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Conditional Predictions of Bond Prices and
Returns

MICHAEL J. BRENNAN and EDIUJARDO 8, SCHWARTZ*

MoDERN THEORIES of the term structure of interest rates posit that the values of
default-free discount bonds of all maturities may be expressed as deterministic
functions of a small number of state variables, which follow a continuous diffusion
process. Arbitrage arguments of the type familiar in the aptions pricing literature
may then be employed to derive a single partial differential equation which must
be satisfied by the values of all such bonds. This differential equation typically
involves as many unknown parameters as there are stochastic state variables,
each of these parameters representing the market price of the risk associated with
one of the stochastic state variables.

The power of such arbitrage theories depends upon the number of relevant
stochastic state variables being manageably small.' Models with a single state
variable have been studied by Brennan and Schwartz [1977], Cox, Ingersoll and
Ross [1978], Dothan [1978], and Vasicek [1977], all of these authors taking the
instantaneously riskless interest rate as the relevant state variable. Two state
variable models, in which the second state variable is the exogenously determined
stochastic rate of inflation or the price level, have been developed by Cox,
Ingersoll and Ross {1978], and Richard [1978]. The Cox, Ingersoll and Ross model
of the term structure is distinguished from all of the other work in this area hy
being derived within a general equilibrium framework,

Cox, Ingersoll and Ross have pointed out that yields on bonds of different
maturities are deterministic functions of the underlying state variables, so that if
it is possible to invert this system and thereby express the state variables as twice
differentiable functions of a vector of interest rates, then the vector of interest
rates may be used as instruments for the state variables. Brennan and Schwartz
[1979] have taken this approach in expressing the whole term structure of yields
as a deterministic function of the instantaneous riskless interest rate, », and the
consol yleld, Z, While this leaves the issue of the identity of the underlying state
variables unresolved, it has the advantage for empirical purposes of eliminating
from the partial differential equation one of the utility dependent market price of
risk parameters.’

In Brennan and Schwartz [1979] preliminary evidence was presented of the
ability of such a two-factor model to price a sample of Government of Canada
bonds conditional on r and I In this paper the results of a more detailed empirical
analysis of the model are presented: the intertemporal stability and predictive

* University of British Columbia.
! This is true also of the Ross [1976] arbitrage model.
? See Brennan and Schwartz [1979] Appendix Al
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ahility of the assumed stochastic process for interest rates are examined. Maxi-
mum likelihood procedures are used to estimate the market price of instantaneous
interest rate risk, and confidence intervals are derived for this parameter. By
factor analyzing the bond pricing errors it is shown that bond prices may be
explained by at most a three-state variable model. Finally, the ability of the
model to make predictions of bond prices and rates of return conditional on
future values of » and ! (and the amitted third state variable) is evaluated. It is
hoped that conditional prediction models such as this will play the same role in
bond portfolio management as Sharpe’s {1963] diagonal model and subsequent
elaborations thereof have played in the management of stock portfolios.

"The model is described briefly in Section I and in Section II the assumed
stochastic process for r and { is estimated using Canadian data. In Section ITI the
* market price of short-term interest rate risk is estimated by a non-linear maximum
likelihood procedure, using data on Government of Canada bonds. The model
errors are factor analyzed in Section IV to indicate the presence of at most one
state variable in addition to » and I The final section of the paper is concerned
with the ability of the model to generate conditional predictions of quarterly rates
of return on bhond portfolios of different maturities.

1. The Model®

The two interest rates are assumed to follow a joint diffusion process which is
specified as

dinr=qallnl-Inp=Inr]dt+a dz (1)

dl= E[f —-—r+ ﬂ% + Azﬂ'z] dt + loy dz (2)

dz and dz, are correlated linear processes, and dz; dz; = p dt, where £ denotes
calendar time. The form of (1} is motivated by the assumptions that the standard
deviation of the instantaneous change in r is proportional to its current value,
and that r stochastically regresses towards a function of the current consol-rate,
!, at a rate which is determined by the adjustment coefficient, a; p 15 an
undetermined ‘liquidity premium’. The stochastic process for the consol rate, (2),
specifies also that the standard deviation of instantaneous changes is proportional
to the current value of the rate. It can be shown that X; is the risk premium per
unit of risk of the consol bond, or the market price of consol rate risk. Define A,
the market price of instantanecus interest rate risk, as the risk premium per unit
of risk of a portfolio of bonds whose instantaneous rate of return is perfectly
correlated with changes in r.

