

Second, because each supplier is paid when she completes herown task, the no delayed payment regime

can create potential cash flow problems for the manufacturer, especially when the last supplier completes

her task very late. As a way to reduce the manufacturer’s financial risks, some manufacturers believe that

the delayed payment regime provides an incentive for the suppliers to coordinate their tasks better so as

to complete the entire project earlier. In summary, all suppliers prefer to receive their payments earlier,

while the manufacturer prefers to issue his payments later.This sentiment suggests that both suppliers and

manufacturers discount the value of future payments, either through mental calculations or actual financial

discounting. Accordingly, we assume that there exists an “imputed” continuous time discount rate in our

model. Also, we consider the case when the manufacturer and the suppliers are interested in maximizing

their own expected discounted profit.

As an initial attempt to analyze these two payment regimes inthe context of project contracts with uncer-

tain completion times, we consider the case in which one manufacturer engagesn≥ 2 identical suppliers in

the project. By considering an abstraction of the aforementioned industry examples, we propose a stylized

model to capture the salient features of the two regimes in order to gain intuition as to which regime yields
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a shorter project completion time and which regime imparts the larger manufacturer’s profit. Although we

compare the manufacturer’s profits associated with two payment regimes that are simple and common in

practice, there may be other payment regimes that dominate these two regimes. As such, our intent is to

develop a basic model which can be used as a building block to examine more general settings. We discuss

other payment regimes and future research in Section 5.

Our model consists of one risk-neutral manufacturer andn≥ 2 identical risk-neutral suppliers. The man-

ufacturer will receive a total revenue ofnq from his customer upon delivering the product or service which

occurs when all suppliers complete their tasks. Henceforth, we refer toq (and notnq) as the manufacturer’s

revenue. The manufacturer acts as the leader in a Stackelberg game by selecting not only the paymentp

to be paid to each of the suppliers but also the payment regime(either the no delayed payment regimeN

or the delayed payment regimeD). Given the paymentp and the regime, each supplier acts as a follower

by selecting her optimal work rate. The completion time of each task is uncertain. Because each supplier

receives her payment only after all suppliers have completed their tasks under the delayed payment regime

D, each supplier needs to take the other suppliers’ work ratesinto consideration when selecting her own

work rate.

Throughout this paper, we consider the case when each supplier is informed of the progress of the other

suppliers. (For example, under the Boeing’s 787 development program, the completion time as well as the

progress of each task are commonly observed by all suppliers(Nolan and Kotha (2005)).) In Section 3, we

present our base model wherein we assume that suppliers are unable to adjust their work rates once selected

at time 0. This assumption is reasonable in many practical settings.1 In Section 4, we relax this assumption

so that each supplier can adjust her work rate dynamically over time. Our analysis answers the following

questions:

1. Given the paymentp, what is the supplier’s optimal work rate under regimesN andD?

2. Given the revenueq, which regime will yield a higher expected profit for the manufacturer?

3. What conditions render one regime more profitable for the manufacturer?

1Based on our private communication with a law firm that specializes in construction laws, we learned that each supplier’swork

rate is usually specified in the contract, which cannot be adjusted dynamically because there are other involved partiesincluding

materials suppliers and subcontractors (Kromke (2009). For example, for freeway repair projects that require lane closures, the

work rate cannot be adjusted dynamically due to a lengthy approval process.
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4. How would a supplier’s ability to adjust her work rate affect (a) her optimal work rate, (b) the manu-

facturer’s optimal profit, (c) the dominance of one regime over the other?

The primary contributions of this paper are two-fold. First, our paper is the first to construct a model

of a project management contract with and without delayed payments with uncertain completion times.

Second, we derive conditions under which one payment regimedominates the other when the work rates are

unadjustable and adjustable. Specifically, when the work rates are unadjustable, we conjecture that, contrary

to the naive intuition shared among practitioners, the manufacturer is actually worse off under the delayed

payment regime. This conjecture is supported by numerical and partially analytical results. However, when

the work rates are adjustable, we obtain two additional interesting structural results: (1) under the delayed

payment regime, it is optimal for each supplier to begin witha slow work rate and then switch to a faster

rate when another supplier completes her task, and (2) the delayed payment regime is more profitable for

the manufacturer either when the project revenue is sufficiently small or when the number of suppliers is

sufficiently large.

This paper is organized as follows. Section 2 provides a brief review of related literature. Section 3

presents the base model for the case when suppliers’ work rates are unadjustable. In Section 4, we consider

a different setting in which each supplier is capable of adjusting her work rate over time. The analysis

is more complex because it involves the analysis of an n-stage non-cooperative game. Despite certain

technical challenges, we establish analytical conditionsunder which one payment regime dominates the

other in equilibrium. We conclude in Section 5 with a brief summary of our results, a brief discussion of two

payment regimes that are slightly more general than regimesN andD, and a discussion of the limitations

of our model and potential future research topics. To streamline our presentation, all proofs are given in the

Online Appendix.

2 Literature Review

To our knowledge, a time-based project contract with delayed payment has not been examined previously in

the project management literature. In particular, there are three features of the time-based contract analyzed

in this article which differ markedly from the existing supply contract literature (Cachon (2003) and Tang

(2006)). First, under the delayed payment regime, each supplier receives payment at the time when all

suppliers have completed their tasks. Consequently, each supplier needs to take into account the other
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supplier’s behavior when selecting her own work rate. It is through this interaction among suppliers that the

several underlying supply contracts are, in effect, transformed into a single joint supply contract between the

manufacturer and his multiple suppliers. This linking of the several suppliers is a fundamental and crucial

departure from the traditional supply contract. A related interaction among suppliers has been examined by

Cachon and Zhang (2007). For an exogenously given pricep, they consider the case when the manufacturer

allocates randomly arriving jobs to different suppliers, and they develop a queueing game to evaluate the

expected lead time for different allocation policies. In their model, each supplier selects her work rate so as

to optimize her expected profit by taking other supplier’s behavior into consideration. Their model differs

from ours in that they focus on different allocation policies whereas we concentrate on pricing policies under

different payment regimes. In addition, their model is based on substitutable tasks while ours focuses on

complementary tasks.

The notion of substitutable tasks (or technologies) has been examined in the economics literature. For

example, Reinganum (1982) analyzes a search game among competing firms who conduct new product

R&D. The underlying technologies for the new product are complements: the profit of a given firm decreases

as the costs of the other firms decrease. She establishes the existence of a Nash equilibrium in which each

firm searches until it finds a cost below its reservation threshold. Naturally the R&D efforts of a given firm

decreases as the other firms increase their efforts. In the same vein, the R&D model in Lippman and Mamer

(1993) represents the extreme in substitutability. The firms engage in R&D, and the first firm to make the

decision to bring its product to market wins the entire market. Bringing a low quality product to market

results in a low firm profit, which spoils the market for the other firms. These R&D models are based on

substitutable tasks (or technologies) while ours focuses on complementary tasks.

Wang and Gerchak (2003) present a model that deals with complementary tasks in the context of as-

sembly operations: a manufacturer sells a product that requires different assembly components produced by

different suppliers. To produce the components, the suppliers need to construct their individual component

production capacities before observing the actual order quantities to be placed by the manufacturer. In this

case, the effective production capacity of the product is dictated by the minimum of the component pro-

duction capacities. As a way to induce proper component capacity installation, the manufacturer offers a

per unit price to each supplier for its component; however, the manufacturer delays its order-quantity un-

til demand uncertainty is resolved. By solving a Stackelberg game in which the manufacturer acts as the
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leader who specifies the per unit price of each component and the suppliers act as followers who install the

component production capacities, Wang and Gerchak (2003) first determine each supplier’s best response.

By anticipating the supplier’s best response, they determine the manufacturer’s optimal per unit price. Their

model differs from ours in that they focus on the suppliers’ production capacities while we concentrate on

the suppliers’ work rates under time-based contracts with different payment regimes.

The economics literature on multi-agent incentive contract theory is vast: some seminal papers include

Holmstrom (1982), Demski and Sappington (1984), Mookherjee (1984), McAfee and McMillian (1991),

and Itoh (1991). While our model deals with multiple suppliers (agents), our setting and our focus are

different from multi-agent incentive contract theory in the following sense. First, our model is intended

to compare two common payment regimes in the context of project management contracts with uncertain

completion times, while the multi-agent models focus on examining the existence of Nash equilibrium

and general characteristics of optimal incentive contracts (e.g., Holmstrom (1982), Mookherjee (1984),

and McAfee and McMillan (1991)). Second, in our model, the manufacturer receives his revenue at the

instant when all suppliers have completed their tasks so themanufacturer’s expected profit is a non-separable

function of the suppliers’ outputs (i.e., the completion times of different tasks). In most multi-agent models,

the manufacturer’s (principal’s) expected profit is a separable function of the suppliers’ outputs (e.g., Itoh

(1991)). Third, in our model, the completion time of each task is a continuous random variable, while in

most economic models, the outcome of each task takes on discrete values (e.g., Demski and Sappington

(1984) and Itoh (1991)).

3 Base Model: Unadjustable Work Rates

The manufacturer will receive a total revenuenq from a customer when the project is complete. (To focus

our analysis on the interaction between the manufacturer and n suppliers and to obtain tractable results,

we assume that the revenuenq is given exogenously. Without this simplifying assumption, one needs to

analyze a 3-level Stackelberg game withn+ 2 players, which is beyond the scope of this paper.) The

project consists ofn ≥ 2 parallel tasks, each of which is to be performed by a distinct external supplier.

Throughout this paper, we assume the tasks are of equal difficulty and the suppliers have equal capability so

that the manufacturer will offer an identical paymentp to all suppliers. (In many instances, the assumption of

identical suppliers is reasonable and innocuous. For example, in translation services, the price for translating
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a document into Spanish or Italian is usually the same because the difficulty of translation is quite similar.

