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In this paper, we propose a model of intertemporal choice that explicitly incorporates satiation due to previous consumption
in the evaluation of the utility of current consumption. In the discounted utility (DU) model, the utility of consumption
is evaluated afresh in each time period. In our model, the utility of current consumption represents an incremental utility
from the past level. When the time interval between consumption periods is large, and there are, therefore, no carryover
effects, our model coincides with the DU model. For short time intervals between consumption periods, the satiation due
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comparisons with the DU model and the habituation model are made.
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1. Introduction
In this paper, we consider the problem in which the con-
sequences of a decision accrue over time. We examine the
case where consequences are consumption streams. This
case is common in economics and in decision analysis, in
which maximization of the utility of consumption subject to
a budget constraint is assumed both in modeling and in the-
oretical analysis. Our main focus is on the discrete model
wherein consumption occurs at discrete time periods.
The discounted utility (DU) model is the dominant model

of intertemporal choice. In this model, consumption now is
given a greater weight than consumption later. Further, the
total utility of a consumption stream is additively separable
across periods. Samuelson (1937) introduced the DU model
and Koopmans (1960) provided an axiomatic justification
for the additive separable form with positive discount rate.
In those works, however, both Samuelson and Koopmans
recognized the limitation of the logical appeal of the con-
sumption independence assumed in the DU model. Simply
stated, consumption independence requires that the utility
of current consumption does not depend on past consump-
tion. It is easy to see that the utility of current consumption
(spicy food today) may depend on past consumption (spicy
food yesterday), especially when the time interval between
periods is small. For some consumption goods, such as a
vacation or a particular movie, consumption independence
may not hold even when time periods are separated by as
much as a year. For example, it would not be uncommon
to hear: “I don’t want to go to Washington this year; I just
went there last year.” To account for the effects of past
consumption appropriately, one must recognize that there is
some satiation due to past consumption and that the utility

of current consumption is an increment over the satiation
level.
Our model is based on the following simple idea: Start-

ing with a utility of zero, consumption in Period 0 (now)
takes one to a higher level of utility. This utility begins
to decay, but may be higher than zero at the beginning of
Period 1 (retained utility). The utility of consumption in
Period 1 is the incremental utility from the retained level.
The total utility is the discounted sum of incremental utili-
ties in each period. We will refer to the incremental utility
in a period as the experienced utility.
Clearly, if in each period the utility level decays back to

the neutral level of zero, then our model particularizes
to the DU model. In this case, utility is computed afresh
from the zero level in each period. At the other extreme,
if there is no decay in the utility of consumption between
periods, then the experienced utility becomes smaller and
smaller in subsequent periods (assuming concave utility).
A key parameter in our model is the satiation retention

factor, which captures the carryover effect of consumption
from one period to the next. A satiation retention factor
equal to zero indicates no carryover effect, whereas a sati-
ation retention factor equal to one indicates that the entire
consumption effect is carried over and, therefore, the expe-
rienced utility in the next period is measured from the util-
ity level reached in the previous period.
Bell (1974) provided an early attempt to address this

problem and proposed a model of utility discounts applied
to cumulative income. Bell’s model is not meant for con-
sumption streams and does not particularize to the DU
model. Our model encompasses both the DU model and
Bell’s model as special cases.
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A related model that captures the effect of past consump-
tion is the habituation (HA) model (Wathieu 1997, 2004;
Ryder and Heal 1973). In that model, the reference point
is updated each period and the utility of consumption is
defined as the increment over the reference point. The HA
model has a behavioral motivation, whereas our model is
a normative extension of the DU model. We will compare
our model with the HA model in §7.
In §2, we describe our satiation model (SA), which we

view as a normative extension of the DU model that per-
mits utility retention. To motivate the satiation model, we
dedicate a subsection to highlight the problem caused by
assuming separability over time, when in fact there is sati-
ation due to previous consumption. Some typical analysis
employed to illustrate the implications of the DU model
will be used here to show the implications of the SA
model. Another subsection describes the elicitation of the
two parameters of the SA model. In §3, we compare the
optimal consumption paths of the SA model and the DU
model. Whereas in the DU model the consumption path
is always decreasing, consumption over time in the SA
model exhibits richer patterns. In the DU model, con-
sumption levels and associated experienced utility and total
utility always increase as income (budget) increases. In
contrast, in the SA model per-period experienced utility
may increase, remain the same, or decrease. In §4, we
compare the optimal duration of constant consumption and
show that it may depend on both the discount rate and the
satiation retention factor.
Indirect utility of income is derived in §5, where we

show that satiation may “concavify” the indirect utility for
money. In §6, we examine the impact of satiation on the
allocation of a budget to two or more consumption goods.
These comparisons with the DU model provide insight into
the behavior and properties of the SA model. In §7, we
provide a comparison of the SA model with the HA model.
Finally, in §8, conclusions are provided.

2. Satiation Across Time Periods

2.1. The Satiation Model

Consider a consumption stream �x0� x1� � � � � xT−1�, where
xt is the consumption in period t. The DU model evaluates
the total utility of the consumption stream as

