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Retractable and Extendible Bonds:
The Canadian Experience

A. L. ANANTHANARAYANAN and EDUARDQ 8. SCHWARTZ*

1. Introduction

SINCE THE PUBLICATION OF the seminal papers by Black and Scholes [3] and
Merton [16] on the pricing of options and corporate liabilities, their basic
framework has been extended and applied to a variety of problems in finance.'
More recently, the same framework has been used for the valuation of interest
dependent claims, and in particular for the pricing of default free bonds.? These
securities (generally government bonds of various types) are valued by treating
them as “contingent” upon the course of one or more interest rates, along with
suitable assumptions about the term structure of interest rates.

Brennan and Schwartz [4] assume that the value of a default free bond is a
function solely of the instantaneous interest rate and time to maturity, and show
that various types of bonds—savings bonds, retractable and extendible bonds,
and callable bonds—all follow the same partial differential equation as discount
bonds, the distinguishing feature being the associated boundary conditions.

Taking into account the considerable theoretical work that has been done,
there is relatively little published empirical research testing these models. Most
of the empirical work in the area of contingent claims analysis has been on the
stock options market,® with the exception of Ingersoll [12] on the pricing of dual
fund shares and Brennan and Schwartz [6] on the valuation of Canadian Federal
Government coupon bonds.

In this paper contingent claims analysis is applied to the valuation of retractable
and extendible bonds and the resultant model is then applied to price Government
of Canada bonds.

An extendible bond is a medium term debt obligation that gives the holder the
option of extending the term of the instrument, on or before a fixed date at a
predetermined coupon rate. For example, the 5% percent Government of Canada
extendible bond was issued on October 1, 1959, [t was exchangeable on or before
June 1, 1962 into 5% percent bonds maturing October 1, 1975. Thus the three-

* Univeristy of British Columbia. This research was partially supported by a Dean Witter
Foundation grant through the Institute of Business and Economic Research, University of California,
Berkeley; and a Leslie G. J. Wong Summer HResearch Grant through the University of British
Columbia. The paper was written while E. Schwartz was a visiting assistant professor at the University
of California, Berkeley. The authors gratefully acknowledge the helpful comments of Michael J.
Brennan and Richard Brealey. The authors retain responsibility for remaining errars.

' See Smith (20} for an excellent survey of the work in this area up to 1976.

2See, for example, Cox, Ingersoll and Ross {(8), Richard (19), Vasicek (21), and Brennan and
Schwartz (6).

? See, for example, Black and Scholes (2}, Brennan and Schwartz (5), and Galai (11).
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year initial bond was extendible into a 16 year hond, at the holder's option. A
retractable, on the other hand, gives the holder the option of electing an earlier
maturity. From the viewpoint of both practical investment and valuation-theory,
the two instruments are similar.

An extendible bond can be viewed as the shorter-term bond plus a call option
to buy the longer term bond at the face value of the bond up to the extension
date; and a retractible bond can be viewed as a long-term bond plus a put option
to sell the bond at face value on the retraction date.

Extendible and retractable bonds were first issued in Canada in 1959 by the
Federal Government, and while there were additional issues in the mid-sixties,
these instruments have been used more widely in the high interst rate period
that has prevailed since 1963/70. As of March 31, 1977, the total amount of
federal government extendibles and retractables outstanding amounted to $6.25
billion dollars. In addition to the federal government, provincial governments and
private corporations in Canada have also issued these types of bonds,' with
amounts outstanding of $2.5 billion and $2.22 billion, respectively, as of March
31, 1977. To avoid dealing with the problem of default risk, this paper will
concentrate on federal government bonds,

II. The Model

The hasic feature of the pricing model of default free bonds is the stochastic
nature of the instantaneously risk-free rate of interest. In this study it is assumed
that this interest rate follows a diffusion process that can be described by the
stochastic differential equation

dr = 8(r) dt + y(r) dz (1)

where 8(r) and (y(r))* represent the instantaneous drift and variance respectively
of the process and dz is a Gauss-Wiener process with E{d2] = 0, and E[dz*] =dt.
Additional restrictions will be imposed on B(r) and y(r} in the following sections
to give empirical content to the model; for the present there is nothing to be
gained by restricting the generality of process (1).