While an approach similar to ours can be used to analyze the case of non-identical suppliers, the analysis

is highly complex due to asymmetric equilibria and is beyondthe scope of this paper.) In addition to the

paymentp, the manufacturer specifies the payment regimeN or D. Under the no delayed payment regime

N, each supplier is paid immediately after she completes her own task. UnderD, each supplier is paid when

all n suppliers have completed their tasks.

We assume that the completion timeXi of development taski is exponentially distributed with parameter

r i , where the work rater i > 0 is selected by supplieri at time 0,i = 1, · · · ,n. The exponential completion time

assumption is commonly assumed in the project management literature (e.g., Adler et al. (1995), Maggott

and Skudlarski (1993), and Pennings and Lint (1997)). Besides the empirical evidence for exponential

completion times cited in the project management literature (Choen et al. (2004)), Dean et al. (1969) argue

that an exponential completion time is more realistic in thecontext of project management than the Normally

distributed completion times that are commonly assumed (e.g., Bayiz and Corbett (2005)).

In the base model, we assume that, due to practical reasons stated earlier, the supplier is unable to ad-

just her work rater i once selected at time 0. (We shall relax this assumption in Section 4.) Therefore, the

project completion timeT satisfies:T = max{Xi : i = 1, · · · ,n}. To capture the sentiment that all suppliers

prefer to receive their payments earlier and the manufacturer prefers to issue his payments later, letα > 0

be the “imputed” continuous time discount rate. The expected discount factor associated with the project

completion timeT = max{Xi : i = 1, · · · ,n} (or the time for the suppliers to receive their payments under

regimeD) is denoted byβn(r1, · · · , rn) = E(e−αT). Because the distribution ofXi is Fi(t) = 1−e−r it , the dis-

tribution ofT is F(t) ≡ ∏n
i=1Fi(t). Hence, the discount factorβn(r1, · · · , rn) = E[e−αT ] =

R ∞
0 e−αtd(F(t)) =

α · R ∞
0 e−αtF(t)dt, where the last equality is obtained via integration by parts. Similarly, the expected dis-

count factor associated with the completion time of taski (or the time for supplieri to receive her payment

under regimeN) is denoted byβ(r i): β(r i) = E(e−αXi ) =
R ∞

0 r ie−(r i+α)tdt = r i
r i+α . Our analysis utilizes the

following properties ofβn(r1, · · · , rn).

Lemma 1 For any positive integer n, the expected discount factorβn(r1, · · · , rn) satisfies:

1. βn(r1, · · · , rn) = E(e−αT) ≤ E(e−αXi ) = β(r i) for i = 1, · · · ,n.

2. βn(r1, · · · , rn) is increasing and strictly concave in ri for i = 1, · · · ,n.
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3. βn(r1, · · · , rn) is a submodular function of(r1, · · · , rn):
∂2βn(r1,···,rn)

∂r j ∂r i
> 0 for i 6= j.

4. When ri = r ∀i, βn(r1, · · · , rn)= ∑n
j=0

(n
j

)
(−1) j α

α+ jr . By letting e−rt = x, we can expressβn(r1, · · · , rn)=

α
r ·

R 1
0 x(α−r)/r(1−x)ndx= α

r ·B(α
r ,n+1) = ∏n

j=1
jr

jr+α , whereB(., .) is the Beta function (Chap. 6 of

Abramowitz and Stegun, 1965).

5. When ri = r for all i, βn(r1, · · · , rn) is decreasing in n and increasing in r.

Because each supplier gets paid only when all suppliers havecompleted their tasks under regimeD, state-

ment 1 asserts that each supplier’s payment is discounted more heavily under regimeD. Statement 2 asserts

that each supplier can reduce this “discounting penalty” under regimeD by working faster, and statement 5

asserts that each supplier’s payment is discounted more heavily under regimeD as the number of suppliers

n increases.

The supplier’s operating costκ(r) per unit time associated with work rater is a convex increasing

function. To simplify our analysis, we assume thatκ(r) = kr2 with k > 0. Hence, supplieri′s expected

discounted total operating cost equalsE[
R Xi

0 κ(r i) ·e−αtdt] =
R ∞

0 [
R x

0 κ(r i) ·e−αtdt] r ie−r ixdx= kr2
i /(r i +α).

3.1 Profit functions and Participation Constraints

We now determine the supplier’s and the manufacturer’s expected discounted profit and their willingness to

participate in the project under each regime. Under regimeN, supplieri gets paid immediately when she

completes her task. Given the manufacturer’s paymentp, supplieri’s expected discounted profitΠN
i (p; r i)

under regimeN satisfies

ΠN
i (p; r i) = p·β(r i)−

kr2
i

r i + α
, for i = 1, · · · ,n. (3.1)

We assume that each supplier will participate in the projectunder regimeN if the supplier’s expected dis-

counted profit exceeds a minimum target. We set this target to0 so as to simplify our exposition. Hence,

supplieri’s participation constraint is given by

max
r i

ΠN
i (p; r i) ≥ 0. (3.2)

Under regimeD, supplieri gets paid when all suppliers have completed their tasks. Given p, the sup-

plier’s expected discounted profitΠD
i (p; r1, · · · , rn) under regimeD satisfies

ΠD
i (p; r1, · · · , rn) = p·βn(r1, · · · , rn)−

kr2
i

r i + α
, for i = 1, · · · ,n. (3.3)
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Hence, given the other suppliers’ work rates, supplieri will participate in regimeD if

max
r i

ΠD
i (p; r1, · · · , r i , · · · , rn) ≥ 0. (3.4)

For any given paymentp that ensures supplier participation, the manufacturer’s expected discounted

profit under regimeN satisfies

ΠN
m(p;q) = nq·βn(r1, · · · , rn)− p

n

∑
i=1

β(r i). (3.5)

Because the manufacturer can elect not to participate in theproject (by settingp = 0 and earning no profit),

the manufacturer will participate in regimeN if

ΠN
m(q) ≥ 0, whereΠN

m(q) = max
p

ΠN
m(p;q), subject to(3.2) ∀ i. (3.6)

Similarly, the manufacturer’s expected discounted profit under regimesD satisfies

ΠD
m(p;q) = n(q− p) ·βn(r1, · · · , rn), (3.7)

and the manufacturer will participate in regimeD if

ΠD
m(q) ≥ 0, whereΠD

m(q) ≡ max
p

ΠD
m(p;q), subject to(3.4) ∀ i. (3.8)

Let us now compare the supplier’s and the manufacturer’s profit functions for the case when all parties

participate under both regimes. For any given work ratesr i , we can useβn(r1, · · · , rn)≤ β(r i) given in Lemma

1 to show thatΠN
i (p; r i) > ΠD

i (p; r1, · · · , r i , · · · , rn) for all i and thatΠN
m(p;q) < ΠD

m(p;q). These observations

confirm a basic intuition: when the pricep and the work rates are the same under both regimes, supplieri

prefers regimeN while the manufacturer prefers regimeD. However, when the manufacturer offers different

prices and when the suppliers select different work rates under different regimes, it is unclear which regime

will yield a higher expected profit for the manufacturer. To address this question, we analyze a Stackelberg

game in which the manufacturer has the first move and then suppliers simultaneously move second. The

manufacturer starts by selecting the regime (eitherN or D) and the paymentp. As in a backward recursion,

each supplier determines her work rater i given the regime andp. Anticipating each supplier’s work rater i ,

the manufacturer selects the paymentp∗ that maximizes his expected profit. The manufacturer selects the

regime that yields the higher expected profit, and he informsthe suppliers of the regime and the pricep∗; in

response, the suppliers select their optimal work rates.
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Lastly, there is a property of the profit functions which is immensely useful for numerical analysis. It is

straightforward to verify that there exist parameter-freefunctionsβ̃n(·), Π̃N
i (·), andΠ̃N

m(·) whose functional

forms do not contain any model parameters such asα andk and which satisfyβn(r1, ..., rn) = β̃n(
r1
α , ..., rn

α ),

ΠN
i (p; r i) = kαΠ̃N

i ( p
kα ; r i

α ), ΠN
m(p;q) = kαΠ̃N

m( p
kα ; q

kα ), andΠN
m(q) = kαΠ̃N

m( q
kα). (The explicit functional

forms of β̃n(·), Π̃N
i (·), and Π̃N

m(·) appear in the Appendix.) Similarly, we also haveΠD
i (p; r1, ..., rn) =

kαΠ̃D
i ( p

kα ; r1
α , ..., rn

α ), ΠD
m(p;q) = kαΠ̃D

m( p
kα ; q

kα ), andΠD
m(q) = kαΠ̃D

m( q
kα) for some parameter-free functions

Π̃D
i (·) andΠ̃D

m(·). This is a convenient property when we numerically compare the relative magnitudes of

ΠN
m(q) andΠD

m(q); For eachn, the ratio ofΠN
m(q) to ΠD

m(q) is a function only ofq/αk, so we only need to

vary a single variableq/αk to studyΠN
m(q)/ΠD

m(q) = Π̃N
m( q

kα )/Π̃D
m( q

kα ), and we do not need to varyq, α,

andk independently.

3.2 N: The No Delayed Payment Regime

We begin by determining the supplier’s optimal work rate andexpected discounted profit.

Proposition 1 Under regime N, supplier i’s profit functionΠN
i (p; r) given in (3.1) is concave in r, and

rN
i (p), supplier i’s optimal work rate, is given by

rN
i (p) = rN(p) = α(

√
1+

p
αk

−1). (3.9)

Supplier i’s optimal expected profitΠN
i (p) ≡ ΠN

i (p; rN(p)) is given by

ΠN
i (p) =

k
α
· [rN(p)]2 = kα(

√
1+

p
αk

−1)2. (3.10)

Observe from (3.10) and (3.9) that each supplieri’s participation constraint (3.2) is satisfied if and only if

p > 0.