DU�x0� � � � � xT−1�=
T−1∑
t=0

�tu�xt�� (1)

where u�xt� is the utility of consumption xt in period t,
and �t is the discount factor associated with period t. The
discount factor 0< �� 1 captures impatience in the sense
that the utility of present consumption is weighted more
than the utility of future consumption.
The DU model was axiomatized by Koopmans (1960)

and Koopmans et al. (1964) for countable infinite streams.
A key feature of the DU model is the separability over
time. Thus, the utility derived from present consumption

is not affected by previous consumption. The assumption
of separability over time does not enjoy the same degree
of normative appeal as the assumption of independence in
expected utility theory. Koopmans (1960) recognizes this
limitation and states, “one cannot claim a high degree of
realism for such a postulate, because there is no clear rea-
son why complementarity of goods could not extend over
more than one time period” (p. 292). As an example, the
utility derived from Chinese food for dinner may depend
on what one had for lunch.
There are consumption goods such as movies and vaca-

tions where the enjoyment of the current consumption
depends on the time elapsed since the previous consump-
tion. The consumption creates a stock in memory that
diminishes over time. Similarly, for consumption goods that
satisfy biological needs such as food and exercise, each
instance of consumption creates a stock and the later con-
sumption provides utility starting from this stock. In our SA
model, the contribution of the current consumption is over
the satiation level achieved due to previous consumption.
Thus, the carrier of utility is the increment from current
satiation rather than current consumption. Suppose that the
satiation level is y at the beginning of a period. A consump-
tion x in this period yields a utility u�y+ x�− u�y� rather
than u�x�. Clearly, when y = 0 and assuming u�0�= 0, the
experienced utility is simply u�x�. In this case, our model
coincides with the DU model, as the utility is computed
afresh each period.
To illustrate our model in a two-period setting, consider a

consumption stream �x0� x1�, where x0 is the current-period
consumption and x1 is the consumption in the following
period. For simplicity, assume an initial satiation y0 = 0. In
the current period, one experiences a utility level equal to
u�y0 + x0� − u�y0�, y0 = 0, u�0� = 0. In the next period,
one starts out with a satiation level of y1. The experienced
utility of consumption x1 is therefore u�y1 + x1�− u�y1�.
Figure 1 illustrates the two components of total utility of
the consumption stream �x0� x1�. The total utility of �x0� x1�
in the SA model is

SA�x0� x1�

= �u�y0+ x0�− u�y0�
+ ��u�y1+ x1�− u�y1�
� (2)

Figure 1. Total utility in the satiation model.
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where y1 is the satiation level produced by previous con-
sumption and y0 is given and assumed to be zero in Fig-
ure 1. In contrast, the DU model evaluates the experienced
utility of each consumption afresh:

DU�x0� x1�= u�x0�+ �u�x1��

It is easy to see that SA�x0� x1�=DU�x0� x1� if y0 = y1 = 0.
We further specify that the satiation level from one period
to the next diminishes by a factor � (the satiation retention
factor), thus y1 = ��y0+x0�. While the DU model requires
only one parameter, �, our SA model requires two param-
eters, � and �. In §2.3, we will discuss how both � and �
can be derived from choices.
In the multiperiod case, the SA model is written as

SA�x0� � � � � xT−1�=
T−1∑
t=0

�t�u�yt + xt�− u�yt�
� (3)

yt+1 = ��yt + xt�� t = 0� � � � � T − 1� with y0 given� (4)

where ��� ∈ �0�1
. Clearly, if � = 0, then the SA model
reduces to the DU model (1). On the other end, if � = 1,
then our model is identical to Bell’s (1974) model. Bell’s
model does not include utility decay and is more appropri-
ate for income streams, as originally intended, rather than
for consumption.
It is easily seen by recursive substitution in (4) that the

satiation level in a period is simply the cumulative dis-
counted consumption in previous periods. That is,

yt+1 = �t+1y0+�t+1x0+�tx1+ · · ·+�2xt−1+�xt� (5)

If consumption ceases at period t, then the satiation level
decays geometrically at a rate of �, i.e., yt+k = �kyt . Hence,
after k∗ = ln 0�5/ ln� periods, the satiation level would be
reduced by half. The satiation half-life k∗ may vary a great
deal based on the nature of consumption. For most con-
sumption goods (food, exercise, and entertainment activi-
ties), the satiation half-life may be a week or less, but for
other consumption goods (visiting a theme park, taking a
vaccine) the effects of past consumption may last a long
time. Thus, the satiation retention factor � depends on the
length of the interval between time periods and the type
of good being consumed. For large time intervals between
two time periods (relative to k∗), � can be assumed to be
approximately zero and the SA model particularizes to the
DU model. Conversely, when the length of interval between
two time periods is small (relative to k∗), then the satiation
level may be quite high and, at the extreme, may equal the
level of accumulated past consumption. The experienced
utility of the current consumption is therefore significantly
smaller than the utility of consumption computed afresh
without any previous satiation (the value used in the DU
model). The total utility given by the SA model will there-
fore be smaller than the total utility given by the DU model.

We clarify that the utility in our model is assumed to
be cardinal (von Neumann and Morgenstern 1947, Krantz
et al. 1971, Dyer and Sarin 1979) and all parameters are
elicited using preferences. Further, the use of the term “sati-
ation” in our paper refers to a decrease in the marginal
utility induced by high levels of past consumption. The
same meaning appears in Loewenstein and Angner (2003).
This is not to be confused with the assumption of “local
nonsatiation,” often used in economics (Mas-Colell et al.
1995), which rules out the local maximum in the utility
curve, i.e., points where the utility is flat in all directions.
In our study, utility is increasing in consumption, but at a
decreasing rate.
Throughout the paper, we model the consumption of

nondurable goods, i.e., goods that yield experienced utility
only in the period when they are consumed. A durable good
(e.g., a house) can be accommodated in both the DU and
the SA models by representing it as a consumption stream
over several periods. Similarly, if current consumption adds
future capabilities—for example, a tennis lesson enhances
future competence—then outcomes should be appropriately
modified to include such effects. Satiation is still valid and
accounts for fatigue and the preference for spreading out
the lessons over time.
The idea that experienced utility depends on past con-

sumption is not new. Ryder and Heal (1973), Constan-
tinides (1990), Becker (1996), and Sundaresan (1989),
among others, explore habit formation and addiction using
DU models with u�x − y� in the per-period evaluation.
In these models, the marginal utility increases with y so
that current consumption increases the desirability of future
consumption. While these models capture adjacent com-
plementarity, our SA model accounts for adjacent substi-
tutability. Chakravarty and Manne (1968) propose models
where instant utility depends on the rate of change of
consumption.
To obtain the continuous-time version of our SA model,

we let x̂�t� be a flow, measured in the units of a consump-
tion good per unit of time. In the SA model, the evaluation
of such a flow would be given by