Then it can be shown by an arbitrage argument that, if A, is at most a funection
of r and /, then the whole term structure of interest rates is a deterministic
function of the current values of r and /, and the value of a unit discount bond
may be written as B(r, I, 7), where 7 is time to maturity, and B(.} satisfies the

2 This is described in more detail in Brennan and Schwartz [1979].
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partial differential equation
Y%By ) + Burlpoas + % Byplal + Burla In(l/pr)

+ Yaa? — Ay, Doy] + Bol[o3 + 1 — 7] — Ba— Br=0 (3)
with the terminal houndary condition
B(f, Lo=1 (4)

All of the parameters of this differential equation may be estimated from the
stochastic process, except for A.(.) which will be estimated in Section III, on the
assumption that it is a constant independent of » and .

I1. Estimation of Stochastic Process

To estimate the non-linear joint stochastic process (1) and (2) it is necessary first
to linearize it, and then to evaluate the corresponding exact discrete model, since
observations on » and I are available only at discrete intervals. The resulting
exact discrete model is of the form

In r, = aula, p, P)ln reg + awnla, p, gin L1 + bila, p, ) + £, ()
In i = anle, p, qYn re + axfe, p, @)n i + bao(a, p, g} + & (6)

where the coefficients are known non-linear functions of the parameters «, p, ¢.
i and £y are homoscedastic, serially independent error terms, and the elements
of their covariance matrix, ¥, are approximately equal to a7, 03, poioe. g is a
parameter arising form the linearizing and does not enter the differential equation.

The estimation was carried out using a non-linear procedure described by
Malinvaud [1966]. The data for the instantaneous rate of interest were the yields
on 30-day Canadian Bankers’ Acceptances converted to an equivalent continu-
ously compounded annual rate of interest, while the consol rate was approximated
by the continuously compounded equivalent of the yield to maturity on the
Government. of Canada bond with a maturity in excess of 25 years which was
selling closest to par.* Both interest rate series are the mid-market closing rates
on the last Wednesday of each month from January 1964 to April 1979,

The parameter estimates of the stochastic process for different subperiods are
presented in Table 1.° The estimates of « and ¢ are reasonably stable and are
significantly different from zero on the usual criteria: on the other hand, the
estimate of In p is quite unstable and nowhere significant. The estimates of a, and
g2 are quite similar for the two semi-periods, although the shorter period estimates
are more variable: roughly speaking, the estimates suggest that there is three
times as much uncertainty about the proportionate change in the short rate as
there is about the consol rate proxy. The unanticipated changes in the two rates

*This is a differant rate from that used in the Brennan and Schwartz [1979].

®In comparing these estimates with thase in Brennan and Schwartz [1979], it should be recalled
that the data are somewhat different: furthermore, due to a programming error, the estimated
standard errors were understated in the previous study.
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are positively correlated, although the estimated degree of correlation is different
for the different subperiods.

As stated above, if the stochastic process (1), (2) is the correct one, then the
error terms from (&), (6} should be serially independent. The Durbin-Watson
statistics from the two equations suggest that this assumption is violated: more-
over, the estimated serial correlation of .19 and .14 for the instantaneous and
consol rate equations respectively is likely to be an underestimate of the true
serial correlation because of the lagged dependent variables in the equations.
Serial correlation in the errors from the stochastic process implies either that the
functional form of the stochastic process is mis-specified, or that the current
values of r and I are not sufficient statistics for the joint distribution of future
values of » and {, and that therefore if the true stochastic process is to be
represented in Markov form as is necessary for the derivation of the partial
differential equation, at least one other state variable must be introduced.® The
practical importance for bond pricing of omitting these state variables (or of mis=
specifying the stochastic process) is an empirical issue which will be taken up
below. For the moment it will be assumed that the two state variable represen-
tation is adequate.