Assuming that the value of any default-free bond is only a function of r and
time to maturity, 7; i.e., B{r, 7),° then using lto’s Lemma (MacKean [14}}, the
instantaneous price change on the bond is given by

%=,u.5 dt + ap dz (2)

where
pus = (8B, — B: + % ¥*Bn)/B
agg = YB[/ B
* The referee has pointed out that the Belgian government has also issued retractable bonds.
® See Vasicek (21), Merton (18}, and Brennan and Schwartz {4) for a more detailed discuasion of

this point and the hedging arguments that follow, and Brennan and Schwartz (6) for a situation where
two stochastic interest rates are considered.
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and subscripts denote partial derivatives of the bond price with respect to its first
(r) and second (1) arguments. The arguments of the functions have been omitted
for simplicity.

Given the above assumptions, the instantaneous returns on any two defauit
free bonds are perfectly correlated (i.e., they have the same stochastic proceas
dz), It is then possible to use the familiar hedging arguments from option pricing
theory® to form a portfolio of two bonds (with different maturities and/or different
types of bondzg} in proportions such that the instantaneous return on this hedge
portfolio be non-stochastic. To avoid arbitrage profits, the instantaneous return
on the hedge portfolic must equal the instantaneously risk-free rate of interest.
These arguments lead to the expression

M_/_EL__!‘ = (1) (3)
()]
where C is the continuous coupon rate paid to the holder of the bond.” (us +
C/B) represents the total instantaneous expected return on the bond, including
price appreciation (is) and coupon vield (C/B).

Expression (3) implies that the total instantaneous return on the bond in excess
of the risk-free rate (which may reasonably be called a “risk premium’’) per unit
of “risk" (measured by ¢s), is independent of the time to maturity of the bond
and applies to all defaylt free bonds. Then &(r) is a function that depends on the
preferences of the market participants and is a kind of “price of instantaneous
standard deviation risk.” Further assumptions with respect to the functional form
of ¢{r) will be required subsequently for the empirical application of the model.
Note that ¢(r) has been written as a function sclely of » and not also of £ i.e., it
is assumed to be stationary through time. This comes about from (1), where 8(r)
and y(r) have been assumed stationary.

Substituting ugy and as from (2) into (3) yields the partial differential equation
for the bond price

by Bu+{(8—yp)Bi—rB—B,+C=0 (4)

In equilibrium, all default free honds follow the same valuation equation. What
distinguishes among them, are the boundary conditions that each has to satisfy.

The terminal value of the bond at maturity determines the first boundary
condition

B{r,0)=F (5)

where F is the face value of the bond. This boundary condition is relevant for all
default free bonds, given that the face value is guaranteed at maturity.

In the case of default free retractable/extendible bonds, the extension/retrac-
tion option imposes an additional boundary condition:

B(r, 1{) = max(B(r, 7.), F] (6)

% Assuming that the relevant assumptions of the option pricing model hold. For a discussion of
these assumptions, see Black and Scholes (3} or Merton (186}.

"The assurnption of continuous coupon payments is not necessary for the development of the
madel; it is used because it simplifies the boundary conditions that follow. Because bonda are usually
traded at market price plus accrued coupons, this assumption is quite reasonable.
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where 77 represents the instant in time just prior to the decision point and .
represents the instant in time just after the decision point. Note that in this case
7 represents the time to maturity of the longer-term bond and 7. the extension/
retraction (time to maturity) date. Expression (6) implies that at the decision
point the bond holder will optimally choose the longer-term bond only if at that
time its value is greater than the face value; if this is not the case, he will choose
to retract the bond (or not to extend it). This formulation assumes that the
retraction/extension option has to be exercised at a single point in time.?

In addition to the above boundary conditions, whenever the partial differential
equation is solved by numerical methods,’ the interest rate boundaries (r = 0 and
r = ca) are also required. The latter conditions are obtained as “natural” bound-
aries of equation {4) once £ and y have been specialized.

To solve equation (4), it is necessary to know, in addition to the boundary
conditions and the specialized form of # and vy, the form of (r), the latter
depending upon factors such as investors' attitudes to risk. In section 4, a sample
of straight-coupon bonds is used to determine a particular form of (r).