SA�x̂�t��=
∫ T

0
�tu′�y�t��x̂�t�dt� (6)

y�t�=
∫ t

0
�t−s x̂�s�ds�

where u′ is the derivative of the per-period utility. To see
this, we consider a small time interval between t and t+�,
so that xt = x̂�t��. Setting �= xt , we have

�tu′�y�t��x̂�t�dt ≈ �t u�yt + ��− u�yt�

�
x̂�t��

= �t�u�yt + xt�− u�yt�
�

Equation (6) particularizes into Bell’s continuous model for
� = 1 (to see this, note that for � = 1, dy�t�/dt = x̂�t��.
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Note that u′ in (6) is a decreasing function: the higher
the satiation level, the lower the experienced utility. More
importantly, Hindy et al. (1992) and Hindy and Huang
(1992) have provided conditions for continuous models to
ensure that consumption on nearby dates are perfect sub-
stitutes. Essentially, the continuous-time experienced utility
has to be of the form u�x̂� y�= x̂a�y�+b�y� for some arbi-
trary continuous functions a and b. The continuous form
of the DU models, u�x̂� y�= u�x̂�, does not satisfy substi-
tutability. This has prompted the adoption of so-called dura-
tion models having u�x̂� y� = u�y� (Heaton 1995, Hindy
et al. 1997). Our paper invites the use of x̂u′�y� as the
continuous-time experienced utility, which, in contrast to
the duration model, has the property that the experienced
utility in the intervals where x̂�t�= 0 is always zero, inde-
pendent of the level of y�t�.
In the next section, we discuss an example that highlights

the problem of assuming consumption independence when
the time interval between two consumptions is small. We
will use this example to compare the SA model with the
DU model.

2.2. Motivation of the Model

In the DU model, it is implicitly assumed that there is
no satiation due to consumption that is carried over across
time periods. Thus, the utility of consumption in a period
remains unaffected by the consumption in the previous
period. The assumption that the utility in each period is
computed afresh may be reasonable if the time interval
between two periods is relatively large. Thus, the total util-
ity is simply the sum of the discounted utilities as in (1).
A serious problem, however, arises when the time interval
between two periods is relatively small and there is a lin-
gering effect of previous consumption on the experienced
utility of the current consumption. In this case, the DU
model will overstate the total utility. To see this problem,
we consider the example below. We will assume that the
utility function is strictly concave, representing diminishing
marginal utility of consumption. Note that in models (1)
and (2) we assume a unit time interval (say a year), and
� and � reflect the discount and satiation retention factors,
respectively, for the unit time. If we set the time interval
between periods to � time units, then the appropriate dis-
count and satiation factors are �� and ��, respectively. In
doing so, we fix the number of periods; hence, the time
span of the model is T�.

Example 1. Consider two consumption streams A ≡
�2c�0� and B ≡ �c� c�, where B is obtained by postpon-
ing consumption c in A from the first period (now) to the
second period (later). The time interval between the two
periods is �. Then, DU�A�= u�2c�+��u�0� and DU�B�=
u�c�+ ��u�c�.

If the time interval between now and later is short, then
� → 0, �� → 1, and DU�A� → u�2c� + u�0�, whereas

DU�B� → 2u�c�. The strict concavity of u implies that
2u�c� > u�2c�+ u�0�, so that the decision maker experi-
ences a positive jump in total utility evaluation by instantly
delaying the reception of a part of 2c. Exploiting this
opportunity, the decision maker could consume c/n over n
consecutive instants and obtain a total utility of nu�c/n�.
The previous example indicates that a desirable conver-

gence property for a multiperiod utility function U�x0� x1�
is that as � → 0, U�x0� x1� → u�x0 + x1�, i.e., x0 and
x1 should become perfect substitutes. A simple example
makes our argument vivid. Suppose you consume a pizza
now and another pizza a month later. Then, it seems appro-
priate to compute total utility by adding the utilities derived
from consuming one pizza now and one pizza a month
from now with some suitable discounting. If, however, you
consume one pizza now and another soon after consuming
the first one, then you do not receive a total utility that is
twice the utility of one pizza, as the model in (1) implies.
Instead, you get the utility of consuming two pizzas, which
is likely to be less than twice the utility derived from con-
suming one pizza because of diminishing marginal util-
ity. By continuity at �= 0, the desirable property implies
u�x0�+ u�x1�= u�x0+ x1�. It is well known (Aczél 1966)
that such a functional equation is satisfied only if u�x�=
kx for some positive k. Thus, the paradox in the example
arises because the additive separability in (1) and the strict
concavity of u are incompatible with the linear behavior
of U when �→ 0.
In contrast with the additive model (1), which assumes

that the utility in each period is computed afresh, the SA
model possesses the right convergence properties. The dif-
ficulty represented in Example 1 for short time intervals
�� → 0� therefore does not arise. Note that the satiation
factor in (2) is now ��. Assume that the initial satiation
level y0 is zero.