Ta test the assumption of homoscedastic errors, the logarithm of the squared
error was regressed on the logarithm of the two interest rates, following a
procedure suggested by Park [1966]:

In &, =8 + yiln rey (7

In £§: =&+ }’2]11 /) (8)

The estimated values of y, and y, are reported in Table 1. Under the null
hypothesis of homoscedastic errors the estimates of v, and v, should be insignif-
icantly different from zero, as they are for the whole period and most of the
subperiods. The fact that y,, although not statistically significant, is negative for
" each subperiod provides weak evidence that the true stochastic process for r has
a diffusion variance elasticity’ of less than 2, which is the value assumed in our
process. Similarly, it appears that the corresponding elasticity for ! may be greater
than 2. However, given the statistical insignificance of §, and ¥, for the whole
period, the assumption of an elasticity of 2 is maintained, and the parameter
values used for the partial differential equation (3) are those estimated from the
whole sample period: the remaining unknown parameter in the equation is A;,
the market price of instantaneous interest rate risk: estimation of this is taken up
in the following section.

To gain some insight into the power of the stochastic process to predict future
values of r and [, forecasts derived from the process were compared with those
derived from a naive no-change or Martingale model.® Writing the equation

¢ Strictly speaking, it would still he passible to derive the differantial equation even if Asf.)
depended on other state variables,

? See Cox [1975].

# Pesando [1978] has suggested that long term bond yields should follow an approximate Martingale;
Ayres and Barry [1979] incorrectly assert that they must follow an exact Martingale,
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system (5), (6) as
X,=AX.,+B+4& {9}
EXpn| X ] =A"X;+(I+A+ ... + A" Y)B (10)

and the variance-covariance matriz of Xy is

Qn=S+ATA + ... AV T A (11)

The vector of forecast interest rates is then lognormally distributed with mean
and covariance matrix given by (10) and (11) respectively. The n-period forecasts
are then calculated using the formula for the mean of a lognormal variable. The
root mean square error of the forecasts generated from the estimated stochastic
pracess and from the Martingale model are compared in Table 2. The stochastic
pracess outperforms the Martingale forecasts by only a small margin, although
this is an increasing function of the forecast interval. The improvement of the
stochastic process forecast over the Martingale is substantially better for r than
for I, and the generally small improvement achieved by the stochastic process is
indicative that the stochastic element is large relative to the trend of the
stochastic process.

IIL. Estimation of A,

Having estimated the parameters of the stochastic process, the valuation equation
(3) may be solved numerically for a given value of X, (henceforth the subscript
will be omitted}. The resulting values of B(r, I, 7; A) are the present values of §1
receivable in 7 periods when the two interest rates take on the values of » and /.
For each of several values of A, a sample of 126 Government of Canada bonds was
valued on the last Wednesday of each quarter from January 1964 to April 1979
by applying the present value factor appropriate to the prevailing instantaneous
and consol rates to the promised stream of coupon and principal payments. The
resulting predicted bond values are written B,(A)(i=1, ..., 126;¢t =1, ..., 62),
and the actual bond value, y;,, may be expressed as

Yie = Bu(A) + wi (12)
where 1, is the valuation error. Consider an estimator of A, A(S), which minimizes
LA, 8) = 3 (¥ — B{A)Y'S(y: — BJA)) (13)

Table 2

Root Mean Square Error (% per year) of Model and Martingale Forecasts of
Interest Rates

1 3 6 12
Forecast Interval
{months} r { r { r { r I
Stochastic Process AD 19 A7 a7 1.30 56 1.72 0.71

Martingale 45 19 S0 .38 141 a7 2.0 .75
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where S is a positive definite matrix and y, and B.(\) are vectors. Then A(S)
satisfies the necessary conditions for a minimum: _
H(S, M) =%: Q:A)'S(y:— BA\) =0 (14)

3B (A).

ar
H(S, A} can be approximated by

where @:(\) = } is a vector. Starting from a particular value of A, A?,

H(S, A%

= ]
H(S N = H(S, A + Y

A =19 (15)
and setting (13) equal to zero yields A(S). In the present context no analytic
expressions are available for @,(A) or aH/aA, and therefore H(S, \°) and its partial
derivative were calculated using values of B;(\) obtained from adjacent values of
A

The estimator A(S) will be a maximum likelihood estimator if the errors in (12)
are N(0, Q), and S = @'. Since £ is unknown, an asymptotically MLE is obtained
by the following iterative procedure described by Malinvaud [1966]:

(i} Calculate A* = A(I) by the above procedure: this is the (non-linear) OLS
estimator: .

(ii} Calculate the residuals €;; = y;r — Bi,(A*), and their covariance matrix, Q*.