Using the optimal work raterN
i (p) given in (3.9), it is easy to compute the expected project completion

timeE(TN(p)) = E(max{Xi : i = 1, · · · ,n}), whereXi is exponentially distributed with parameterrN
i (p).

Corollary 1 The expected project completion time E(TN(p)) under regime N satisfies

E(TN(p)) =
1

rN(p)
[ψ(n+1)−ψ(1)], (3.11)

whereψ(x) is the Digamma function.2 Also, E(TN(p)) is increasing in n and decreasing in p.

2The Digamma functionψ(x) is the derivative of the logarithm of the Gamma function:ψ(x) ≡ d
dxln(Γ(x)) =

R ∞
0 ( e−t

t −
e−xt

(1−e−t)
)dt. Whenn is a positive integer,ψ(n+1)−ψ(1) = ∑n

k=1 k−1 (see Chap. 6 of Abramowitz and Stegun (1965)).
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Corollary 1 confirms that, as the number of suppliersn increases, the expected completion time increases.

Also, the expected completion time can be shortened if the manufacturer offers a larger paymentp (because

rN
i (p) given in (3.9) is increasing inp).

While Proposition 1 reveals that all suppliers will participate in the project under regimeN when p >

0, the manufacturer will not participate if the revenueq is below a certain threshold. This is because,

under regimeN, the manufacturer has to pay each supplier when she completes her own task, but he must

wait to receive his revenue until all suppliers have completed their tasks. This “time delay” can cause the

manufacturer to suffer a loss when the revenueq is below a thresholdqn. By noting that the “time delay”

becomes more severe as the number of suppliersn increases, we obtain the following result:

Lemma 2 (Conditions for Participation under Regime N) Under regimeN, each supplier will participate

in the project if and only if p> 0. Also, there exists a unique threshold qn > 0 such that the manufacturer

will not participate if the revenue q≤ qn, where qn is increasing in n. Moreover, when n is sufficiently large,

qn = kα
4 (lnn)2 +O(lnn).

Becauseqn is increasing inn, Lemma 2 asserts that, for any fixed revenueq, the manufacturer will not

participate when the number of suppliersn > τN
n , whereτN

n ≡ argminn>0 {qn > q}.

3.3 D : The Delayed Payment Regime

Under regimeD, each supplier receives her payment when all suppliers havecompleted their tasks: each

supplier’s expected discounted profit depends on all suppliers’ work rates. We now show that there exists a

symmetric Nash equilibrium.

Lemma 3 Given (r1, ..r i−1, r i+1, ..., rn), supplier i’s expected discounted profitΠD
i (p; r1, · · · , rn) given in

(3.3) is concave in ri . Also, supplier i’s best response r∗
i (i.e., the value of r∗i that maximizesΠD

i (p; r1, · · · , rn))

is increasing in rj for j 6= i.

Proposition 2 There are no asymmetric Nash equilibria. There is a threshold pn > 0 such that if p> pn,

then there are multiple symmetric Nash equilibria in which all suppliers work at the same rate r, where r

satisfies

pα
r2 B(

α+ r
r

,n)[ψ(
α+ r

r
+n)−ψ(

α+ r
r

)] =
(2kαr +kr2)

(α+ r)2 , (3.12)
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where B(., .) and ψ(.) are the Beta function and the Digamma function, respectively. Among all possible

equilibria, the Nash equilibrium with the largest work raterD(n; p) has the following properties: both

rD(n; p) > 0 and its corresponding expected discounted profit for the supplier ΠD
i (n; p) > 0 are decreasing

in n.

To ease our exposition, we defer our discussion of the threshold pn and supplier participation till Lemma

4 below. Proposition 2 has three implications. First, observe from the last statement that the largest work

rate in equilibriumrD(n; p) satisfiesrD(n; p) < · · · < rD(2;p) < rD(1;p) = rN(p). This implies that, due

to the delay in receipt of payment and the “gaming effect” among suppliers, the supplier’s optimal work

rate under regimeD is lower than the optimal work rate under regimeN: rD(n; p) < rN(p). This result is

intuitive because, under regimeD, each supplier is effectively penalized for completing hertask before other

suppliers. Second, using the proof of Corollary 1, it is clear that

E(TD(p)) =
1

rD(n; p)
[ψ(n+1)−ψ(1)]. (3.13)

BecauserD(n; p) < rN(p), (3.11) and (3.13) reveal thatE(TD(p)) > E(TN(p)): the expected project com-

pletion time is longer under regimeD. This result is expected because the supplier’s optimal work rate

under regimeD is lower than the optimal work rate under regimeN. Third, becauserD(n; p) < rN(p), the

lower work raterD(n; p) reduces supplieri’s discounted operating costkr2
i

r i+α as well as her discounted pay-

mentp·βn(r1, · · · , rn). It is not clear if supplieri’s expected profitΠD
i (n, p) ≡ ΠD

i (p; rD(n, p), · · · , rD(n, p))

is lower under regimeD. However, by combining the fact thatΠD
i (n, p) = ΠN

i (p) whenn = 1 (because

rD(1;p) = rN(p)) with ΠD
i (n; p) decreasing inn, we can conclude thatΠD

i (n; p) < · · ·< ΠD
i (1;p) = ΠN

i (p).

Therefore, givenp, the supplier’s profit under regimeD is indeed lower than under regimeN.

There is no closed form expression for the equilibrium work raterD(n; p) that solves (3.12) forn > 2;

however, we obtain a closed form expression whenn= 2. Whenn= 2, (3.12) reduces to:[ pα
(α+r)2 − pα

(α+2r)2 ]−
(2kαr+kr2)

(α+r)2 =− r ·k·h(r)
(r+α)2(2r+α)2 = 0, whereh(r) = 4r3 +12αr2+9α2r −3p

k αr +2α3−2p
k α2 . By examining the

cubic equationh(r) = 0, we get:

Corollary 2 When n= 2, rD(2;p) = 0 if p ≤ p2, where p2 = kα. If p > p2, then rD(2;p) = 0 is an

equilibrium, and the only Nash equilibrium with rD(2;p) > 0 satisfies

rD(2;p) = α
[√

1+
p

kα
cos(φ/3)−1

]
, where (3.14)

φ ≡ π−arctan

√
p

kα
. (3.15)
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Corollary 2 informs us that, whenp exceedsp2, there is a unique Nash equilibrium with positive work rate

so that the suppliers earn positive profits. Consequently, it is Pareto optimal for the suppliers to select the

equilibrium rD(2;p) > 0 whenp > p2.

Observe from (3.7) that the manufacturer’s profitΠD
m(p;q) = n(q− p) · βn(r1, · · · , rn) = 0 when the

supplier’s work rate in equilibriumrD(n; p) drops to zero. In particular, Corollary 2 reveals that, when

n = 2, the supplier’s equilibrium work raterD(2;p) will drop to zero if p≤ p2, wherep2 = kα. Hence, in

order for the manufacturer to obtain a positive profit, the revenueq needs to exceed a certain threshold so

that his paymentp satisfiesq > p > p2. Combine this observation with Proposition 2, we have:

Lemma 4 (Conditions for Participation under Regime D) Under regimeD, there exists a unique threshold

pn > 0 such that all suppliers will participate in the project if and only if p> pn. Also, the manufacturer will

participate if and only if the revenue q> pn. Moreover, pn is increasing in n, and pn = kαn(lnn+O(1)).

Unlike the case in which each supplier will participate in regimeN if p > 0 (Lemma 2), Lemma 4 reveals

that each supplier will participate in regimeD if and only if p> pn. Essentially, the supplier’s “participation

threshold” pn under regimeD captures the “imputed” penalty associated with the delayedpayment under

regimeD. It follows from Proposition 2 that the supplier’s expectedprofit ΠD
i (n; p) is decreasing inn; hence,

it is intuitive that the participation thresholdpn is increasing inn. In addition, there is another factor that

contributes to the growth ofpn in n: asn increases, each supplier will work even slower due to the “gaming

effect” among suppliers. Hence, asn increases, the delay in payment is exacerbated, which explains why

the thresholdpn grows faster thann.

Givenq, Lemma 4 implies that the manufacturer will not participateand will earn zero if the number of

suppliersn exceedsτD
n , whereτD

n ≡ argminn>0 {pn > q}. By noting from Lemmas 2 and 4 that the threshold

pn grows faster thanqn whenn is large, we have proved the following Corollary.

Corollary 3 As the number of suppliers n increases,ΠN
m(p;q) = 0 when n> τN

n and ΠD
m(p;q) = 0 when

n > τD
n . Moreover,τD

n < τN
n .

Intuitively speaking, the number of suppliersn has no effect on supplier participation under regimeN

because each supplier cares only about her own completion time. However, under regimeN, the “time

delay” between the manufacturer’s payments and the receiptof his total revenue increases with the number

of suppliersn so the manufacturer’s expected profit decreases inn: he will not participate in the project
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under regimeN if the revenueq < qn. On the contrary, under regimeD, the suppliers are concerned about

their discounted payments, which depend on the completion times of other suppliers. As the number of

suppliersn increases, the project completion time lengthens. To generate enough incentive for the suppliers

to participate, each supplier demands a higher payment threshold pn. By noting that the payment threshold

pn is exacerbated by the delay in payment and the “gaming effect” among suppliers revealed in Proposition

2 (i.e., each supplier will work slower under regimeD), we make the following conjecture.

Conjecture 1: For n > 2, pn > qn, andpn increases faster thanqn asn increases.

Conjecture 1 is supported by our numerical analysis in whichwe found thatpn/kα = qn/kα for n = 2 and

andpn/kα > qn/kα for n = 3,4, ...,200. Our numerical result is valid for all values ofk > 0 andα > 0; By

the comment at the end of Section 3.1, for eachn, the values ofpn/kα andqn/kα are independent of the

values ofk andα. For example, whenα = 1 andk = 1, Figure 1 presents a plot ofpn andqn as we varyn

from 1 to 35. In the next section, we shall use Lemmas 2, 4, and Conjecture 1 to compare the manufacturer’s

optimal profits under regimesN andD.