SA�A�= SA�2c�0�= u�2c��

SA�B�= SA�c� c�= u�c�+ ���u�c�� + c�− u�c���
�

As �→ 0, both �� and �� → 1 and SA�B�→ u�2c�, sat-
isfying the desirable local substitution property that instant
delay in consumption should not create a discontinuity in
the utility evaluation and produce a jump in total utility as
in the DU model. Basically, in the SA model, one receives
a utility of u�c� in the first period. Because the second
period is only an instant away, there is no depreciation in
the satiation level. In the second period, therefore, the expe-
rienced utility is u�2c�− u�c� and the total utility in the
two periods is simply u�c�+ u�2c�− u�c�= u�2c�.
Although the above example is extreme ��= 0� � = 1�,

it is generally true that for any � > 0, the DU model will
overstate the total utility. While the convergence property
of the SA model is a desirable feature of the SA model, the
accounting of satiation is justified whenever the time inter-
val of the model is of the same order of magnitude as the
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satiation half-life. Using time-series aggregate consumption
in the United States with monthly data, Heaton (1995) finds
that consumption is relatively substitutable over a period of
about four months. More generally, for a given time inter-
val, satiation has to be taken into account for those con-
sumption goods for which �� is nonnegligible. The smaller
the �, the larger the list of goods for which satiation is
significant.

2.3. Elicitation of the Discount Factor � and
the Satiation Retention Factor �

The SA model requires two parameters, � and �, and the
initial value of satiation, y0. A variety of models such as
the HA model, the exponential forecasting model, and the
learning model require an initial value. To elicit � and �,
assume that the per-period utility u�x� has been assessed
with standard methods and set u�0�= 0. There are several
ways to elicit � and �. A simple way is to seek d so that

�x�0�∼ �0� x+d�� (7)

where x is some appropriate level of consumption. Now,

u�y0+ x�− u�y0�= ��u��y0+ x+d�− u��y0�
� (8)

Next, elicit d′ so that

�x�0�∼ �x/2−d′� x/2−d′�� (9)

We now obtain the second equation,

u�y0+ x�− u�y0�= u

(
y0+

x

2
−d′

)
− u�y0�

+ �

[
u

(
y1+

x

2
−d′

)
− u�y1�

]
� (10)

where y1 = ��y0 + x0�. For any given y0, Equations (8)
and (10) can be solved to yield � and �.
A simpler elicitation is possible when y0 = 0. If y0 = 0,

then (8) gives

�= u�x�/u�x+d�� (11)

One can now solve for � using (10). For y0 = 0, Figure 2
shows the relationship between d and �, as well as between
d′ and �. The calculations assume an exponential utility
with a risk tolerance of 50. Clearly, when d is larger, the
future is weighted less and � is smaller. For a given �, a
smaller d′ implies a higher level of satiation. For example,
when � = 1, �x/2� x/2� is preferred to �x�0� because of
concavity of the utility function. If � = 0, then one would
require a large d′ so that �x/2 − d′� x/2 − d′� becomes
indifferent to �x�0�. The role of d′ is to lower the utility
of the equal consumption profile. Another way to lower the
utility is to have a high � as satiation reduces the utility in

Figure 2. Given the values of d and d′, and assum-
ing y0 = 0, we first determine � = u�100�/
u�100+d� and then use (10) to calculate �.
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the second period. For a fixed �, as � increases one would
need a smaller d′ to obtain the required indifference.

3. Optimal Consumption Path for
the Satiation Model

Suppose that a decision maker (agent or consumer) wishes
to consume a total of I units in T periods. I can also be
thought of as a budget constraint, together with the simpli-
fying assumption that the prices are constant over time and
are normalized to one. What is the consumption amount xt

in period t, t = 0 to T − 1, that will maximize the total
utility?
It is well known that the optimal consumption path for

the DU model is decreasing (xt < xt−1) if the discount
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factor is less than one. The optimal consumption path is
obtained by solving

max
T−1∑
t=0

�tu�xt�

s.t.
T−1∑
t=0

xt = I �

The first-order conditions for the above problem require
that �tu′�xt� be equal to a constant, and thus u′�xt−1� =
�u′�xt�, which yields xt−1 < xt for a concave utility func-
tion and 0 < � < 1. Essentially, the consumption is set so
that the ratio of marginal utilities in two consecutive peri-
ods is equal to the discount factor. For the special case
of u�x� = ln�x�, xt = �xt−1, t = 1 to T − 1, and x0 =
I/

∑T−1
t=0 �t . When � = 1, x0 = · · · = xT−1 = I/T , and the

constant consumption path is the optimal path. Note that
the per-period consumption xt and the experienced utility
u�xt� both increase as I increases.
To derive the optimal consumption path for the SA

model, we solve

max
T−1∑
t=0

�t�u�yt + xt�− u�yt�


s.t. yt+1 = ��yt + xt�� t = 0� � � � � T − 1�
T−1∑
t=0

xt = I�

where y0 is the initial satiation level that is given or is
assumed to be zero. The first set of T constraints can be
substituted using xt + yt = yt+1/�. If � is the Lagrange
multiplier of the last constraint, then we can write the first-
order conditions in terms of yt , t = 1� � � � � T , as
u′�yt/��− ��u′�yt�= ��1−��/�t−1�

t = 1� � � � � T − 1� (12)

u′�yT /��= �/�T−1� (13)

If we define f �y�≡ u′�y/��−��u′�y�, then we can rewrite
(12) as

f �yt�= ��1−��/�t−1� t = 1� � � � � T − 1� (14)

For a given utility function and the values of � and �,
we can solve for y1� � � � � yT and thus derive the optimal
consumption levels x0� � � � � xT−1 because xt = �yt+1/��−yt .
The case where the discount factor � = 1 is especially

instructive in seeing how the optimal consumption paths of
the DU model and the SA model differ. In the DU model,
the optimal consumption is simply xt = I/T , t = 0 to T −1.
In the SA model, when �= 1, Equation (14) yields that yt
is constant, t = 1� � � � � T − 2. Let ŷ be this constant value.
Now, xt = �yt+1/�� − yt , so that xt = x̂ = ŷ�1 − ��/�,
t = 1� � � � � T − 2, x0 = �ŷ/��− y0, and xT−1 = �yT /��− ŷ.