So far the model has been developed on the assumption of no taxes, either on
income {coupons and interest) or capital gains. It is possible to incorporate taxes
into the valuation equation, along the lines of Ingersoll [ 12], making the following
assumptions:

a) Income taxes are payable on a continuous basis and at a fized rate. This
implies that there is some “average” tax rate aver all investors.

b) Capital gains taxes are also paid continuously and at a fixed rate. This is a
very restrictive agsumption, because in reality capital gains taxes are paid only
when gains are actually realized by a sale, but it is required to ensure a unique
equilibrium bond value using the continuous hedging approach.

Applying the same hedging arguments as before, it is possible to show that in
the presence of taxes the value of a default-free bond follows the partial differ-
ential equation

Byl =TBu+[(1=-T)S—yp]Bi+(1—BR(C—-rBY—(1-T)B:=0 (7)

where R and T are the tax rates on income and capital gain, respectively.
Equation (7) is subject to the same boundary conditions (5), always, and (6},
depending on the type of bond considered.

The tax assumptions are very restrictive. It is an empirical question, however,
whether it is better to ignore taxes altogether or to incorporate them into the
valuation equation with the current assumptions. This question is addressed
later.

IHI. The Interest Rate Process

To apply the model developed in the previous section, it is necessary to specify
the parameters 8(r) and y(r) of the interest rate process. Lacking a well-developed

® For the ease where the option could be exercised over a period of time, rather than at a point in
time, see Ananthanarayanan {1). In general it is optimal to exercise the option at the last possible
date.

#This will be the case in the applications that follow because the equation obtained has no
analytical solution.
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theory of growth under uncertainty,' the only restriction which may be imposed
is that interest rates should never become negative, to avoid dominance by
money. The process assumed in this study is expressible as

dr = miu — r} dt + oVr dz (8)
which implies
Bry=mlp—-r), mu>0
¥(r) = avr, a>0

This process has the desirable mean reverting property, when r > p (< p), the
drift is negative (positive}, so that the deterministic movement of interest rate is
always toward the central tendency, p. The parameter m controls the speed of
adjustment towards p. The functional form of y(r) assures that, for certain values
of the parameters of the process, y(r} — 0 as r — 0, and, given that the drift is
positive at this point, interest rates can never become negative.'

The parameters of expression (8) were determined using the yield to maturity
on the 91-day (Canadian) treasury bill as a proxy for the instantaneous interest
rate. 990 weekly observations, starting January 7, 1959 to December 21, 1977 were
used in the estimation.

Since the stochastic process (8) has a known transition probability density
function, the parameters of the process were estimated by maximizing the joint
likelihood function of the data.'” The resulting values for the parameters were:

m=0.25.10"%, po=0.13.1077 o’ =069.107°

These parameter values satisfy the condition required to make r = 0 a natural
boundary and imply a central tendency value of 6.7 percent per annum. Al
further analyses on bond valuation made use of these parameter values.

IV. The Utility Dependent Function

To be able to solve equation (4), it is necessary to make an assumption about. the
functional form of ¢(r). Under one possible version of the Pure Expectations
hypothesis,"* the instantaneous return on bonds of all maturities is the same, and
equal to the instantaneously risk-free rate, r. From (3) this would imply that ¢(r)
= (. This would not be the case, however, if some kind of ‘liquidity premium”
were present in the market.

Except for making ¢ a constant," the simplest possible functional form for ¢(r),

" However, see Merton {17} and Cox, Ingersoll and Rass (8).

"' See Feller (10} for an extensive study of this process and a proof that when 2mp = ¢ r=0is a
natural boundary.

 For a detailed discussion of the estimation procedure and a justification for using the treasury
bill yield as a proxy for the instantaneous interest rate, see Anathanarayanan (1},

'* See Cox, Ingersoll and Ross (8) for different interpretations of the Pure Expectations hypothesis
and their consistency with no arbitrage profits in continuous time.

" Both Vasicek {21} and Brennan and Schwartz (4) assume ¢ = constant.
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and the one here assumed is:
y(r)-o(r) = =k — kor (9

The main reason for assuming a linear relationship between r and y4 (instead of
¢ alone), is the computational tractability of the solution to equation (4} under
this assumption. Given k; and ks, partial differential equation (4) subject to the
appropriate boundary conditions, has a closed form solution for a pure discount
bond (i.e., C = 0). This result is given in the Appendix.

