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ABSTRACT

Practical implementations of asset pricing models to estimate discount rates for
real investment projects typically assume that risk premia are constant over time, and
treat the time variation in riskless interest rates in an ad hoc fashion. This paper
considers the implications of recent evidence of time-varying risk premia, and shows
how a model of time variation in risk premia and riskless interest rates may be used
to derive discount rates for multi-pericd cash flows within the CAPM framework. The
assumption that cash flow claims have constant betas is shown to imply that cash flows
are non-linear functions of the value of the market portfolio, and the valuation of cash
flows that are linear functions of the market portfolio is analyzed.
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THE TERM STRUCTURE OF DISCOUNT RATES

The Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory
(APT) provide the theoretical basis for the estimation of discount rates for real
investment projects. Three practical problems arise in applying the results of these
models either to estimate discount ratcs for real projects or for cstimating the cost of
capital for use in wility rate regulation. The first is the determination of the
appropriate  beta coefficient(s); the second is the determination of the appropriate risk
free interest rate, and third is an appropriate estimate of the risk premium(s). In this

paper our primary focus is on the last two problems,

The CAPM and the APT are single period models of market equilibrivm, and
the difficulties arise in applying them in a reasonable fashion in a multi-period
context'. Consider first the issue of what proxy to use for the nskless interest rate.
Both the CAPM and the APT imply that the riskless rate is the one peripd, or
instantaneously, riskless rate which, in applied work, is rypically proxied by the rate on
a one month Treasury Bill. However, it is unlikely that the riskless rate will remain
constant over the life of an investment project, and expectations based theories of the
term structurs sugeest that a steeply sloping yield curve implies that the Bill rate is
expecied 1o change. One ad hoc solution that is sometimes employed is to use the
forward rates over the life of the project to construct a series of implied riskless rates

for each futwre period. An obvious difficulty with this solution is that forward rates

! Constantinides (1982) gives sufficient conditions for the CAPM to hold in an
intertemporal context with stochastic interest rates.

Connor and Korajevk (198%) develop an intertempotal version of the APT.
However, it does not allow for stochastic interest rates. For an early application of asset
pricing theory to intertemporal asset valuation see Brennan (1972). Cox Ingersoll and
Boss (1984) develop a complete intzriemporal asset pricing theory.



embody liquidity premia as well as expected Future spot rates. Perhaps more
important in applying the CAPM is the relation between the interest rate and the
market risk premium, It is conventional to estimate the market risk premium as the
long run average excess of the market return over the Treasury Bill return, which
typically vields a figure of about 8-9%. However, there is now extensive evidence that
the market risk premium is not independemt of the level of the short term imterest
ratc’, and that when short term rates are high the market risk premium is low. So
pronounced in fact is this inverse relation between interest rates and the market risk
premium that an increase in interest rates not only reduces the market risk premium

but also reduces the expected remurn on common stocks gross of the riskless rate.

A related debate concerning the market risk premium is the question of
whether the arithmetic mean or the geometric mean of past (excess) markel returns
should be used to estimate the market risk premium. On the one hand, most
textbooks suggest use of the arithmetic mean’ while Blume (1974) and Cooper(1993)
argue that it is appropriate to use a weighted average of the arithmetic and geometric
means (o lake account of error in estimation of the means. However, both of these
procedures implicitly rely on the assumption that (excess) returns on the market
portfolio are serially independent. While this random walk assumption was once

accepted as a reasonable approximation, there is now extensive evidence of

* See Lintner (1975), Fama and Schwert (1977).

" Brealey and Myers (1991) offer a justification of this procedure in the Instructor’s
Manual, However, it assumes that the mean of the market return is a known parameter,
and that realized returns are serially independent. Levy and Sarnat (1986) and Copeland,
kolier and Mullina (1990) advocate the use of the geometric mean.
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‘temporary components’  which induce negative autocorrelation® in stock returns: this
autocorrelation must be taken into account if the long run expected remrn on the
market is (o be correctly assessed.®

In this paper we present an empirically based, but internally consistent,
dynamic model of the behavior of interest rates and the market risk premium that
allows for determination of a term structure of discount rates using the capital asset
pricing model. The approach is applicable with obvious changes to multi-period
applications of the APT. In Section T the logic of multi-period discounting in a capital
budgeting context for a cash flow with a constant beta coefficient is developed.
Section II presents a model of expected returns on bonds and stocks which takes
account of recent empirical findings concerning the predictability of bond and stock
returns, Section III demonstrates how to compute the discount function for different
values of the beta coefficient, and shows how they vary with the level of interest rates
and the dividend yield on the market portfolio. Section IV considers the implications
of the constant beta coefficient assumption and suggests that a more reasonable
assumption about the stochastic characteristics of cash flows may sometimes involve a

stochastically varving beta cocfficient.