———————

Insert Figure 1 About Here.

———————

3.4 Choosing the Payment Regime

We now compare the manufacturer’s expected profits under regimesN andD. For any givenp that satisfies

q > p > max{pn,qn} so that all parties will participate under both regimes, Proposition 2 asserts that under

regimeD each supplier works slower in equilibrium (rD(n; p) < rN(p)) and earns a lower profit (ΠD
i (n; p) <

ΠN
i (p)). However, it is not clear if the manufacturer earns a higherprofit under regimeD for any given

p. To elaborate, combine statements 5 and 1 of Lemma 1 and the fact rD(n; p) < rN(p) to show that

βn(rD(n; p), · · · , rD(n; p)) < βn(rN(p), · · · , rN(p)) ≤ β(rN(p)). Now we can compare the manufacturer’s

profit given in (3.7) and (3.5) to show that the profit comparison depends on two countervailing forces.

The first force is based on the fact that, for any givenp, the suppliers optimal work rate in regimeD is

lower. Hence,nq·βn(rD(n; p), · · · , rD(n; p)) < nq·βn(rN(p), · · · , rN(p)): the manufacturer’s discounted rev-

enue is lower under regimeD. The countering force stems from the fact thatnp·βn(rD(n; p), · · · , rD(n; p)) <

np·β(rN(p): the manufacturer’s discounted cost is also lower under regimeD because the manufacturer ben-
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efits from not having to pay any of the suppliers until he receives his own revenue. Due to these two coun-

tervailing forces, it is inconclusive whetherΠD
m(q; p) > ΠN

m(q; p) when the manufacturer offers the same

paymentp under both regimes. Because the manufacturer would offer different optimal payments under

different regimes, this observation poses another technical challenge when we compare the manufacturer’s

optimal expected discounted profit under regimesN andD next.

There is no explicit analytical expression for the optimal paymentpN or the manufacturer’s optimal

expected profitΠN
m(q, pN). Similarly, there is no explicit expression for the optimalpaymentpD or for the

manufacturer’s optimal expected profit that maximizesΠD
m(q, p) given in (3.7). Therefore, it is challenging

to compareΠN
m(q) ≡ ΠN

m(q; pN) andΠD
m(q) ≡ ΠD

m(q; pD). Despite this challenge, we are able to establish

the following intuitive result.

Lemma 5 For n≥ 2, ΠN
m(q) andΠD

m(q) are convex and non-decreasing in q.

We now compare the manufacturer’s optimal profit functionsΠN
m(q) andΠD

m(q) analytically for the case

whenq is sufficiently small and for the case whenq is sufficiently large. (Whenq is in the intermediate

range, we conduct our comparison numerically.) When the revenueq is small, we can use the participation

conditions stated in Lemmas 2 and 4 to establish Proposition3.

Proposition 3 (Small Revenue q) If Conjecture 1 is true so that pn > qn, then regime N weakly dominates

regime D: ΠN
m(q) = ΠD

m(q) = 0 for q ∈ [0,qn], and ΠD
m(q) = 0 < ΠN

m(q) for q ∈ (qn, pn]. However, if

Conjecture 1 is not true so that pn ≤ qn, then regime D weakly dominates regime N:ΠN
m(q) = ΠD

m(q) = 0

for q∈ [0, pn], andΠN
m(q) = 0 < ΠD

m(q) for q∈ (pn, qn].

In light of Conjecture 1, we believe only statement (1) in Proposition 3 can occur whenn > 2 in which case

regimeN dominatesD when the revenueq is sufficiently small.

Proposition 4 (Large Revenue q) Suppose q exceeds a unique thresholdτl , whereτl > max{pn,qn}. Then

(1) regime N dominates regime D:ΠN
m(q) > ΠD

m(q); (2) the manufacturer’s optimal price is smaller under

regime N: pN(q) < pD(q); (3) the supplier’s optimal work rate is larger under regimeN: rN(pN(q)) >

rD(pD(q)); and (4) the expected completion time of the project is shorter under regime N: E(TN(pN(q))) <

E(TD(pD(q))).

Intuitively, the dominance of regimeN can be explained as follows. When revenueq is large, the manufac-

turer is less concerned about his payments to the suppliers because the optimal paymentspN andpD to each
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supplier under regimesN andD are small relative toq. However, despite a higher payment under regimeD

(statement (2)), each supplier will work at a slower rate in regimeD (statement (3)) mainly due to the delay

in payment and the “gaming effect” among suppliers under regimeD. As the supplier’s optimal work rate is

larger under regimeN (statement (3)), the earlier completion time (statement (4)) and the smaller payment

under regimeN (statement (2)) outweighed the disadvantage of having to make the payment earlier (that

would have occurred under regimeD). Consequently, regimeN dominates regimeD (statement (1)).

We now compare the manufacturer’s optimal profitsΠN
m(q) and ΠD

m(q) as the number of suppliersn

increases. By considering the supplier’s and the manufacturer’s non-participation along with the result

stated in Corollary 3, we have:

Proposition 5 (Large Number of Suppliers) For any given q, regime N dominates regime D for sufficiently

large n. In other words, for sufficiently large n, there are thresholdsτN
n and τD

n , whereτD
n < τN

n such that

ΠN
m(q) > ΠD

m(q) = 0 for n∈ [τD
n ,τN

n ] andΠN
m(q) = ΠD

m(q) = 0 for n > τN
n .

By observing from Propositions 3, 4, and 5 that regimeN dominates regimeD whenq is sufficiently

small (or sufficiently large), or whenn is sufficiently large, we make the following conjecture.

Conjecture 2: When suppliers are unable to adjust their work rates dynamically, regimeN always dominates

regimesD.

While we are unable to prove Conjecture 2 analytically, Propositions 3, 4, and 5 together with our numerical

analysis support conjecture 2: The manufacturer is actually worse off under the delayed payment regime

D! In our numerical analysis, we computed the ratioΠN
m(q)/ΠD

m(q) for 2≤ n≤ 20 and for values ofq/kα

between 0 and 100 in the increment of 0.1, and we found thatΠN
m(q)/ΠD

m(q) > 1 for these values ofq/kα

andn and for every combination of these parameter values. (By thecomment at the end of Section 3.1, the

ratio ΠN
m(q)/ΠD

m(q) is a function ofq/kα andn only.) This result is surprising because it is contrary to the

naive intuition shared among practitioners that we described in the Introduction.

4 Adjustable Work Rates

In the base model, we assumed that suppliers are unable to adjust their work rates over time. We now relax

this assumption by considering a situation when each supplier is capable of adjusting her work rate at any

time. Our goal is to examine whether the results and conjectures established in Section 3 continue to hold.
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Specifically, based on our analysis of the delayed payment regime with adjustable work rates, we obtain

two additional results: (1) it is optimal for each supplier to work at a slower rate initially and then increase

her rate when another supplier completes her task, and (2) the delayed payment regime dominates the no

delayed payment regime, reversing the conjecture we made under the unadjustable work rates assumption,

when the revenue is sufficiently small or when the number of suppliers is sufficiently large.

4.1 NI: The No Delayed Payment Regime

Under regimeNI, each supplier receives her paymentp when she completes her own task. Because each

supplier’s expected profit is independent of the other suppliers’ completion times and because of the memo-

ryless property of her own completion time (which is exponentially distributed), it is optimal for supplieri to

continue to work at her initial rater i selected at time 0 until she completes her task. Therefore, the capability

to adjust her work rate has no effect on the supplier’s behavior under the no delayed payment regime: all

results reported in Section 3.2 continue to hold.

4.2 DI : The Delayed Payment Regime

At time 0, each of then suppliers selects her work rate and begins working on her owntask. Due to the

memoryless property of the exponential distribution, there is no incentive for any supplier to adjust her

work rate until one of then suppliers completes her task. This observation suggests that each continuing

supplier will consider adjusting her work rate only at the beginning of stagej, j = n,(n−1), · · · ,1,0, where

stagen begins at time 0 withn continuing suppliers, stage(n−1) begins at the instant when one of then

suppliers completes her task so that there are(n−1) continuing suppliers, and so forth. Because the work

rate decision is made only at the beginning of each of then stages, we formulate the supplier’s problem as an

n-stage game. Specifically, at the beginning of stagej ( j = n,(n−1), · · · ,1), we analyze a non-cooperative

game amongj continuing suppliers. Due to the dynamic nature of the n-stage game and the delayed payment

regime, each of thej continuing suppliers needs to take the other continuing suppliers’ work rates at stage

j and future stages (i.e., stages( j −1), · · · ,1) into consideration when determining her work rate at stage j.

Akin to the backward induction approach for solving a dynamic programming problem, we now solve this

n-stage game backward in time: solve stage 1 first and solve stagen last.

18



4.2.1 Analysis of the supplier’s n-stage game

At the beginning of stage 1, there is only 1 continuing supplier i who needs to determine her work rate

λ, and there are(n− 1) “idle” suppliers who have completed their tasks earlier. For any work rateλ,

supplier i’s optimal expected profit discounted back to the beginning of stage 1 can be expressed asR(1)
i ,

whereR(1)
i ≡ maxλ R(1)

i (λ) = maxλ [− kλ2

λ+α + p· λ
λ+α ]. (We use the superscript( j) to denote stagej, where

j = n,(n−1), · · · ,1.) It follows from the fact that the objective function is identical to (3.1), the optimal work

rate for supplieri at stage 1 isλ(1) = α(
√

1+ p
αk −1), which equalsrN(p) given in (3.9). By substituting

λ(1) into R(1)
i (λ), it is easy to check thatR(1)

i = k
α · [λ(1)]2 > 0. Because the operating costs of those(n−1)

idle suppliers have already been incurred prior to the beginning of stage 1, the expected payment discounted

back to the beginning of stage 1 for each of the(n−1) idle suppliers, say, supplieri′ , can be expressed as

S(1)
i′ , whereS(1)

i′ = λ(1)

λ(1)+α · p. This completes our analysis of stage 1.