The fact that a pure discount bond has an analytical solution under this
assumption permits a simple method of estimating the parameters k, and k. from
market data. The price of a bond paying a continuous coupon, P(r, r, C) may be
represented by

0
Pir,r, )= j C B(r, t) dt + B(r, 1} (10)

where B(., .) represents the price of a pure discount bond,” and is given by
equation (A-1) in the Appendix.

A sample of weekly market prices on 18 straight coupon bonds was used to
estimate %, and k.. There were in total 6,662 observations. Corresponding to any
choice of k; and &, (and given the parameters of the interest process, the current
interest rate, time to maturity, and coupon rate), the model price of any straight
coupon can be computed using equation (10)%,

The model consgidered was

In(F) = In(P;} + & (11)

where P! and P; are market and model prices respectively, and ¢ ~ N(0, §%;
covie, ) = 0 for { # j. Given that P; is a nonlinear function of the parameters &,
and ky, the estimation of these parameters is the standard problem of coefficient
estimation in a non-linear regression framework. The maximum likelihood esti-
mates, after testing for heteroscedasticity, autocorrelation, and normality of the
residuals, was found to he!?

k =0309-107%
ky = =0.154.1072

These values of k; and k; imply a particular shape of the term structure which
depends on the current instantaneous interest rate. Figures 1 and 2 show the
term structure curves for different values of the instantaneous interest rate. The
yield to maturity on a pure discount bond is computed from

Rir, 7) = — - In{B(r, 7) (12)

The limiting value of R(r, 7) a3 1 —» o« (R INF in the figures) is obtained from
equation {A-1) in the Appendiz—taking appropriate limits—and equation (12).

 For simplicity, in what follows the face value of all bonds has been arbitrarily set equal to 1.
'" This was done by numerical integration,
V! For a detailed discuasion of the procedure and the appropriate references, see Ananthanarayanan

{L).
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YIELD TG MRTURITY VS TIME 70 MATURITY ON OISCOUNT BONDOS

K1 = 0.309X 10 %% -5 K2 =-0.154 X 10 % -2
Xi & K2 BASED ON BOND ORIA JAN 50 - MOV 77

YIELD TO MATLRITY IN 1

5.82 .

2.73 .
d 5 1a is 20 35 ig 35 &0 a5 40
TIME TO MATURLTY IH YEARS

Figure 1. Yield ta Maturity vs Time to Maturity on Discount Bonds
K1 =0.309 % 1078 K2 = -0.154 x 1072
K1 & K2 Based on Bond Data Jan 59-Nav 77

As Ingersoll {13] has pointed out, the term structure corresponding to interest
rate process (8) and the functional form of ¢(r) given by (9), could have a humped
shape, as shown in Figure 2. When comparing Figures 1 and 2, care must be taken
to note the large difference between the two in the scale along the Y-axis,
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YIELD TO MATURITY VS TIME TO MATURITY ON OISCOUNT BONOS

K1 = 0.309 X 10 %X -5 K2 =-0.154 X 10 X¥ -2
K1 § K2 BRSEC ON BOND ORTA JAW 59 - NOV 77

8.41 .
8.37.
E 8.33 _
L
e
(=]
o
8.25 .
d 5 10 15 20 35 in is5 A0 A5 £
TIME 10 MRTILRLTY [N YEARS
Figure 2. Yield to Maturity vs Time to Maturity on Discount Bands
K1=0300x10"° K2=-0164x 107
K1 & K2 Based on Bond Data Jan 59-Nov 77
V. Valuation of Extendible/Retractable Bonds
8.1 Data

All federal retractable/extendible bonds issued by the government of Canada
were included in the study. Weekly price data were collected for each bond,
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starting within a week of the date of issue and extending to the extension or
retraction date.

5.2 Bond Valuation Models

Three variants of the basic bond valuation model described in section 2 were
used in the empirical tests.

a) Bond valuation under the pure expectations hypothesis. As mentioned in
section 4, the assumption that the instantaneous return on bonds of all
maturities is equal, implies that the utility dependent function &(r) = 0.

b) Bond valuation under the liquidity premium assumptions described in section
4.

¢) Bond valuation with taxes. In this variant partial differential equation (7) was
solved maintaining the assumptions about liquidity premium of variant b).**
Four particular cases were considered. The first two cases include tazes on
¢o ‘nons and interest at a rate of 50 percent and 25 percent, respectively, but
not on capital gains. Cases three and four consider an income tax rate of 25
percent and capital gains tax rates of 10 percent and 20 percent, respectively.