* See Lo and Mackinlay (1988), Fama and French (1988).

* The expected value of a product of random variables is equal to the product of the
expected values only if they are uncorrelated.
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THE CONSTANT BETA CASE

For simplicity we shall assume that the CAPM is being used 10 determine the
discount rate, and we shall assume in addition that the betz of the cash flow claim is
a known constant, B. Invoking the principle of value-additivity, it will be sufficient for
us to consider the valuation of a single cash flow payable at time T. Let V(X)) denote
the value at time t of the claim which pays the random amount X af time T. Under
the foregoing assumptions, the value of the claim is determined by the boundary

condition at maturity:

Vo(Ep) = X (1)
and the ex-post version of the CAPM equation which relates the realized rate of
return on the cash flow claim to the realirzed market return:

Vi (%)
S L F R U E) F BRy,
i+l (3] 11
Vi(X) (2)

“1+Rb, +

where r, is the riskless rate for period t, By, is the return on the market portfolio, and
7, is a random error term with mean zero, which is uncorrelated with the return on
the market portfolio. RF, is the realized return in period t on a portfolio, the ‘beta
portfolio’, which consists of a fractional investment B in the market portfolio and the
balance in the riskless security. Define M{P)} as the value at time t of $1 invested in
the beta portfolio at time 0. Then, terating equation (2), and using the boundary

condition {13, we can relate X, the cash flow realizition at time T, to the initial value
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of the cash flow claim, the time series of remurns on the beta portfolio, and the error

term, as follows:

=T =T T
Xp = Ve =V B[ +R%]+ V¥ om, T [1+R% «n,]
t- 1=1 s=lzes
{3)
=T T
= VoM(B) + V3 n, 1 - RP, +7,]
£=1 8=lgey

Then, taking expectations in (3}, and recognizing that Ejn,] = 0, the value of the cash
flow at t = 0 may be expressed as:

_ ERIX]
¢ EIM(P)]

4
Equation (4} has the intuitive interpretation that the ratio of the expected payoff to
the value of the claim is equal to the expected payoff of $1 invested at time 0 in the
corresponding beta portfolio. Thus, under the CAPM in the constant beta case, the
value of a claim to a cash flow due in T periods is obtained by discounting the

expected cash flow by the T™ root of the expected compound return on the

U
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appropriate beta portfolio, k(p):

kp(B)

i =T
(1 + [R“J}} -1
5|11 .

Note that this procedure takes account of any serial correlation in market
returns. If the expected return on the market is a constant, E[R,,], the returns are
serially uncorrelated, and the risk free rate is a constant, r, then (5) reduces to the

tamiliar expression:
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V. .(Xy) = ——E.(X;)
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the dihorant rate k is given by

k=r(l - B) + BE[Ry]

Howewver, if these conditions are not met, then the process which generates
market returns must be modelled explicitly in order to estimate E[MJ{P)] from which
the discount rate 15 computed wsing equation (3). In the next section we present a

model of expected returns on the market portfolio which will allow us to estimate

Eo[M-{P)].
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A MODEL OF EXPECTED RETURNS

As an example of a model of expected returns” we assume that the expected
rate of return on the market portfolio is a linear function of the instantaneous riskiess
interest rate, r, the dividend vield on the market portfolio, 5, and the long rerm
interest rate, 1, which is taken as the yield on a putative consol bond. The short term
interest rate, r, is selected as a predictor or state variable because there is extensive
evidence that the level of the short rate predicts the expected return on common
stock’. The second most powerful predictor of stock returns is the dividend yield on
common stocks®, &, and therefore this is included as the second state variable. Finally,
we include the vield on a consol bond, 1, as the third state variable, because of prior
evidence that expected cnaﬁgﬂ in the short rate are related to the current value of
the long rate’. It 15 possible (0 extend the model to include additional state variables
such a the junk bond yicld spread™. However, attention is restricted to three
variables in the interest of parsimomny.