Thus, when discounting is not relevant, the optimal con-
sumption path for any concave utility function is a constant
consumption except for the first and the last periods (i.e.,
x0 and xT−1).
Compared to the DU model, the optimal consumption

path is a bit more complex in the SA model. The optimal
consumption path is decreasing as in the DU model, except
for the beginning and end effects. Essentially, assuming the
initial satiation level to be zero, the SA model yields a
U -shaped consumption pattern with high consumption both
at the beginning and at the end periods. In the intervening
periods, the consumption path shows a decreasing pattern.
The higher initial consumption is due to the assumption of
a zero initial satiation level, which increases experienced
utility in period t = 0. The higher final consumption is
a consequence of not having an after-effect of satiation
beyond T .
Although the reasons for such a consumption pattern

have to do with the satiation factor, this high-low-high opti-
mal pattern of consumption can be identified in several real-
life situations. Consider, for example, the optimal design
of a vacation plan, an MBA course, a speech, or a concert.
In many such instances, it is recommended to pay special
attention to a good beginning and a great ending, and to
only maintain sufficiently satisfactory levels in the middle.

3.1. The Power Utility Function and the Optimal
Consumption Path

We now consider the optimal consumption path for the
power utility function. The power form for the per-period
utility has been widely used because of its mathematical
tractability. The power form we use is u�x�= x1−!/�1−!�
if ! �= 1, and u�x�= ln x if != 1. For this form, the pro-
portional risk aversion is !. For tractability, we assume that
the initial satiation level y0 = "0I is a fraction of the total
consumption budget. In this case, f �y�= ���!−1 − ��/y!

is a hyperbola, and (13) and (14) yield

yt =
(
�t#

�

)1/!
for t = 1� � � � � T − 1�

where #= ���!−1− ��

��1−��
� and (15)

yT = �

(
�T−1

�

)1/!
� (16)

From these equations, we use xt = �yt+1/�� − yt and∑T−1
t=0 xt = I to derive

x0 =
1
�

(
�#

�

)1/!
−"0I� "0 given� (17)

xt =
(
�t#

�

)1/!(
�1/!

�
− 1

)
� t = 1� � � � � T − 2� (18)

xT−1 =
(
�T−1

�

)1/!
�1−#1/!�� (19)
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Figure 3. Optimal consumption path xt , with its asso-
ciated satiation level yt , and per-period utility
u�yt + xt�− u�yt�.
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1−�

�

)1/!
�T /!
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+ 1−�

�

�1/!−�T /!

1−�1/!

� (20)

There are three possible solutions for x0� � � � � xT−1. The
“interior” solution depicted in Figure 3 is obtained when
�! < � < �!−1. In this case, the consumption is strictly
decreasing except for the last period. A jump in consump-
tion in the last period occurs because there is no penalty
for an increased satiation level. In the intermediate peri-
ods, the consumption is held down to keep satiation lev-
els low. The two extreme solutions are x0 = I and xt = 0,
t = 1� � � � � T − 1; xt = 0, t = 0� � � � � T − 2, and xT−1 = I .
In the first extreme solution, all consumption occurs in the
very first period, and this case is obtained when � � �!.
In the second extreme solution, all consumption occurs in
the last period, and this case is obtained when � � �!−1.
In the example in Figure 3, if we assume �= 1, then the
optimal consumption is constant except for the first and last
periods.

3.2. Experienced Utility

For the power utility function, we now examine what hap-
pens to the experienced utility when income or the total
consumption level I increases. In the discussion of the
results of this subsection, we adopt an extramathematical
interpretation of experienced utility u�yt + xt� − u�yt� as
a measure of “happiness.” Under this interpretation, higher
levels of utility lead to greater happiness. Still, utility in
our model is preference based, i.e., a mathematical rep-
resentation of preferences. This case is of interest when
an interior solution holds (�! < � < �!−1� because in the
extreme cases, all consumption occurs either in the initial
period or in the last period.
The results depend on whether !< 1, != 1 (logarithmic

case), or !> 1. Using (15) and (18), the expression for the

experienced utility in period t is given by

u�yt + xt�− u�xt�

=
(
�t#

�

)�1−!�/!
��1/!/��1−! − 1

1−!
� (21)

In the above expression, the sign of ��1/!/��1−!−1 is cru-
cial. If ! < 1, then this sign is always positive. Plugging
in the expression for #/� from (20) shows that the expe-
rienced utility is proportional to I �1−!�/�1− !�. Thus, for
!< 1, as I increases, experienced utility also increases. We
should clarify that the optimal consumption path assumes
that the decision maker rationally anticipates satiation and
therefore does not immediately increase consumption as
income rises (at high levels of income). A myopic deci-
sion maker may increase consumption in the initial periods
if income rises and thus reach a high level of satiation,
thereby actually reducing the experienced utility levels in
subsequent periods.
Experienced utility as a function of I is shown in Fig-

ure 4. If !< 1, the same increasing pattern that one would
obtain from the DU model appears.
In the logarithmic case, != 1 and the experienced utility

u�yt +xt�−u�yt� is constant and, hence, independent of I .
This counterintuitive result is clear if we recall from (15),
(18), and (20) that xt and yt are proportional to I , so that

u�yt + xt�− u�yt�= ln�$tI + %tI�− ln�$tI�

= ln
(
$t + %t

$t

)
� (22)