At the beginning of stage 2, there are 2 continuing suppliersi and i′ who need to decide on their work

rates for stage 2, and there are .(n− 2) idle suppliers. Suppose supplieri works at rateλ and supplieri′

works at rateµ throughout stage 2. Then the duration of stage 2 isτ(2) = min{Xi ,Xi′}, whereXi andXi′ are

exponentially distributed with parametersλ andµ, respectively. Hence, the probablity that supplieri finishes

before supplieri′ satisfies:Prob{Xi < Xi′}= λ
λ+µ. Also,Prob{Xi′ < Xi}= µ

λ+µ. By using these probabilities,

the expected profit of supplieri discounted back to the beginning of stage 2 (for any given work rateµ of the

other supplieri′) satisfies:

R(2)
i (λ,µ) = [−E[

Z τ(2)

0
kλ2 ·e−αtdt]+E(e−α·τ(2)

) · λ
λ+µ

·S(1)
i +E(e−α·τ(2)

) · µ
λ+µ

·R(1)
i ]

= [− kλ2

λ+µ+ α
+

λ
λ+µ+ α

S(1)
i +

µ
λ+µ+ α

R(1)
i ]. (4.1)

By examining the expected profit functionsR(2)
i (λ,µ) andR(2)

i′ (λ,µ) (omitted) associated with both continu-

ing suppliersi andi′, we have:

Proposition 6 At stage 2, there exists a unique equilibrium in which both continuing suppliers work at the

same rateλ(2), where

λ(2) =
[(S(1)

i −R(1)
i )−2kα]+

√
[(S(1)

i −R(1)
i )−2kα]2 +12kαS(1)

i

6k
. (4.2)

Also,0 < λ(2) < λ(1) = rN(p) and0 < R(2)
i < R(1)

i .
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Proposition 6 states that both suppliers will work at rateλ(2) > 0 in equilibrium. Then, as soon as one of

the suppliers completes her task, it is optimal for the remaining supplier to expedite her task by increasing

her work rate fromλ(2) to λ(1) = rN(p). Also, by substitutingλ = µ = λ(2) into (4.1), we obtainR(2)
i ≡

R(2)
i (λ(2),λ(2)). Similarly, it is easy to check thatS(2)

i = E(e−α·τ(2)
) ·S(1)

i = 2λ(2)

2λ(2)+αS(1)
i . This completes the

analysis of the game associated with stage 2.

Using the same approach, we can solve the supplier’s game at any stagej, getting:

Proposition 7 Under regime DI, there exists a unique Nash equilibrium at stage j, where j= 1, · · · ,n. It

entails each continuing supplier working at rateλ( j) > 0, where

λ( j) =
[( j −1)(S( j−1)

i −R( j−1)
i )−2kα]+

√
[( j −1)(S( j−1)

i −R( j−1)
i )−2kα]2 +4(2 j −1)kαS( j−1)

i

2(2 j −1)k
(4.3)

By observing from (4.3) and (4.2) thatS( j−1)
i andR( j−1)

i are functions ofλ( j−1), Proposition 7 exhibits that

we can computeλ( j), R( j)
i andS( j)

i in a recursive manner. This completes our analysis of the n-stage game.

4.2.2 Profit functions under regimeDI

For any given paymentp, we computedΠDI
i (n; p), supplieri’s expected discounted profit at time 0, and we

found that

ΠDI
i (n; p) = R(n)

i , for i = 1, · · · ,n. (4.4)

We now determine the expected project completion time. To doso, letτ( j) denote the duration of stage

j. Note that all j continuing suppliers work at rateλ( j) at stagej, τ( j) = min{X1,X2, · · · ,Xj}. BecauseXi,

i = 1, · · · , j, are independent and exponentially distributed random variables with parameterλ( j), E(τ( j)) =

1
jλ( j) . Noting that the project completion time is equal to the sum of the duration of alln stages, we have

E(TDI(p)) =
n

∑
j=1

E(τ( j)) =
n

∑
j=1

1

jλ( j)
. (4.5)

Also, it is easy to check that

E(e−α·TDI (p)) =
n

∏
j=1

j ·λ( j)

j ·λ( j) + α
. (4.6)

Finally, the manufacturer’s expected discounted profit in equilibrium under regimeDI satisfies

ΠDI
m (q, p) = n(q− p) ·E(e−α·TDI (p)) = n(q− p) ·

n

∏
j=1

j ·λ( j)

j ·λ( j) + α
. (4.7)
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Letting pDI denote the manufacturer’s optimal payment, his expected discounted profit under regimeDI is

given byΠDI
m (q) ≡ maxp>0 ΠDI

m (q, p) = ΠDI
m (q, pDI ).

Using mathematical induction, one can check from (4.3) thatthe supplier’s work rateλ( j) is strictly

positive for j = 1, · · · ,n if p > 0. This is because, under regimeDI , each supplier can adjust her rates so she

can start slow and work faster later so as to lower her discounted total cost and to generate a positive profit

(i.e., ΠDI
i (n; p) given in (4.4) is strictly positive) providedp > 0. Combining this observation with the fact

that the manufacturer’s expected profitΠDI
m (q, p) given in (4.7) is strictly positive if and only ifq > p > 0,

we have:

Lemma 6 (Conditions for Participation under Regime DI) Under regime DI, all suppliers and the manu-

facturer will participate if and only if q> p > 0.

Observe from Lemma 6 that the conditions for participation are less stringent than the conditions for partic-

ipation stated in Lemmas 2 and 4. This suggests that the manufacturer can obtain a higher expected profit

under regimeDI than under regimesN andD. We investigate this matter next.

4.3 Choosing the Payment Regime

Due to the recursive formula for the supplier’s optimal workrate λ( j) given in (4.3), there is no explicit

expression for the optimal paymentpDI that maximizes the manufacturer’s profit functionΠDI
m (q, p) given

in (4.7) or for the manufacturer’s optimal discounted profitΠDI
m (q) under regimeDI . Nevertheless, we are

able to use the approach presented in Section 3.4 and the participation conditions stated in Lemmas 6 and 2

to compareΠDI
m (q) andΠN

m(q) analytically whenq is either small or large.

Proposition 8 (Small and Large Revenue q) (1) When q is sufficiently small, regime DI dominates regime

N: ΠDI
m (q) > ΠN

m(q). (2) When q is sufficiently large, regime N dominates regime DI: ΠN
m(q) > ΠDI

m (q).

Proposition 8 is similar to Proposition 4: regimeN dominates whenq is sufficiently large. However, when

q is sufficiently small, Proposition 8 exhibits the opposite result reported in Proposition 3. Specifically, if

Conjecture 1 is true, then we can combine the results stated in Propositions 8 and 3 to show thatΠDI
m (q) >

ΠN
m(q) = ΠD

m(q) = 0 whenq∈ (0,qn]. Hence, the delayed payment regime is beneficial (not beneficial) to

the manufacturer when the suppliers work rates are adjustable (unadjustable). This result is due to the fact

that, when the revenueq is sufficiently small, the manufacturer will participate under regimeDI and will not

21



participate under regimesN andD. Therefore, when choosing a payment scheme, the suppliers’capability

to adjust their work rates plays an important role.

We now compare the manufacturer’s optimal profits under regimesDI , D, andN as the number of

suppliersn increases. First, let us examine the manufacturer’s expected profit under regimeD. Observe

from Lemma 4 that the manufacturer’s optimal expected profitΠD
m(q) will drop to 0 (non-participation)

under regimeD when the number of suppliersn > τD
n , whereτD

n ≡ argminn>0 {pn > q}. Lemma 6 states

that the manufacturer’s optimal profit is positive for anyn under regimeDI . Hence, regimeDI dominatesD

when the number of suppliersn is sufficiently large:ΠDI
m (q) > ΠD

m(q) whenn > τD
n . Next, under regimeN,

one can check from Lemma 2 that the manufacturer’s optimal expected profitΠN
m(q) = 0 (non-participation)

under regimeN when the number of suppliersn > τN
n , whereτN

n ≡ argminn>0 {qn > q}. Combining this

observation with Lemma 6, we can conclude that regimeDI dominatesN when the number of suppliersn is

sufficiently large:ΠDI
m (q) > ΠN

m(q) whenn > τN
n . Coupling these observations with Corollary 3 (τN

n > τD
n )

produces

Proposition 9 (Large Number of Suppliers) For any given q, regime DI dominates both regimes N and D

when the number of suppliers n> τN
n .

Coupling Proposition 9 and Proposition 5 reveals thatΠDI
m (q) ≥ ΠN

m(q) ≥ ΠD
m(q) when the number of sup-

pliersn is sufficiently large. Thus, when the number of suppliersn is large, the delayed payment regime is

beneficial to the manufacturers when the work rates are adjustable but not beneficial when the work rates are

unadjustable. Therefore, when choosing a payment regime for a project contract, the number of suppliers

and the suppliers’ capability to adjust their work rates aredetermining factors.

Our analytical results stated in Proposition 8 and numerical examples motivate us to develop the follow-

ing conjecture:

Conjecture 3: For any givenn, regimeDI dominates regimeN if and only if q is below a certain threshold.