Denoting the instantaneous rate of remrn on the market portiolio by dM/M,

% Brenpan, Schwartr and Lagnado(1993) use this model.

T An carly study drawing attcntion (o the importance of this variable is Lintner
(1975). A more recent study is Keim and Stambaugh (1986). Attempts to account for this
empirical regularity include Geske and Roll (1983) and Fama (1981).

¥ See for example Fama and French (1988).

* See Brennan and Schwartz (1982); this is a natural implication of expectations based
theories of the term strucmure.,

0 See Keim and Stambauch (1986) for evidence that the junk = = sield spread
predicts stock returns.



ihe joint stochastic process for the state variables and the markes return is assumed to

be of the form:
dhd
H = i.l.Mdl' + I'JMdZM {6}
dr = urdt + l:l:dZI {7
dl =pdt + odz (8)
d = p,dt + o,dz, (9

where dzy,, dz., dz, and dz; are increments (0 possibly correlated Brownian motions, In
order to estimate the joint stochastic process (0)-(9) for the state variables and the
stock return, it is necessary 1o specify the functional forms of the drifi and diffusion
_coefficients. The basic assumption we make is that the expected return on the market
portfolio and the consol bond, and the drifts of the dividend yield and short rate, are
linear functions of the three state variables, r, 1, and &, while the volatility of each
state variable is assumed to be proportiomal to its current level, and the volatility of
the stock rate of rewrn is taken as constant. The assumption that the expected return
on the consol bond is a linear function of the state variables implies that the drifi of
the long rate 15 a non-linear function of the stale vanables, being equal to the product

of l and a linear function of the state variables''. This specification implies that the

' This can be se¢n by using Ito's Lemma (o compute the expected returm on a consol
bond, noting that its price is 17
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joint stochastic process may be written as':

dM

i (ay, + 8,8 +a,r+a, dt + o dr, (1)
dr = (a, +a,5 +a,r+a/l)dt+rodz (11)
dl = 1a;, + a8 + 3,0 + a,l)dt + lodz (12}

db = (a;, + 8,8 + a,r + g, 1)dt + §o,dz, (13)

The dividend yield is defined as the sum of the past 12 months’ dividends divided by
the current level of the stock index, M. The specification (13) must therefore be
regarded a8 an approximation since the stochastic process for lagged dividends is not
modelled explicitly. Given the relative stability of the lagped dividend process, the
major short run influence on the dividend yield will be the price change in the stock
index, so that the stochastic increment to the dividend yield will have a strong negative
correlation with the return on the stock, since most of the stock return is accounted
for by price changes.

The joine stochastic process was estimated on monthly data for the
period January 1972 to December 1992 using a discrete approximation 1o the

continuous process. The stock return was faken as the rate of return on the CRSP

" Purists will note that this model specification may admit negative interest rates.
This is easily avoided in practice by adding terms to the drifts of the long and short rates
of the form h/l and h/r where h is an arbitrarily small positive number. As Hogan (1993)
points out, there is also a possibility of arbitrage opportunities arising if the long rate gets
too far above the short rate because a sufficiently high yield on the long bond (relative to
the short rate) will allow an investor to buy the long bond and repay his borrowings at the
short rate with probability one in a finite time. This can be ruled out by introducing a
term in the short rate drift that will accelerate the short rate towards the long rate if the
gap berween them is large.
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Value Weighted Index. The short rate is the annualized yield on a 1 month Treasury
Bill which was taken from the CRSP Government Bond Files. The long rate was
taken as the vield to maturity on the longest mamrity taxable non-callable bond US
Government Bond (excluding flower bonds) for which data were available on the
CRSP Government Bond File. The dividend yield was defined as the sum of the past
12 months® dividends on the CRSP Value Weighted Marker Index divided by the
current value of the index.