With the logarithmic utility function, as income in-
creases, both consumption levels and satiation levels in-
crease. The net result is that the experienced utility in any
given period t remains the same, so more money and higher
consumption do not buy greater happiness. Figure 4 depicts
this result.
Finally, when ! > 1, then the experienced utility (21)

actually decreases with income level I . Figure 4 depicts
this case as well. It has been observed that lottery win-
ners report no more happiness than nonwinners and, in one
experiment, reported significantly less pleasure from mun-
dane daily activities (Brickman et al. 1978).
A summary of the above results is that for a wide variety

of utility functions, the SA model will indeed predict that
experienced utility will increase with an increase in income
or total consumption level. For some utility functions, the
experienced utility remains the same (logarithmic) or even
decreases (power form with !> 1) as income increases. In
these cases, if the initial satiation level is low, then when
income goes up, an increase in experienced utility occurs
only in the initial period. In subsequent periods, or in steady
state, the satiation levels go up, and therefore there is no
increase in the experienced utility. More money therefore
does not necessarily buy more happiness.
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Figure 4. Normalizing so that the utility associated
with I = 100 is one, we observe that total
utility (bottom) always increases with I , but
the experienced utility (top) increases with I
if ! < 1, is constant if != 1, and decreases
if !> 1.
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4. Optimal Duration of Constant
Consumption

Consider the stationary consumption of a total of I units
over T periods. In this case, xt = x= I/T , t = 0� � � � � T −1.
Because consumption x is constant from period to period,
the stationary satiation level is obtained by solving (4),
which yields

y = ��y+ x�� (23)

Thus, y = �x/�1−��. For simplicity, we assume that y0 =
�x/�1− �� as well, so that the stationary satiation level y
will hold for all periods. The experienced utility, u�y+ x�−
u�y�, is then given by u�x/�1−���− u��x/�1−���. The

total utility in (3) is written as

T−1∑
t=0

�t

[
u

(
I

T �1−��

)
− u

(
I

T

�

1−�

)]
� (24)

For a given utility function, one could ask: What is the
optimal duration T ∗ over which to spread out the consump-
tion of I units? Here, it is worth underlining the originality
of this question. To the best of our knowledge, we do not
know of any other paper that attempts to find such a T ∗

(probably because traditional models cannot make sense of
this question, however intuitive). Usually, the question one
considers in time preference is: How do you spread con-
sumption over a given period? (e.g., Wathieu 1997).
The choice of the optimal T ∗ depends on two considera-

tions. The discounting penalty is higher for a larger T ; that
is, the present value of utility for a distant consumption is
low. The tendency, then, is to consume I in a smaller num-
ber of periods. On the other hand, the concavity of u and
the presence of satiation display a preference for spreading
out consumption over a longer duration. Thus, the optimal
T ∗ is an interior value.
For an exponential utility function with a risk toler-

ance, &, equal to 10 and � equal to 0�9, Figure 5 shows
the relationship between the number of periods T during
which consumption I is spread out and the total utility. The
optimal T ∗ for the DU model �� = 0� is 10 in this exam-
ple. Thus, a consumption of I/10 in each of the 10 periods
maximizes total utility. In the SA model with � > 0, the
optimal T ∗ is greater than 10. Further, a larger value of
the satiation retention factor � leads to an increase in opti-
mal T ∗. Thus, satiation strengthens the desire to spread out
consumption over a longer number of periods. We also note
that for a given T upon which consumption is spread out,
the total utility is lower in the SA model than it is in the
DU model.
For a power utility function, the optimal number of peri-

ods to spread out consumption depends only on the risk-
aversion parameter !, and not on the satiation retention

Figure 5. Per-period utility is exponential, with u�x�=
1− e−x/10 and �= 0�9.
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factor �. This is a unique characteristic of the power family
for which the marginal effect of T on both the discount-
ing penalty and the desire to spread out consumption are
proportional to a function of �. Hence, � disappears from
the first-order condition and the optimal T does not depend
on �.

5. Indirect Utility for Income
It is common in decision analysis and economic appli-
cations to consider a utility function that is defined over
income. Such a utility function is derived from an opti-
mal consumption plan that an income can afford. Thus, the
indirect utility of an income I is derived by solving

U�I�=max
T−1∑
t=0

�tu�xt�

s.t.
T−1∑
t=0

xt = I �

The indirect utility U�I� will depend on the form of the
per-period utility, u�x�. In the DU context, assuming an
exponential utility function for the per-period utility, Smith
(1998) derives the indirect utility of income and shows that
the relationship between the risk tolerance of the per-period
utility, &c, and the derived risk tolerance of the indirect
utility for income, &I , may depend on the time resolution
of uncertainty. Assuming a zero risk-free rate for lending
and borrowing, Smith (1998) shows that if all uncertainties
resolve at the beginning, then &I = T&c. This is consistent
with the intuition that the risk tolerance for income, given
a long planning horizon, should be much larger than the
per-period risk tolerance for consumption. However, if the
uncertainty about income level resolves just before the last
period of consumption rather than in the initial period, then
&I = &c. The intuition for this striking reduction in risk
tolerance comes from the highly inconvenient information
timing. Because the total budget becomes known only in
the last period, additional income may only be spent in this
last period.
Although our analysis is motivated by Smith (1998), we

assume no uncertainty; instead, we investigate the impact
that satiation has on the indirect utility of income. In the
SA model, the indirect utility of income, U�I�, is derived
by solving

U�I�=max
T−1∑
t=0

�t�u�yt + xt�− u�yt�


s.t. yt+1 = ��yt + xt�� t = 0� � � � � T − 1� (25)

T−1∑
t=0

xt = I �

Satiation lowers the total utility and, therefore, the indi-
rect utility for income decreases as � increases. Assuming

Figure 6. Indirect utility for income.
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an exponential utility function, Figure 6 shows the indi-
rect utility of income for � = 0 (the DU model), � = 0�05,
and � = 0�1. The discount factor, �, is assumed to be one.
Indirect utility decreases as the satiation retention factor
increases. This is because at higher levels of satiation, expe-
rienced utility [u�y + x�− u�y�] is lower. Interestingly, in
the exponential case, the curvature of U�I�, measured by
−U ′′�I�/U ′�I�, is bounded by 1/T&c and increases with I ,
approaching 1/&c as I increases.
If the per-period utility is assumed to be of the power

form, then the total utility in the SA model is proportional
to I 1−!/�1− !� (see §3.2). In this case, the coefficient of
proportional risk aversion ! of the indirect utility of money
is precisely the same as the coefficient of proportional risk
aversion of the per-period utility of consumption.
For any utility function, (25) can be solved to derive the

indirect utility for income, U�I�. As the satiation reten-
tion factor increases, U�I� decreases. The implied −U ′′/U ′

could, however, be more complex for a general utility func-
tion. For the exponential case, −U ′′/U ′ increases to 1/&c

as income increases. For the power case, −U ′′/U ′ is !/I ,
which decreases as income increases.