Conjecture 3 is based on the intuition that, whenq is small, the manufacturer can only afford to offer a small

payment under regimesDI andN. Although the payment is delayed under regimeDI , each supplier can

adjust her work rate over time optimally so as increase her profit by operating more efficiently. This explains

why the supplier’s participation condition under regimeDI (as stated in Lemma 6) is less stringent than that

of under regimeN (as stated in Lemma 2). Because suppliers are more eager to participate under regime

DI than under regimeN even when the paymentp is small, we develop Conjecture 3. While we are unable
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to prove Conjecture 3 analytically, our numerical analysissupports the above conjecture. In our numerical

analysis, we computed the ratioΠN
m(q)/ΠDI

m (q) for 2≤ n≤ 20 and for values ofq/kα between 0 and 100

in the increment of 0.1, and we found that, for eachn, ΠN
m(q)/ΠDI

m (q) < 1 if and only if q/αk is below a

certain critical value. (The comment at the end of Section 3.1 also applies to the ratioΠN
m(q)/ΠDI

m (q), i.e.,

ΠN
m(q)/ΠDI

m (q) is a function ofq/kα andn only.) For example, by considering the case whenα = 1 and

k = 1, and by varyingq from 0 to 35 andn from 2 to 15, Figure 2 depicts the region within which one

payment regime dominates the others. As shown in Figure 2, regimeD is always dominated by regimeN or

regimeDI . Moreover, regimeDI dominates regimeN if and only if q is small for any givenn. Figure 2 is

representative of our numerical results for 2≤ n≤ 20 and 0≤ q/αk≤ 100. Overall, Figure 2 as well as our

numerical results supports Conjectures 2 and 3.

———————

Insert Figure 2 About Here.

———————

5 Discussion and Concluding Remarks

Our model enabled us to examine how a delayed payment affectsthe supplier’s optimal work rate, the

manufacturer’s optimal payment, the supplier’s and the manufacturer’s expected discounted profits, and the

expected project completion time. When work rates are unadjustable, we obtained numerical and partially

analytical results that support a conjecture that, relative to the no delayed payment regimeN, each supplier

operates at a slower rate and obtains a lower expected profit under regimeD for any givenp. Consequently,

for any givenp, use of regimeD lengthens the project completion time. To induce suppliersto increase

their work rates under regimeD, the manufacturer will offer a higher payment. Partly because of the need

to offer a higher price under regimeD, our analytical and numerical results suggested that, contrary to the

naive intuition shared among practitioners that we described in the Introduction, the manufacturer is actually

worse off under regimeD.

We have investigated the effect of the suppliers’ ability toadjust their work rates. Whereas the capability

to adjust work rates has no value to the suppliers under regime N, this ability is definitely beneficial to

the suppliers under regimeDI . By modeling the case of adjustable work rates as an n-stage game, we

have shown that under the delayed payment regime, there exists an equilibrium at each stage in which all
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continuing suppliers work at the same rate. Also, we have shown that regimeDI dominates regimeN when

the revenueq is small or when the number of suppliersn is large.

Our results generate the following insights. Based on our discussion with manufacturers and the sup-

pliers, there is a naive intuition shared among practitioners that, under the delayed payment regimeD, (1)

the manufacturer is better off and (2) the suppliers are worse off. While the latter notion is true, the former

notion is not always true. Specifically, we have exhibited conditions under which the manufacturer is worse

off under the delayed payment regime. These conditions depend upon the revenueq, the number of suppliers

n, and the suppliers’ capability to adjust their work rates dynamically. These results are interesting because

they run counter to the naive intuition shared among practitioners that the manufacturer is always better

off under regimeD. In summary, when designing a project contract, it is important for the manufacturer

to understand the interactions among different factors (revenue, number of suppliers, supplier’s ability, and

supplier’s behavior) and their impact on the manufacturer’s profit. Our model is an initial attempt to examine

some of the underlying dynamics; it has several limitations. Removing these limitations can serve as the

starting point for future research.

5.1 Other Payment Schemes

The model presented in this paper is motivated by two simple payment regimes commonly observed in

practice. Essentially, both regimesN andD are based on a single decision variablep and the timing of the

payment. However, if the manufacturer (and the suppliers) are willing to entertain other contracts with more

decision variables, then many other forms of contracts deserve attention. We now briefly discuss two other

payment schemes and refer the reader to Kwon et al. (2008) fordetails. First, let us consider a regimeN+D

that combines regimesN andD. Under regimeN + D, each supplier receives a portion of her paymentδp

when she completes her own task and then receives the remaining portion of her payment(1−δ)p after all

suppliers have completed their task. In this case, the manufacturer has to make two decisions:δ andp, where

δ ∈ [0,1]. By using an approach similar to the one used in Sections 3 and4, one can determine the supplier’s

work rate in equilibrium, the supplier’s expected profit andthe manufacturer’s expected profit. While the

analysis is complex, it is clear that regimeN+D dominates both regimesN andD because regimesN andD

are special cases of regimeN+D whenδ = 1 andδ = 0, respectively. As such, the manufacturer’s optimal

profit is higher under regimeN+D. The same result holds when the suppliers are able to adjust their work
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rates dynamically.

Second, consider the payment regimePB under which each supplier is compensated according to her

own performance. For example, under regimePB, the manufacturer can pay the suppliers according to

the order of their completion times: payp(1) to the first supplier the moment she finishes, payp(2) to the

second supplier the moment she finishes, and payp(n) to the last supplier the moment she finishes. In this

case, the manufacturer has to maken decisions: p(1), · · · , p(n). By using a similar approach presented in

this paper, one can determine the supplier’s work rate in equilibrium, the supplier’s expected profit, and the

manufacturer’s expected profit. While the analysis is complex, we are able to show that the manufacturer’s

optimal profit under regimePB is strictly larger than under regimeN for the case whenn = 2 and when the

suppliers are able to adjust their work rates dynamically. The results associated with regimesN+D andPB

reveal that the manufacturer can benefit from payment regimes that involve more decision variables.

5.2 Other Future Research Topics

There are many research opportunities for addressing the limitations of the model presented in this paper.

First, our model is based on the assumption that the completion time of each task is exponentially distributed.

It would be of interest to examine other probability distributions, develop near-optimal heuristics for the

suppliers’ time-varying work rates, and conduct simulation experiments to examine the robustness of the

results presented in this paper. Second, we have assumed that the operating costs of alln suppliers are

identical. This assumption is critical to establish the existence of symmetric equilibria and to establish the

analytical results presented in this paper. One potential future research direction is to examine the case of

non-identical suppliers and to numerically investigate the robustness of the results presented in this paper.

Third, our model assumes that all parties are risk-neutral.It would be of interest to examine the behavior and

the performance metrics when the suppliers are risk-averse. Fourth, our model is based on the assumption

that the manufacturer has perfect information about the supplier’s cost structure including the value ofk.

In reality, the manufacturer will not possess perfect information. Because imperfect information can create

another technical challenge for the manufacturer to designan effective project contract, it would be of

interest to explore the use of mechanism design theory to develop effective project contracts. Fifth, when

the information regarding each supplier’s cost structure is private, it would be of interest for the manufacturer

to consider using auction mechanisms instead of incentive contracts. Sixth, even though supply contracts
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have been well studied, the issue of channel coordination inthe context of project management contracts is

not well-understood. This is another potential future research topic.

Appendix

The parameter-free functions introduced at the end of Section 3.1 are given below.

β̃n(r1, ..., rn) =

Z ∞

0
e−t

n

∏
i=1

(1−e−r it)dt

Π̃N
i (p; r i) = pβ̃(r i)−

r2
i

r i +1

Π̃D
i (p; r1, ..., rn) = pβ̃n(r1, ..., rn)−

r2
i

r i +1

Π̃N
m(p;q) = nqβ̃n(r1, ..., rn)− p

n

∑
i=1

β̃(r i)

Π̃D
m(p;q) = n(q− p)β̃n(r1, ..., rn) .
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Figure 1: The participation thresholdspn andqn whenα = k = 1.
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Figure 2: RegimesN, D, andDI for 2≤ n≤ 15 and 0≤ q≤ 35 whenα = k = 1. The shaded area is where

DI regime dominates while the unshaded area is whereN regime dominates. RegimeD is always dominated

by regimeN.
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Proof of Lemma 1: The first statement follows immediately from the fact thatT = max{X1, · · · ,Xn} is

stochastically larger thanXi, while the other statements follow from basic calculus. Statement 4 results

from the transformation of variable of havinge−rt = x so thatβn(r1, · · · , rn) = α
r ·

R 1
0 x(α−r)/r(1− x)ndx=

α
r ·B(α

r ,n+1) = ∏n
j=1

jr
jr+α , where B(., .) is the Beta function (Chap. 6 of Abramowitz and Stegun, 1965).

Notice that the last equality follows from 3.312 of Gradshteyn and Ryzhik (2007).

Proof of Proposition 1: Combining statement 2 of Lemma 1 along with the fact that− kr2
i

r i+α is concave in

r i , it is easy to check from (3.1) thatΠN
i (p; r i) is concave inr i . By considering the first-order condition, we

obtainrN(p). SubstituterN(p) into ΠN
i (p; r i), we obtain (3.10) after some algebra.

Proof of Lemma 2: First, observe from (3.10) and (3.9) that supplieri’s expected profitΠN
i (p) > 0 if and

only if p > 0. This observation suggests that the supplier participation constraint (3.2) holds if and only if

p > 0.

Next, to establish the conditions under which the manufacturer participation constraint (3.6) does not

hold, let us first rewrite (3.9) as:p = (αk)[(r/α+1)2 −1]. By applying statement 4 of Lemma 1, it is easy

to check that the manufacturer’s expected profitΠN
m(q, p) given in (3.5) can be re-expressed as a function of

r as follows:

ΠN
m(q, p) = nq· α

r
B(

α
r
,n+1)−n(αk)

r
r + α

[(
r
α

+1)2−1] . (5.1)

The conditionΠN
m(q, p) ≤ 0 can be equivalently expressed as

q≤ fN(r) ≡
(αk) r

r+α [( r
α +1)2−1]

α
r B(α

r ,n+1)
. (5.2)

By using the identity B(x,y) = Γ(x)Γ(y)
Γ(x+y) and the asymptotic propertiesΓ(x) = xx−1/2e−x

√
2π(1+ O(x−1))

(Stirling’s formula) from 8.327 of Gradshteyn and Ryzhik (2007), we obtain

fN(r) = 2(kα)(
α
r
)n−2 1

Γ(n+1)
[1+O(r)]

in the small-r limit and

fN(r) = kα(
r
α

)2[1+O(r−1)]

in the large-r limit. If n = 2, limr→0 fN(r) = kα and limr→∞ fN(r) = ∞; if n > 2, fN(r) → ∞ in both

limits r → 0 andr → ∞. Thus, fN(·) achieves a minimum somewhere in(0,∞), so there exists a threshold

qn = minr>0 fN(r) > 0 such thatΠN
m(q) = 0 unlessq≥ qn. Hence, we can conclude that the manufacturer
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participation constraint (3.6) does not hold ifq≤ qn. By observing (5.2) thatfN(r) is increasing inn, it is

easy to check thatqn is also increasing inn.