In all cases, the corresponding differential equation and boundary conditions
were solved for the 20 bonds in the sample using numerical procedures (given
that no closed form solution exists). The solution technique used was the standard
implicit differencing approach,'® in which the partial derivatives of the equation
are approximated by differences.

5.3 Comparisons
To compare model prices with market prices the mean square error (MSE)
was computed

MSE = %z& (G, — G (13)

where G and G; are, respectively, the market and model prices, and T iz the
number of observations considered (the analysis was done on a per bond basis
and on the overall data). The MSE (or its square root: RMSE) is broadly
indicative of the lack of fit between the model and the market prices. Further, a
simple regression of market prices on model prices permits the decomposition of
the MSE into three components®

Gil=a+ b3+ ¢ (14)
then

MSE = (G' - G)* + [(1 - b)*{% LGl - G”}
-2(1 - b)"’é’] + %):L € (15)

" For skmplicity, taxes were not taken into account in estimating the parameters of the model.
¥ See MeCracken and Dorn (15) and Brennan and Schwartz (4) for details.
® See Ingersol (12} for a similar approach.
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where G’ and G stand for the means of the market and model prices.
The three component parts may be identified as:
1) The part due to bias—attributable to a difference between the mean levels.
ii) The part due to the slope being different from one (b # 1).
ili) The part due to residual error.

It should be clear that all these comparisons of model and market prices
represent a joint test of three hypotheses: a) the generating process for the
instantaneous interest rate; b) the model of the term structure of interest rates;
and ¢) the bond-option valuation model.

In sub-section §.7 some tests designed to measure the value of the extendible/
retractable option are presented.

5.4 Results

The results of regression (14) and the error decomposition (15) for the total
sample data are presented in Table I. Column one gives the results for the pure
expectations model, column two for the liquidity premium model, and columns
three to six the four cases when taxes were considered. Parttal results for
individual bonds for the same models are presented in Table II. This Table
gives summary statistics of the mean error between model and market prices

(% SLAG: — Gi}) for individual bonds.

The predominant element of the MSE in the pure expectations model is the
bias. This is also indicated by noting that the mean error is consistently negative
for all bonds (see Table I1). This variant of the model overprices the bonds, which
implies that the market's expected yield on the bonds is higher than that assumed
in the model. A possible explanation of this is the existence of some liquidity or
term premuiuum.

As expected, the liquidity premium maodel clearly outperforms the pure expec-

Table 1

Comparison of Model and Market Prices {All Models) (Summary Based on All Bonds
in the Sample)

Pure Liq. Rev. Tax Rev. Tax C.G.Tax C.G. Tar Mav,

Model Exp. Prem., (50%) {25%) (10%) (20%) Avg. “Naive"
R? 0.391 0.491 0.306 0.311 0.332 0.357 0.254 0371
BMSE 10.253 3.944 3.781 4.611 4.513 4412 4.965 4. 346
Mean Error =7.570 0778 —0905 -1.621 -—1258 -0751 2075 -0.841
Estimated Slape 0.301 0.546 0.678 0.479 0.478 0477 0,469 0.444
{S.E. of Slape) 0.006 0.009 0.017 0.012 0.011 0011 0.015 0.010
Est. Intercept 6R.183 46.170 31.876 51.725 52.057 52.360 52.520 55,716
{S.E. of Intr} 0.718 0.978 1.825 1.285 1.216 1.144 1.546 1.042
Fraction of Error 0.545 0,038 0,057 0.123 0.077 0.029 0.174 0.037

Due to Bias

¥l 0.352 0.383 0.085 0.304 0.343 0.387 0.250 0.462
Res. Variance 0.102 0.577 0.857 0.572 0.579 0.583 1.574 0.500
Misspec Error 94.386 6.573 2.035 9.096 8.576 §8.114 10.483 9.445