6. Two Consumption Goods
We now consider the allocation of a budget among two
or more consumption goods. By means of an example, we
show that the SA model contradicts the intuitive notion that
a higher marginal utility induces more consumption. Con-
sider two consumption goods having the same price that
is constant over time. We assume the following per-period
utility:

u�x1� x2�= �x1�0�4+ 0�5�x2�0�4� (26)

where x1 and x2 are quantities of the two consumption
goods. At x1= x2= I/2, an increment of consumption in
Good 1 yields twice as much marginal utility as an equal
increase of Good 2. Thus, in an optimal allocation, one
expects a higher quantity of Good 1. Assume a discount
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factor �= 1, number of periods T = 20, and that the budget
constraint requires that the total consumption not exceed
100 units. Because there is no discounting, the optimal
consumption is constant in the DU model and is constant
except for the first and last period in the SA model (see
Figure 3).
In the DU model, the optimal consumption per period

for the two goods is equal to x1∗ = 3�8 and x2∗ = 1�2, the
quantity where the marginal utility of Good 1 equals the
marginal utility of Good 2.
In the SA model, the average optimal consumption of

Goods 1 and 2 depends on the satiation retention factors of
the two goods, �1 and �2. Let us set �2 = 0. Clearly, when
�1 = 0, we get exactly the same result as in the DU model.
As we increase �1, we predict that the average consumption
of Good 1 will decrease and that of Good 2 will increase.
Assuming y10� y20 = 0, the total utility is given by
T−1∑
t=0

�t�u�y1t + x1t� y2t + x2t�− u�y1t� y2t�
�

y1t =
t∑

s=0
�

�t−s�
1 x1t� and y2t =

t∑
s=0

�
�t−s�
2 x2t �

The relationship between the satiation retention factor �1
for Good 1 and the average optimal consumption is shown
in Figure 7. Note that the total consumption per period of
the two goods is always equal to five �I = 100; T = 20�.
Figure 7 shows that the average consumption of Good 1
equals that of Good 2 at �1 = 0�25. For �1 > 0�25, the
average consumption of Good 2 exceeds that of Good 1. In
summary, the optimal allocation of a budget among two or
more goods will depend not only on their marginal utilities
(DU model), but also on their relative satiation retention
factors (SA model). A higher satiation (lower utility decay)
would lead to lesser consumption.

Figure 7. Average optimal consumption of Goods 1
and 2 over 20 periods.
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7. Comparison with the Habituation
Model

The HA model proposed by Wathieu (1997), although quite
different in structure than our model, has remarkably sim-
ilar predictions to ours under some conditions. In the HA
model, the experienced utility is given by u�x− r�, where
r is the reference level that tracks past consumption using
an exponential smoothing equation. Formally,

HA�x0� � � � � xT−1�=
T−1∑
t=0

�tu�xt − rt�� (27)

rt+1 = "xt + �1−"�rt�

t = 0� � � � � T − 1� with r0 given. (28)

In both the SA model and the HA model, where present
consumption has a lasting effect, the final period T plays
a special role. One natural interpretation of this last period
is the end of life. A second possibility is the case where
the consumption of a certain good is constrained to some
time window—for example, recreational activities under-
taken during vacation—in which case the model would
account for the consumption during this time period.
The SA model and the HA model both relax the non-

complementarity assumption of the DU model. Thus, in
both models, the utility derived from current consump-
tion depends on past consumption. While the HA model
nicely accounts for the reported preference for increasing
sequences, the SA model expands the DU model to account
for utility decay. Accounting for utility decay is normative
because satisfaction from consumption lingers over time.
Consumption independence assumed in the DU model is
akin to preference independence in multiattribute utility
models and does not enjoy the same normative status as
the independence axiom in the expected utility theory. The
SA model is, therefore, consistent with rational preferences
and reduces to the DU model for sufficiently large time
intervals (utility decays to neutral zero level).
Both the satiation level y in the SA model and the ref-

erence point r in the HA model are discounted sums of
past consumption. While higher values of y and r reduce
the utility of current consumption, the roles of y and r in
influencing experienced utility are, however, quite different.
• In the SA model, if x= y, then the experienced utility

u�y + x�− u�y�= u�2x�− u�x� > 0. In contrast, if x = r
in the HA model, then u�x− r�= 0. Therefore, the experi-
enced utility in the SA model depends on the curvature of
the utility function in the positive range, whereas in the HA
model it depends on the shape of the utility function around
zero, with both the positive and negative ranges playing a
role.
• Normalizing u�0� = 0, and assuming y� r > 0, the

experienced utility associated with no consumption is zero
in the SA model, whereas it is negative in the HA model.
More striking, and assuming concave utility, the HA model
predicts that the incremental utility of x, u�x− r�−u�−r�,
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decreases as we wait to consume x because r decays by
a factor �1 − "�. The reason for this is that the craving
for x diminishes with time. In contrast, the SA model pre-
dicts that the incremental utility of x, �u�y + x�− u�y�
,
increases as we wait to consume x because y decays by
a factor �. Thus, the SA model predicts quite generally a
preference for delaying consumption to allow the decay of
the recent past, thus increasing utility. The HA model can
also account for this preference, but requires u to be S-
shaped and to have a sufficiently high value of r (Wathieu
2004).
• In the HA model, the shape of the consumption path