Next, the large-n asymptotic properties offN(·) can be obtained from the asymptotic properties ofΓ(·).

The asymptotic form offN(·) is

fN(r) = kα
r

r + α
[(

r
α

+1)2−1]
nα/r

Γ(α
r +1)

(1+O(n−1)) .

The minimum value offN(·) can be obtained from the first-order conditiond fN(r)/dr = 0, which yields

r = 1
2α lnn+O(1). After substitutingr into (5.2), we obtain

min
r>0

fN(r) =
kα
4

(lnn)2 +O(lnn).

Proof of Corollary 1: By noting thatT = max{X1, · · · ,Xn} is stochastically increasing inn for any non-

negative random variablesX1,X2, · · ·, we can conclude thatE(TN(p)) under regimeN is increasing inn.

Next, whenXi is exponentially distributed with raterN(p) for i = 1, · · · ,n, the distribution ofTN(p) is equal

to (1−e−rN(p)t)n. Hence,E(TN(p)) =
R ∞

0 td((1−e−rN(p)t)n) = nr
R ∞

0 t ·e−rN(p)t · (1−e−rN(p)t)n−1dt. With

some algebra and from the integral formula 4.253 of Gradshteyn and Ryzhik (2007), we obtain (3.11). By

noting thatrN(p) is increasing inp, (3.11) implies thatE(TN(p)) is decreasing inp.

Proof of Lemma 3: First, by applying statement 2 in Lemma 1 along with the fact that− kr2
i

r i+α is concave in

r i , it is easy to check thatΠD
i (p; r1, · · · , rn) given in (3.3) is concave inr i . Second, by using the submodularity

of the discount factorβn(.) as established in statement 3 of Lemma 1, we can conclude thatthe optimalr∗i

is increasing inr j for j 6= i.

Proof of Proposition 2: We use contradiction to establish the existence of only symmetric Nash equilibria.

Suppose an asymmetric equilibriumr = (r1, · · · , rn) exists that hasr i = x andr j = y for somei 6= j, where

y > x. By symmetry among all suppliers, there is another asymmetric equilibrium that hasr ′ = (rw
1 , · · · , rw

n )

with rw
i = y andrw

j = x, and all other work rates remain the same as inr. However, as we increaser i from

x to y, Lemma 3 proves that the best response for supplierj is to increase her rater j from y to a higher

valuez> y. This contradicts the assumption thatr ′ is a Nash equilibrium withrw
i = y andrw

j = x because it

implies that supplierj ’s best response is to reduce her rate fromy to x wheni increases her rate fromx to y.

Therefore, asymmetric equilibria do not exist.

We now establish the existence of a symmetric equilibrium and determine its value. To do so, dif-

ferentiate the supplier’s expected discounted profitΠD
i (p; r1, · · · , rn) given in (3.3) with respect tor i . By
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considering the first-order condition and by considering the case whenr1 = · · · = rn = r, it is easy to check

the first-order condition can be simplified as:

pα
Z ∞

0
te−(α+r)t(1−e−rt )n−1dt− 2kαr +kr2

(α+ r)2 = 0. (5.3)

By change of variables,
R ∞

0 te−(α+r)t(1−e−rt )n−1dt =− 1
(α+r)2

R 1
0 lnx(1−x

r
α+r )n−1dxand using the formula

4.253 of Gradshteyn and Ryzhik (2007), we obtain (3.12).

Now we determine the optimal raterD(n; p) for the suppliers. To begin, let us rewrite (3.12) as:

p = fD(r) ≡
(2kαr+kr2)

(α+r)2

α
r2 B(α+r

r ,n)[ψ(α+r
r +n)−ψ(α+r

r )]
. (5.4)

Using the identity B(x,y) = Γ(x)Γ(y)
Γ(x+y) and the asymptotic propertiesΓ(x) = xx−1/2e−x

√
2π(1+O(x−1)) (Stir-

ling’s formula) from 8.327 of Gradshteyn and Ryzhik (2007) andψ(x) = lnx−(2x)−1 +O(x−2) from 6.3.18

of Abramowitz and Stegun (1965), we obtain

fD(r) = 2(kα)(
α
r
)n−2 1

Γ(n+1)
[1+O(r)]

in the small-r limit and

fD(r) = kα(
r
α

)2 n
ψ(n+1)−ψ(1)

[1+O(r−1)] (5.5)

in the large-r limit. If n = 2, fD(0) = kα and limr→∞ fD(r) = ∞; if n > 2, fD(r) → ∞ in both limits r → 0

andr → ∞. Moreover, from (5.4),fD(·) is not identically infinite, sofD(r) < ∞ for some values ofr. Thus,

fD(·) achieves a minimum positive value at somer < ∞. Hence, a positive solution top− fD(r) = 0 exists

if p is sufficiently large. In particular, forn > 2, p = fD(r) for sufficiently largep has at least two solutions

(at least two Nash equilibria). We simply choose the Nash equilibrium with the largest work rate and call it

rD(n; p).

The functionp− fD(r) has three properties. First, it is locally decreasing inr at r = rD(n; p) because we

choserD(n; p) to be the largest root ofp− fD(r) = 0 where fD(·) achieves a global minimum somewhere

in (0,∞) and fD(r) → ∞ in the limit r → ∞. Second,p− fD(r) obviously increases inp. Finally, it can be

shown from (5.4) thatfD(r) increases inn. It follows thatrD(n; p) decreases inn and increases inp.

Finally, by substitutingr i = rD(p) for i = 1, · · · ,n into (3.3), by differentiating the resulting profit func-

tion with respect ton, and then by applying the fact thatrD(n; p) is decreasing inn, we can conclude that

the supplier’s expected discounted profitΠD
i (n; p) is also decreasing inn.
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Proof of Corollary 2: We prove that there is a unique positive root ofh(x) = 4x3 +12αx2 +9α2x−3p
k αx+

2α3−2p
k α2 = 0 whenp > kα}, and it is given in (3.14). First, we can verify thatrD defined in (3.14) and

(3.15) satisfiesh(rD) = 0 by substitutingrD in the functionh(·). Second, atp = kα, we haveφ = 3π/4 and

cos(φ/3) = 1/
√

2 so thatrD(kα) = 0; it is straightforward to show thatrD(p) is increasing inp by directly

calculatingdrD(p)/dp, and hence,rD > 0 if and only if p > kα. It remains to show thatrD is the only

positive root ofh(x) = 0 whenp > kα and that there are no positive roots whenp≤ kα.

The larger root of the quadratic equationh′(x)= 12x2+24αx+9α2−3(p)α/k= 0 is x̃= α[
√

1+(p)/(αk)−

2]/2 which is greater than−α. Also from h′′(x) = 24(x+ α) > 0 for x > −α, we find thath(·) is strictly

decreasing in the interval(−α, x̃) and strictly increasing in(x̃,∞). We also note that

h(−α) = α3 + pα2/k > 0, and

h(x̃) = −(p+kα)α2(
√

1+ p/kα−1)/k < 0.

Hence, from the continuity ofh(·) and the limitsh(−∞) = −∞ andh(∞) = ∞, there is exactly one root of

h(x) = 0 in each of the intervals(−∞,−α), (−α, x̃), and(x̃,∞).

If p≤ kα, thenx̃≤ α(
√

2−2)/2< 0 andh(0) = 2α3−2p
k α2 ≥ 0 so there is no positive root ofh(x) = 0.

If p> kα, thenh(0) < 0 andh(−α) > 0 so there is exactly one root each in the intervals(−∞,−α), (−α,0)

and(0,∞). Thus, there is exactly one positive root if and only ifp > kα.

The optimal work rate can written asrD(p) = α f ( p
αk) where

f (x) ≡
√

1+xcos[(π−arctan
√

x)/3]−1.

The functionf (x) is strictly increasing and unbounded inx. Thus,rD(p) is strictly increasing and unbounded

in p. Moreover,x f(x−1) is unimodal inx, sorD(p) is unimodal inα.