The system of eguations (10)-(13) was estimated by non-linear seemingly
unrelated regression using TSP. Table | reports the regression estimates and Table 2
contains the estimated correlations of the innovations. As previous investigators have
found, the expected return on common stocks is negatively related to the current level
of the short rate and positively related (o the level of the dividend yield, but it is not
significantly related to the long rate. In interpreting the coefficients it should be
recognized that vields are measured on an annual basis whereas the return on the
market is a monthly return; thus, cereris paribus, a 1% increase in the short rate is
associated with a 0.513% reduction in the return on the market per month. Clearly,
the relation between the level of the short rate and the dividend yield is very
impostant in determining the expected return on the market. As Brenman and
Schwartz (1982) have found, the change in the short rate is negatively related to its
current level and positively related to the level of the long rate - thus the short rate
tends to adjust towards the long rate. The change in the long rate itself is the least
predictable of our series, being negatively related to its current level and positively
related to the short rate ar marginal levels of significance. The change in the dividend

vield is negatively reluted to its current level. so that it shows mean teversion, In
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addition, the change in the dividend vield is positively related to the short rate: this
reflects the fact that high short rates are associated with low stock returns. As
anticipated, the inmovation in the dividend yield is very highly negatively correlated
with the innovation in stock rewrns; it is also negatively correlated with the innovation
in the long rate, which is negatively correlated with the innovation in stock returns,
The remaining innovatiens have wvery low correlations. This model is consistent with
the mean reversion in stock prices that has been reported by several authors'’: thus

a decline in stock prices tends to be associated with an increase in the dividend yield
on the market; this, in mrn is associated with higher expected returns on stocks in the

fumre.

* See Fama and French (1988).
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COMPUTING THE DISCOUNT RATE FUNCTION

By calculating k. {1}, the discount rate applicable to a cash flow with unit beta
due in T periods, for a range of values of T, we are able to compute a whole discount
rate function. This is analogous to the term structure of interest rates except that it
applies to the expected returns on claims to risky cash flows which have beta equal to
unity. We refer to this as the term structure of discount rates. In order to calculate
k(1) we must evaluate Ey[M;] using thc model of expected returns that we presented
in the previous section. However, since the stochastic process for the state variables
{10y - (13) is non-linear, E,(M;) must be estimated by Monte Carle simulation. Given
the initial values of the state variables r, I, &, future values of the state variables are
simulated monthly for T years and M, the value at time T of §1 invested in“thg
market portfolio at t = Q, is computed. Averaging these values over a large number of
simulations provides an estimate of EyMp). Then k(1) is calculated from equation
().

Figure 1 shows the term structures of discount rates implied by the model for
various dates between 1972 and 1991. Just like the term structure of interest rates, the
term structure of discount rates shows considerable variability in both level and shape
over time; indeed the structures sometimes exhibit the single humped shapes that are
characteristic of the term structure of default free interest rates. It is imteresting to
note that, with the exception of January 1982, the term structure of discount rates
tends to converge for long maturities in the region of 13.5-15%. In Janvary 1982 the

30 vear discount rate was 17.7% - at this time the yield on long term bonds was
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13.7%; thus the implied long run market risk premiom was of the order of 4%.

Figure 2 differs from Figure 1 in that the short term interest rate prevailing on
the date corresponding to the date of the term structure is subtracted from all
discount rates. The variation in the ‘implied market risk premia’ provides an
indication of the extent to which the cost of capital varies independently of the short
rare. For long maturities this can be acributed in part to variation in the
corresponding  long-term spot interest rates. However, for short matrities most of the
variahion in interest rates is ajready accounted for by subtracting out the current short
rate, The variation in the risk premium for even a one year horizon is striking, ranging
from 0.5% in 1991 to 15.2% in 1977. Even allowing for possible model mis-
specification and estimation error, it seems unlikely that the current practice of adding
a single unconditional mean estimate of the risk premium to the riskless rate can vield
an accurate measure of mvestors’ required mta; of return,

Figures 3,4, and 5 plot the term structures of discount rates for three different
dates and for different values of the beta coefficients, calculated using equation (5)
and the definition of M. {f); as one would expect, the discount rate is increasing in the
beta - at the long end, a unit increase in beta is associated with an increase in the
discount rate of abour 9% for all three dates. However, while the term structures of
estimated discount rates for different betas are roughly parallel on two of the dates, in
January 1972 they show substantial divergence; there is virtually no premium for beta

risk at the short end.
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CONSTANT BETAS AND LINEARLY DEPENDENT CASH FLOWS