can be decreasing, U -shaped, or increasing, depending on
the discount factor. The SA model predicts a strong start
and strong end (U -shaped) to the consumption sequence.
Hence, the descriptive finding that people prefer U -shaped
sequences is consistent with both models.
• Both the SA model and the HA model particularize to

the DU model if � = 0 or "= 0, respectively. The implica-
tions of the two models for extremes of the other parameter
are very different. If � = 1, then the SA model leads to
an accumulation model where the total utility is simply the
utility of total consumption. If "= 1, then rt = xt−1 and, in
the case of constant consumption, the utility in each period,
except the first, would be zero.
• The HA model was not designed to account for time

intervals that are arbitrarily small and does not possess
the convergence property discussed in Example 1. In fact,
as � decreases, the " in the HA model goes to zero,
and the HA model resembles the DU model. Specifically,
consider two consumption streams A = �1�1� � � � �1� and
B = �2�0�2� � � � �0�2�0�, both lasting for T = 20 periods.
We will vary the time separation, �, between periods. For
�= 1, we set � = 0�95, 1− " = 0�99, and � = 0�01. As
shown in Figure 8 at �= 1, the three models do not dif-
fer much in evaluating the same consumption sequence. As
� decreases from 1.0 to 0.5, the same consumption pat-
tern is accelerated and takes place in half the time, the
penalty for discounting decreases, and the utility evalua-
tion increases for the three models. As � decreases fur-
ther and approaches zero, DU�A� converges to 20u�1� and
DU�B� converges to 10u�2�. Because u is strictly concave,
20u�1� > 10u�2�. As shown in Figure 8, the HA evalua-
tion of A and B also converges to separate distinct values.
The SA model has the desirable property that as � → 0,
the evaluation of both consumption streams converges to
u�20�. Essentially, when � → 0, 20 units are consumed
in a short time interval in both streams A and B, thereby
producing a total utility of u�20� for both.
In summary, the SA and the HA models are two different

departures of the DU model. While the latter captures the
reduction in experienced utility due to the effect of a chang-
ing reference point, the former captures the reduction in
experienced utility due to satiation. This shows that habit-
uation is different from satiation, and that it is possible to
construct hybrid models that combine both aspects. In fact,

Figure 8. In all cases, �=0�95 and u�x�=1− exp�−x�.
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using consumption data, Heaton (1995) finds “evidence for
a preference structure in which consumption at nearby dates
is substitutable and where habit over consumption develops
slowly” (p. 681).

8. Conclusions
We have presented a model of time preference that incor-
porates satiation into discounted utility. In the SA model,
utility is affected by a retention factor, �. If � = 0, then the
utility decays back to the neutral level of zero (i.e., satia-
tion level is equal to 0) and the utility of consumption is
evaluated afresh in each period. In this case, the SA model
particularizes to the DU model. For � > 0, there is some
satiation level y that decays at rate 1−�, and experienced
utility of consumption x is an increment over the utility at
the satiation level (u�y + x�− u�y�). In the other extreme
case, when � = 1, there is no decay in the utility. Total
utility in this case is simply the utility of total consump-
tion I over T periods, if there is no discounting (� = 1).
Such an extreme case occurs, for example, when the time
interval between periods is small, and thus the entire con-
sumption takes place in a short time. In the DU model, the
optimal consumption when �= 1 will provide a total util-
ity of �I/T �u�I/T �, which may be substantially larger than
u�I� because of the concavity of the utility function.
The SA model is an extension of the DU model. Both

models compute the total utility of a consumption stream as
the sum of discounted utilities. Here is a list of the distinct
features and predictions of the SA model:
• The utility derived from consumption in a period

(experienced utility) is an increment over the satiation level
achieved due to past consumption. Thus, if the satiation
level is high, then the utility of additional consumption will
be evaluated at a lower marginal rate (assuming concave
utility).
• The optimal consumption path for the SA model is

U -shaped, with high initial consumption, followed by a
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lower and smoother consumption path and a higher final
consumption. In contrast, the DU model predicts decreas-
ing consumption paths, and the HA model may exhibit
decreasing, U -shaped, or increasing consumption paths.
• Satiation influences the allocation of a budget among

two or more goods. Basically, a good with higher satiation
will be consumed in lower quantities, ceteris paribus.
• In the SA model, a greater consumption earlier stim-

ulates lesser consumption later. Suppose that one prefers
meat over chicken and chicken over fish. In a weekly menu
plan, it may be optimal to relish meat three times inter-
spersed with fish and chicken meals on two days each
(Ratner et al. 1999). The SA model will permit such a pref-
erence, but a naïve implementation of the DU or the HA
model will prescribe meat every day of the week.
• A somewhat surprising implication of the SA model

is that with some utility functions, the experienced utility
in intermediate periods (all periods except for the first and
the last) does not increase as income or total consumption
increases. With an increase in consumption, satiation also
increases. Because the experienced utility is an increment
over the utility at the satiation level, there is no net increase
in the experienced utility. The decision maker will still pre-
fer more income to less as the total utility of the former
is higher, but in intermediate periods will not experience
a greater experienced utility. This issue requires further
empirical and behavioral exploration.
The principle of diminishing marginal utility has been a

cornerstone of economic theory and psychology. Our sati-
ation model provides a straightforward approach to incor-
porating this principle into a model of time preference. As
one moves up the utility curve (due to past consumption),
the utility of consumption is evaluated at a lower marginal
rate. The total utility of a consumption stream is the sum
of discounted incremental utilities.
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