Proof of Lemma 4: Observe from the proof of Proposition 2 and the definition offD(·) in (5.4) that there

exists a thresholdpn > 0 such that minr>0 fD(r) = pn. Thus, a positive solutionr to (3.12) exists if and only

if p ≥ pn. (If p < pn, then the only Nash equilibrium for the contractors isr = 0.) This implies that the

work rate in equilibriumrD(n; p) > 0 if and only if p ≥ pn. We can prove that the supplier participation

constraint (3.4) holds whenp > pn by showing thatrD(n; p) > 0 if and only if ΠD
i (p; r1, · · · , r i , · · · , rn) > 0

whenr j = rD(n; p) for j = 1, · · · ,n. First, if ΠD
i (p; r1, · · · , r i , · · · , rn) > 0 whenr j = rD(n; p) for j = 1, · · · ,n,

then rD(n; p) must be positive becauseΠD
i (p; r1, · · · , r i , · · · , rn) = 0, otherwise. Next, ifrD(n; p) > 0, we

now proveΠD
i (p; r1, · · · , r i , · · · , rn) > 0 by contradiction. Suppose not. ThenΠD

i (p; r1, · · · , r i , · · · , rn) ≤ 0.
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(a) ΠD
i (p; r1, · · · , r i , · · · , rn) cannot be strictly negative whenr j = rD(n; p) for j = 1, · · · ,n. This is because if

ΠD
i (p; r1, · · · , r i , · · · , rn) < 0 whenr j = rD(n; p) for j = 1, · · · ,n, supplieri can set her work rate to 0 and earns

a higher profit 0, which contradicts thatrD(n; p) is the work rate in equilibrium. (b)ΠD
i (p; r1, · · · , r i , · · · , rn)

cannot be zero whenr j = rD(n; p) for j = 1, · · · ,n. This is because ifΠD
i (p; r1, · · · , r i , · · · , rn) = 0 when

r j = rD(n; p) for j = 1, · · · ,n, the functionΠD
i (p; r1, · · · , r i , · · · , rn) when r j = rD(n; p) for j 6= i cannot be

a strictly concave function inr i because this function also equals zero whenr i = 0. Knowing the fact

that− kr2
i

r i+α is concave, this contradicts statement 2 of Lemma 1. Hence, we have shown that the supplier

participation constraint (3.4) holds whenp > pn.

Similarly, observe that a positive solutionr to (3.12) exists if and only ifp ≥ pn. Hence, in view of

condition for the supplier participation, the manufacturer’s optimal expected profitΠD
m(q) > 0 if and only if

q > pn. Observe from (5.4) thatfD(·) is increasing inn, and hence,pn is also increasing inn.

Next, the large-n asymptotic properties offD(·) and fN(·) can be obtained from the asymptotic properties

of Γ(·) andψ(·). The asymptotic form offD(·) is

fD(r) =
(2kαr +kr2)r2n1+α/r

α(α+ r)2Γ(α
r +1) lnn

(1+O(n−1)) .

The minimum value offD(·) can be obtained from the first-order conditiond fD(r)/dr = 0. For largen, keep-

ing the leading-order terms of lnn, we find thatr = α lnn+O(1) minimizes fD(·) and that minr>0 fD(r) =

kαn(lnn+O(1)).

Proof of Lemma 5: Consider the case whenn = 2. For any pairq1 < q2, let p1 = pN(q1) andp2 = pN(q2)

so that

ΠN
m(p1,q1) = 2q1β(rN(p1), r

N(p1))−2p1β(rN(p1))

≤ 2q2β(rN(p1), r
N(p1))−2p1β(rN(p1)) ≤ ΠN

m(p2,q2) .

Hence,ΠN
m(q) is non-decreasing inq. Moreover, if rN(p1) > 0, thenβ(rN(p1) > 0, so ΠN

m(p1,q1) <

ΠN
m(p2,q2). Therefore,ΠN

m(q) is strictly increasing inq for q > z. Next, letqx = xq1 + (1− x)q2 where

x∈ (0,1) and definepx = pN(qx). Then

ΠN
m(qx) = 2qxβ(rN(px), r

N(px))−2pxβ(rN(px))

= x[2q1β(rN(px), r
N(px))−2pxβ(rN(px))]

+(1−x)[2q2β(rN(px), r
N(px))−2pxβ(rN(px))]

≤ xΠN
m(q1)+ (1−x)ΠN

m(q2) .
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These arguments apply to prove thatΠD
m(q) is convex and non-decreasing inqand that it is strictly increasing

q for q > αk. For generaln≥ 2, we can use the same approach to obtain the results.

Proof of Proposition 3: The first two statements follow immediately from the participation conditions under

regimeN and regimeD as stated in Lemmas 2 and 4.

Proof of Proposition 4: First, we show that in the regime D there is a Nash equilibriumin which rD(p)

grows inp without bound: from (5.5), the first-order condition (3.12)yields

rD(n; p) = α
√

(
p

nαk
)[ψ(n+1)−ψ(1)](1+O(p−1))

for largep. Moreover, it can be shown that this is the Nash equilibrium which yields the highest profits for

the manufacturers for largep. From B(α
r ,n+1)(α

r ) = 1− α
r [ψ(n+1)−ψ(1)]+O(r−2) for larger,

ΠD
m(q, p) = nq−nq· ( α

rD(n; p)
)[ψ(n+1)−ψ(1)]−np+O(rD) .

Differentiating the above with respect top and imposing the first-order condition, we obtain

pD(n;q) = (
q
2
)2/3{αkn[ψ(n+1)−ψ(1)]}1/3(1+O(

1
rD ))

rD = α(
q[ψ(n+1)−ψ(1)]2

2nαk
)1/3(1+O(1/rD)) .

Finally,

ΠD
m(q) = nq−3n(

q
2
)2/3(αk)1/3{n[ψ(n+1)−ψ(1)]}1/3 +O(q1/3) .

Similarly, we studyΠN
m in (5.1) in the large-r limit:

ΠN
m(q, p) = nq−nq· (α

r
)[ψ(n+1)−ψ(1)]−nαk(

r
α

)2 +O(r) .

The first-order condition with respect tor yields

rN = {qα2[ψ(n+1)−ψ(1)]

2k
}1/3(1+O(1/rN)) ,

pN(q) =
k
α
{qα2[ψ(n+1)−ψ(1)]

2k
}2/3(1+O(1/rN)) ,

ΠN
m(q) = nq−3n(

q
2
)2/3(αk)1/3[ψ(n+1)−ψ(1)]2/3 +O(q1/3) .

Noticing thatψ(n+1)−ψ(1) = ∑n
k=1 k−1 < n for all positive integersn, we can prove the statements of the

Proposition through direct comparisons.

Proof of Proposition 7: The proof follows exactly the same approach as in the proof ofProposition 6. We

omit the details.
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Proof of Lemma 6: The proof follows immediately from the supplier’s and the manufacturer’s participation

constraints.

Proof of Proposition 8: Whenq is sufficiently small, we obtain the first statement immediately from the

manufacturer participation conditions as stated in Lemmas2 and 6.

Whenq is sufficiently large, the manufacturer and the suppliers participate in the project under regimes

DI andN. Let us consider regimeDI . We first claim thatλ( j) = αℓ( j)
√

p
αk + O(1), S( j) = p+ O(

√
p),

R( j) = p+ O(
√

p), andS( j) −R( j) = m( j)
√

pαk+ O(1) for sufficiently largep whereℓ( j) andm( j) are

positive functions of the stage indexj such thatℓ( j) < j+1
2 j−1 ≤ 1 andm( j) < 1 for j ≥ 2 andℓ(1) = m(1) = 1

. We prove this claim via the mathematical induction.

Fromλ(1) = α
√

p
αk +O(1), we obtainR(1) = p− p

λ(1)/α −kλ(1) +O(1) = p−2
√

pαk+O(1) andS(1) =

p− p
λ(1)/α +O(1) = p−√

pαk+O(1) so thatS(1) −R(1) =
√

pαk+O(1).

Suppose that the claim is true for all stage indices up toj −1. From (4.3),

λ( j) =
( j −1)m( j −1)

√
pαk+

√
[( j −1)m( j −1)

√
pαk]2 +4(2 j −1)kαp

2(2 j −1)k
+O(1)

≤
√

pαk
( j −1)+

√
j2 +6 j −3

2(2 j −1)k
+O(1) <

√
pαk

( j −1)+
√

j2 +6 j +9
2(2 j −1)k

+O(1)

= α
√

p
αk

j +1
2 j −1

+O(1) ,

R( j) = R( j−1)−kλ( j)/ j +(S( j−1)−R( j−1))/ j −R( j−1) · ( α
jλ( j)

)+O(1)

= p+
√

pαk[−ℓ( j)
j

+
m( j −1)

j
− 1

jℓ( j)
]+O(1) ,

and

S( j) =
jλ( j)

jλ( j) + α
S( j−1) = S( j−1)(1− α

jλ( j)
+O(p−1)) .

Hence,

S( j) −R( j) = (S( j−1) −R( j−1))(1− 1
j
)+

kλ( j)

j
+O(1)

=
√

pαk(1− 1
j
+

ℓ( j)
j

)+O(1) <
√

pαk+O(1) .

Thus, the claim is proved for allj.

Next, we studyΠDI
m (q, p) for largeq. Assume thatp is also large. Then

ΠDI
m (q, p) = n(q− p)

n

∏
j=1

jλ( j)

jλ( j) + α
= n(q− p)[1−

n

∑
j=1

α
jλ( j)

+O(p−1)]
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= nq−nq[
n

∑
j=1

α
jλ( j)

+O(p−1)]−np+O(
√

p) . (5.6)

Then the first-order condition for the optimalp is given by

−q
d

dp

n

∑
j=1

α
jλ( j)

= 1+O(p−1/2) .

This is consistent with the assumption that the optimalp grows unboundedly asq grows. Now we compare

(5.6) toΠN
m(q, p) in the large-p limit:

ΠN
m(q, p) = nq−nq· ( α

rN(p)
)[ψ(n+1)−ψ(1)](1+O(

1
rN(p)

))−np+O(
√

p)

whereψ(n+1)−ψ(1) = ∑n
j=1 j−1. BecauserN(p) = α

√
p

αk +O(1)≥ λ( j) where the inequality is strict for

j ≥ 2, we haveΠN
m(q, p) > ΠDI

m (q, p) for largep and for anyn≥ 2. Thus, for largeq in which casep is also

large,ΠN
m(q) > ΠDI

m (q).

Proof of Proposition 9: Observe from Lemma 2 thatqn increases inn without bound. Hence, for any fixed

value ofq, ΠDI
m (q) > ΠN

m(q) = 0 whenn is sufficiently large. Similarly, from Lemma 4,pn increases inn

without bound. BecauseΠD
m(q) = 0 for q ≤ pn, for any fixed value ofq, ΠDI

m (q) > ΠD
m(q) = 0 whenn is

sufficiently large.
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