Resid. Error 10.748 #9866 12264 12170 11797 11360 14.168 9.448
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Tabie IT
Predicted and Actual Bond Prices for Alternative Models. Summary Statistics of Mean Error for
Individuzl Bonds
Percentiles
Std.
Model Minimum Maximum  Mean Dev. 20th 50th 80th
Pure Exp. ~18.62 0.36 —6.24 4.81 -7.15 —~5.66 —-4.13
Liq. Prem. -3.22 293 1.16 1.75 —-0.27 1.66 2.45
Rev. Tax (50%;) —4.24 2.99 ={.28 2.37 -2.67 0.28 221
Rev. Tax {25%) —7.04 2.56 ={.86 293 -3.14 —~1.47 1.91
C.G. Tax (10%) —6.76 2.76 —-0.53 2.83 -2.76 -1.25 1.94
C.G. Tax (26%) —6.28 3.03 -0.08 2.72 —-2.01 -0.77 244
Mov. Avg. —6.74 515 —-1.43 .41 -5.16 —-1.82 0.66
“MNaive” —~8.01 0.89 —L1.60 293 -3.68 ={.09 0.44

tations model. In this case the mean error is slightly positive (.78%), but the
estimated slope (& = .55) is still far from unity.

None of the tax models seems clearly to outperform the liquidity premium
model.

5.5 The “Moving Average” Model

A sensitivity analysis performed on all the parameters of the model (m, u, o,
a, Ry, ky) indicated that the interest rate process parameter u (central tendency)
has the most significant impact on model bond prices. Increasing (decreasing) g
would lead to an across-the-board decrease (increase) in bond values. It was felt,
therefore, that the assumption of time homogeneity of the parameters, and
particularly of p, might be an important misspecification. An approximate method
of relaxing this assumption is to use different u's for different time periods. Those
bonds for which enough information was available (fifteen bonds) were valued by
means of the liquidity premium model, using as g the average value of the short-
term interest rate in the two years immediately prior to the date of issue. This
value of ¢ was maintained constant for the life of that bond.?' As shown in column
seven of Table I, and row seven of Table II, it does not appear that this approach
significantly improves the fit between market and model prices.

5.6 The “Naive” Model

As a bench mark against which to compare the performance of the bond
valuation models developed in this paper, an ad hoc procedure—referred to as
the “naive” model—was used. It is based on an approach suggested by Dipchand
and Hanrahan [9] and consists essentially in assigning as the value of the
extendible/retractable bond the larger of the two possible straight bond values
(the short and the long bonds) determined by the option to extend er retract. To

' A more aceurate procedure would have heen to change ;i each year for all bonds, but this would
have made more difficult the numerical solution to differential equation (4) by making the parameters
a funection of time.
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obtain the values of the straight bonds, their yield to maturity was computed
from a regression equation for the yield curve
The regression model used to determine the yield, ¥, was

Y=+ aor + a5 + aq V1 + a5t + aer® + as log . (16)

Assuming continuous coupon payments at a rate C, and a face value of the bond
of $§100, the relationship between the yield and the price of the bond is given by,

B,=§(1—e”"’)+ 100e 7, (17)

The sample of 18 straight coupon bonds was used to determine the coefficients of
regression (16). Given the price of the bond, B,, at each point in time (17) was
solved to obtain the corresponding yield (y), which was then used in regression
(16). The coefficients obtained for the total sample and the corresponding ¢
statistic (in parenthesis) are

a, = 00509 (16.81)
a = (0.7049 (138.12)
az; = —0.0087 (—12.39)
a.= 00184 (11.78)
as = 0.0005 (14.20)

ae= —0.0019 (~15.34)
ar = —0.0271 (-9.80).

These regression coefficients were then used with equation (18) 2 compute, at
every point in time, two yields to maturity for each extendible bond in the
sample,? corresponding to each of the alternative maturities. Using equation
(17), the values of the long and short band were obtained. The “naive” model
price of the extendible, at every point in time, is then set at the higher of these
two bond values.

The results of regressing the market prices on these maodel prices are reported
in the last column of Table I, and the last row of Table II. A cursory examination
of the results indicates that the naive model performs almost as well as the
substantially more sophisticated and complex models developed in this study
(compare it, for example, with the liquidity model). It can be argued, however,
that the partial equilibrium models developed in this paper—unlike the naive
model—are amenable to considerable improvement.

5.7 The Extendible/Retractable Option

There are two ways to compute the value of the extendible/retractable option.
One is to assume a short term bond plus a call option to buy the long term bond

2 The ad hoc regression equation relating yield to maturity on straight bonds to current interest
rate and various functions of time to maturity used in this study is very similar to the one developed
by Bell Canada’'s Bond Research Division.