Thus far we have adopted without discussion the usual assumption that the
beta of the cash flow claim is an intertemporal constant. It might appear that if a cash
flow claim has a constant beta coefficient and the CAPM holds, then the conditional
expectation of the cash flow will be a linear function of the return on the market, at
least when the riskless rate is constant, However, it is shown in the Appendix that if
the continuous time version of the CAPM holds, the riskless rate is constant, and the
cash flow claim has a constant beta, then, conditional on the value at time T of $1

invested in the market portfolio at t = 0, M1}, the expected cash flow is given by:

Ey[ Xo i Mp(1)] = K[My(1)]? (16)
where k is & constant, Thus the assumption of a constant beta coefficient for the cash
flow claim unplies that, except in the special case § = 1, the cash flow itself is a non-
linear function of the level of the market portfolio, being either a convex (B > 1) or a
concave (B < 1) function of the level of the market portfolio; moreover, the cash flow
(unlike the instantaneous return) cannot be decomposed into a riskless and risky
component - insiead, the whole of the cash flow is implicitly assumed 1o be risky.

An alternative assumption, which under certain circumstances may appear
more reasonable 1o the analyst, is that the cash flow fself, X; is a linear function of

the level of the market portfolio, M{(1)"*, plus noise, £, which is uncorrelated with

'* 1t is straightforward to generalize this analysis to allow the cash flow to depend on
past levels of the market ponfolic or to allow the cash flow 10 depend on the level of the
market index excluding reinvested dividends.
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the return on the market portfolio:

X, =8+ DM (1) + & (7

Figure 6 plots the conditional expectation of the cash flow as a function of the market
level for three different cases: cases a) and by correspond to the constant [
assumption with b equal to 1.5 and 0.5 respectively; case c) corresponds to the
specification (17) with b = 0.8,

In order 10 value & claim to & cash flow that is a linear function of the level of
the market portfolio as in (17), define X'; = X, - a as the risky component of the cash

flow. It follows from (17) that

X'y = bM(1) + € (18)

Then inspection of equations (3) and (4) reveals that V,(X',) is given by:

En-[x--r] _ EQ[XT] - a {19}
E[M:(1)]  Ej[Mg(1)]

Vp(X™y) =

V(a), the present value of a, the riskless component of the cash flow, is simply
obtained by discounting al the T-period riskless interest rate, rp. Therefore the presemt

valug of the total cash flow, X;, may be written as:

ValXp) = V(X 'g) + V(a)

B(X;) 8

E,[M.(1)] (20)
M R
B IM(1)] |57 Ey[M(1)]

Equaton (20) shows that if the cash flow can be writen as a linear function of
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the market level then it can be valued by identifying the component, a, that is riskless
{orthogonal 1o the market rewrn). Then the whole cash flow is first valued as in
Section | when the beta is equal to unity, and then this value is adjusted by the
difference between the present value of a discounted at the riskless return and the
present value discounted at the expected compound return on the market portfolio.
Given the expected value of the cash flow, it is relatvely easy to analyze the
sensitivity of the present value 10 the assumed value of a using equation (20),
Moreover, it is probably easier to estimate a than it is to estimate the assumed
constant beta of a cash flow claim which, as equation (16) shows, corresponds to the
elasticity of the cash flow with respect to the market return when the riskless rate is
constant. For this reason we suggest that the linearly dependent cash flow model {17)
is likely to lead m many cases to more precise estimates of present values than the
traditional constant beta model. Clearly, it would be desirable to have some empirical
evidence bearing on the approriatensss  of the two models, but it is difficult to see

how that could be obtained.
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CONCLUSION

Current implementations of the CAPM to determipe discount rates for capital
budgeting purposes typically rely on the assumption that the market risk premium is
an intertemporal constant which may be estimated from the time series average of
past market returns. This assumption is at odds with recent empirical evidemce of
time-varying (excess) returns on stocks. In this paper we have shown how a model of
time variation in expected returns may be used to estimate a discount rate for a cash
flow claim with a known beta. The technique we propose is theoretically rigorous,
gasy to implement, and also takes accoumt of time variation in riskless interest rares.
Applving the model, we derive term structures of discount rates that depend on the
current levels of the short 4and long term interest rates, and the dividend yield on the
market portfolio.