# The retractable was excluded from this test because it had several retraction dates.

% Perhaps the most promising improvement of the basic model is the extension of the state space
to two stochastic interrelated interest rate processes. See, for example, Brennan and Schwartz (7}
where this approach has been used in the valuation of Savings Bonds.
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at the extension/retraction date, and the other is to assume a long term bond
plus a put option to sell the long term bond at the extension/retraction date.
These two ways of looking at the problem represent the familiar put-call parity
relationship.

During the sample period considered, interest rates were generally increasing
and for the sample of bonds available the short term bond maturity was usually
substantially shorter than the maturity of the long term bond. Because of these
factors the call option value for some of the bonds was very close to zero (“deep
out of the money”). For this reason it was easier to evaluate and make compari-
sons using the put option value, and this was done in what follows.

To test the ability of the madel to evaluate the option element of the bond
price one would like to compare the predicted difference between prices of an
extendible/retractable and a straight (but otherwise identical) bond with the
actual difference between these two bonds. Unfortunately, comparable straight
honds do not exist for the sample considered, so the next best alternative was to
compare the estimated option value with the difference between the actual price
of the extendible/retractable and the maodel price of an otherwise identical
straight bond.

The results of regressing “actual’ option values (as defined above) on predicted
option values for individual bonds™ are presented in Table III. Predicted option
values were computed using the liquidity premium model and model prices of the
straight bonds were computed using equation (10} and equation (A-1) in the
Appendix. Even though for some bonds, the model is able to explain a relatively
large proportion of the variation in the option values, in three cases (two of them
statistically significant) the regression coefficients are negative. These results
indicate that the single interest rate model provides, at best, a weak explanation
of the variations in the option value of extendible honds.

VL Tests of Market Efficiency

The hedging arguments developed in section 2 to derive the partial differential
equation governing the value of a default free bond, required the formation of a
portfolio of two bonds in proportions such that the instantaneous return on the
portfolio be nonstochastic. From (2) it is easy to show that these proportions are
_ G B 3

X8 = %6 o B, (18)
where xg and xg are, respectively, the dollar investments in bond B (say a straight
coupon bond) and G (say a retractable/extendible bond), and B, and G, are
partial derivatives with respect to the first argument (the interest rate).

It is then possible to form a zero net investment portfolic by investing an
amount xg in bond G, xp in bond B, and —(xc + xg) in the riskless asset. If the
market is efficient with respect to the information contained in the model, the
return on this riskless zero net investment portfolio should not be significantly
different from zero.®

* Again the retractable was excluded from this test because it had several retraction dates.
* For an extensive discuasion of these tests of market efficiency as they apply to the stock option
markets, see Black and Scholes (2), Galai (11}, and Brennan and Schwartz {5).
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Table I
Predicted and “Actual” Option Values for the Liquidity Premium Model. Summary Statistics of
Regression Results for Individual Bonds. (Alpha and Beta are the Coefficients from Regression of
“Actual" Values on Predicted Values)

Percentiles
Minimum Maximam Mean  Std. Dev. 20th 50th 80th
Alpha —4.57 £.33 1.03 3.26 -151 .98 4.69
Beta -2.59 68.53 1.35 1.80 0.72 1.22 208
R? 0.00 099 0.41 0.28 0.15 0.34 0.64

Table IV

Return on Zero Investment Portfolio.
Summary of Statistics for Individual Bonds for the Liquidity Premium Model,

Percentile
Std.

Minimum Mazimum Mean Dev. 20th 50th 80th
A. Based on Constant Long Position in Bond
Mean Return —(.148 0.0695 00148 0.0219 —=0.019 0.0054 0.0231
¢-Statistic =0.04 0.23 0.06 0.08 —(L01 0.01 0.08
B. Based on Varying Position in Bond
Mean Return —(1.0948 0.0086 =(.0215 0.0272 —(.0429 —0.0167 =0.0039
¢-Statistic -0.26 .02 ={.07 0.09 -0.19 ~(.04 -0.01

The sample of straight coupon bonds and retractable/extendible bonds was
used to perform a number of tests on market efficiency”, only two of which are
reported here, since the results on all of them were very similar.

In the first test it was assumed that at the beginning of each week a long
position in G was taken by buying one bond at the market price (i.e., xg = G).
Then xg is computed from (18) by using the market price of bond B, and the
partial derivatives of the bond prices with respect to r obtained from the
numerical solution to the respective bond valuation equations. A short position
in an amount xg is taken in a straight coupon bond, and the balance is made up
by an investment in the riskiless asset. At the end of the period, the portfolio is
assumed to be liquidated at the then-existing market prices, and the return on
the portfolio over the one period is camputed. A new portfolio is then formed and
the procedure is repeated until the end of the data on each bond. Panel A of
Table IV presents summary statistics of mean returns (and ¢-statistic) on these
hedges for individual bonds for the liquidity premium model. The clear indication
is that the returns to the zero-investment hedge portfolio are not significantly
different from zero. The same results can be observed when at each point in time
a portfolio of these hedges is formed with all bonds outstanding at that time.
Table V presents these results for all models where the appropriate correction for
heteroscedasticity, caused by the different numbers of hedge portfolios in each
period, was performed (the dollar return in each period was weighted by 1/vN,
where N represents the number of bonds outstanding in each period).

® Note that the tests of market efficiency have used data from the same test period used to
estimate the process parameters.
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Tahle V

Return on Zero Net Investment Portfolio (Based on a Constant
Long Poesition in the Generic Bond) By Aggregating

QOver All Bonds
(Resulta for all Models)
Standard
Mean Deviation
Model Return (§) of Return t-Statistic
Pure Exp. —.0197 0.955 —0.021
Liq. Prem. 0.0228 0.476 0.048
Rev. Tax (50%) 0.0352 (.486 0.072
Rev. Tax (25%} 0.0270 0.451 0.060
CG. Tax (10%) 0.0258 0.457 0.056
CG. Tax (20%) 0.0242 0.466 0.052
Moving Average 00113 0.4584 0.023

The purpose of the second test was to see if the model could be used to identify
over and underpriced bonds. This test is similar to the previous one, only that at
each period a long (short) position in G is taken if its model price is lower (higher)
than the market price at that point. If the return on the hedge portfolio based on
this strategy were to result in a statistically significant increase in the mean
return over the strategy of a constant long position in G, it would imply that the
maodel can be used to identify over-priced /under-priced bonds. Summary statistics
of this test for individual bonds for the liquidity prermium model are presented in
panel B of Table IV. Here again, the mean return appears to be insignificantly
different from zero. It does not seem possible to profit from the differences
between market and model prices.

VII. Summary and Conclusions

The research herein described represents a first attempt to apply contingent
claims analysis to the valuation of retractable and extendible bonds. Three
hypotheses have been tested jointly: the mathematical structure of the model,
the methodology used to measure the parameters of the model, and the efficiency
of the market in pricing bonds. The tentative results of this study indicate that,
even in the ahsence of transaction costs and taxes, the differences between model
and market prices cannot be exploited to make arbitrage profits.

With respect to the mathematical structure of the model, considerable improve-
ment can be obtained by extending the state space from one interest rate to two,
thus avoiding the objectionable implication that instantaneous returns on bonds
of all maturities are perfectly correlated. The particular stochastic specification
of interest rates to be used in the model is also an area which requires further
research. Finally, additional work should be done on the elements of the model
which depend upon investors' attitudes toward risk.

The above comments apply not solely to the valuation of extendible and
retractable bonds, but also to the valuation of all types of bonds. It is the belief
of the authars of this paper that the application of contingent claims analysis to
bond valuation is a fruitful area of future research.
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Appendix

The solution to equation (4) subject to boundary condition (5), given the
interest rate dynamics (8) and the “liquidity premium" assumption (9}, for a pure
discount bond (with C = ¢ and F = 1), is, as pointed out by Ingersoll [13}

Bir, r) = [H{(1)] 2m2p exp[am’p's + nr{l = H(r)e *'}] (A-1)

where
= (m — k)
= {mu + ki)/m’
7 =[m' = (m"” + 20%)"*]/a®
A= (m"+ 20"
H(r) =1+ (m’ — A{1 — exp(—=A1))/2A]""
From (A — 1) it can be shown that
5 =l = Hir) exp(~Ar)] = g(r) (A-2)
the ratio B,/B is independent of r and strictly a function of time to maturity.
Then (9) implies that the “risk premium” is given by
pa —r= =ik + kor)g(r) (A-3)
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