We also show that the common assumption that a cash flow claim has a
constant beta implies that the cash flow iwself is a non-linear function of the level of
the market portfolio plus noise. A more appropriate assumption in many cases will be
that the cash flow itself is a linear function of the level of the market porifolic. Then
the cash flow should be valued by decomposing it inte its riskless and risky
components. The former is valued by discounting at the appropriate  riskless interest
rate, while the latter is valued as a cash flow claim with a constant beta coefiicient of

unity .



APPENDIX

We wish to show that if the continuous time version of the CAPM holds, the
interest rate is constant, and a cash flow claim has a constant beta, then the cash flow
realization is related to the level of the market portfolio, M{(1), as shown in equation
(16). Under the stated assumptions, V, the value of the claim, follows the stochastic

process:

d?"’ < [(L - Bir + PuyJdt + Poydz, + dn (A1)

where r is the instantaneous riskless rate, w,, and o, are the drift and diffusion
coefficients of the market portfolio value process, and dz, and dn are increments fo
independent Brownian metions, Letting V, dencte the value of the claim at time 1, (A-
1) implies that the terminal value of the claim is related 1o its initial value by the

stochastic integral:

T

< [10 = BIX(S) + Brg(s) — 020%(5) ~ 0% ()]s
o (A-2)

+Bay,(s)dz, (s) + dn(s)

Wi
A

Define m, = [M,(1}]. the compounded value at time t of $1 invested in the market

portfolio at t = 0. Then Ito’s Lemma implies that:

dm? 1
;’“ﬁ- = [Py 5 BB - Dotyldt + Poydzy, (A-3)

so that, recalling In m,* = 0,



T
i = [[Biy(s) = 5 Boy’(s)1ds + Boyyday, AR
L]

Combining (A-2) and (A-4), and recalling the definition of m,,

\F‘_}J

v T
ln[—ﬂ = lnMT[Hf' + f[{l - Bir(s) - %ﬁ(ﬁ - ]]UMI{S} - —;anifs}]dg + dn (s
4]
(A-4)
Imposing the boundary condition (1), this implies that the cash flow realization may

be writien as:

X, = kV, M (1D, (A-5)

where

1
i uql{i'_]ﬂs. - d.1'| {r'l-

oy

and,

Uy = ¢

€1~ or(s) - 2 PR ~1oyl(s))ds
k=e¢

up is 4 random variable with mean zero, and if the interest rate and market volatility
constangveor, at most, deterministic functions of time, then k is a constant. (A-5)

implies that the conditional expectation of the cash flow satisfies (16).
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& [ 1 o

dM/M -0.022 1.707 -0.513 0.017 0.045
(1.63)  (3.95) (3.25) (0.08)

dr 0001 0.0048 0.216 0.181 0.134
034y (0.05) (-5.66) (3.54)

di 0.025 0318 0.247 0308 0.037
(1.82) (0.79) {1.68) (1.55)

d5 0.0009 0.059 0.023 00005  D.048
(1.62) (2.97) (3.27) (0.05)

((-statistics in parentheses)

The Estimated Stochastic Process for the State Variables and the Market Return
January 1972 - December 15991

Table 1
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market r 1

return
market
return 1.0
r -0.037 1.0
1 0,330 0.330
o 0905 (.032 {1.298 1.0

Correlations of State Variable and
Stock Return Innowvations
January 1972-December 1991

Table 2
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THE TERM STRUCTURE OF DISCOUNT RATES
FOR DIFFERENT DATES 1972-1991
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THE TERM STRUCTURE OF IMPLIED MARKET
RISK PREMIA: SELECTED DATES 1972-1991
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TERM STRUCTURES OF DISCOUNT RATES FOR
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EXPECTED CASH FLOW

EXPECTED CASH FLOWS AND MARKET RETURNS

‘!GT—'

9

el et T A
LEVEL OF MARKET PORTFOLIO

Expected Cash Flows conditional on the level of the Market Portfolio

a) Constant Beta : § = 1.3

by Constant Beta: 8 = Q5

cl Linear cash flow : D = 0.8 _
Sigure 8]