(iii} Calculate the estimator A** = A(2*7"). This estimator is asymptotically
normal with variance

3B, . [aBu*9 7™
[-E* [T] & [TH (16)

Estimation of the covariance matrix £* requires prior restrictions. on the
covariance structure of the valuation errors u;,. It was assumed that the covari-
ance of the valuation errors of any two bonds depends only on their maturities.
Therefore, each quarter the outstanding bonds were assigned to one of ten equally
weighted porifolios (f = 1, -.., 10) depending on their maturities: the first
portfolio consisting of all bonds with maturities of less than one vear, the second
of all bands with maturities between one and two years ete. The valuation error
for portfolio j in period ¢ is assumed to be given by

Ujr = Piljry + Uy (17)

where E[v;c] = E{v;t50] = O; E{v;%:] = wys, an element of the (10 X 10} matrix

The OLS estimator, A*, was computed using the portfolio data described above.
Not all bond maturities were represented in each quarter of the sample period:
the potential number of observations for each portfolio is 62, and the .actual
numbers are given in the first row of Table 3. To take account of the unequal
numbers of observations by period, matrix § of equations (13)-(14) was indexed:
8, = I, where n, is the number of observations in period ¢.

The serial correlation of the errors of each of the 10 portfolios was estimated
from the residuals of this regression according to equation (17) and the resulting
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Table 3

Numbers of Observations and Estimated Serial Correlation of Errors (g;) by
Portfolio Maturity

Fortfolio
Maturity

{Year) 1 2 3 4 4 [} 7 8 9 10
NOBS 60 62 62 62 62 &0 53 51 48 42
A 85 b6 .66 68 74 65 67 79 87 i

Table 4

Ordinary Least Squares Estimator (A*}) and Maximum Likelihood Estimator
(A**) of the Market Price of Instantaneous Interest Rate Risk (A:)

Period AY Ak SEQ*) N
Jan 64-Apr 79 . L0080 0169 0163 538
Jan 64-Aug 71 —0.1356 -.0192 0248 266
Sep 71-Apr 79 1278 0682 0220 262
Jan 64-Oct 67 —-0177 —.0023 0391 127
Nov 67-Aug 71 —.0107 —.0183 0336 129
Sep 71-Jun 75 1248 0309 0345 124
Jul 75-Apr 79 1418 1216 {0298 128

estimates are given in the second row of Table 3. To take account of hoth serial
and contemporaneous correlation of the errors, an asymptotically efficient esti-
mator proposed by Parks [1967] was developed: the actual and predicted portfolio
values were transformed according to

Vit = Yit — Bi¥je

_ A (18)
Bjc('\} = B,:'z(h) - P}'ij—l(A}
Then equation (12) can be written as
Fie = BpA*) + Gy (20)

The errors G, now serially uncorrelated, were used to estimate ©*, and the
MLE, A** was computed by minimizing

LYY =50 (3 — BNy &7 (5 — BN (21)

where £, is the relevant submatrix of &*, taking account of missing observations.

Table 4 reports both the OLS estimator, A¥, and the MLE, A**, together with
the asymptotic standard error of A** computed from expression {16). A** is
unstable, being positive in some periods and negative in others; while the estimate
is several times its standard error for the final quarter, the evidence for the total
period is consistent with the hypothesis that A, = 0.° It is also possible that,
contrary to what has been assumed in the estimation, A, is a function of r and !/
and perhaps of other state variables also. To put the range of estimates of A, in
perspective, it may be noted that a change in A; from 0.0 to 0.10 changes the

#The fuli period estimate is within one standard error of the value reported by Brennan and
Schwartz [1979].
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(335:()\)

predicted value of the average bond in the sample by about 1.2% > 0 for

all bonds).

IV. Factor Analysis

The contemporaneous correlations between valuation errors for the different
portfolios were computed from the transformed residuals, #¢ — B;(A**), and are
reported in Table 5. If the assumptions of the pricing model discussed in this
paper were correct, then the errors would be independent. Thus the strong
contemporaneous and serial correlations reported in Tables 5 and 3 offer strong
support for the existence of relevant state variables in addition to those repre-
sented by the r and [: the possible existence of such state variables has already
been suggested by the serial correlation found in the errors from the stochastic
process for r and I Assuming that such state variahles affect bond prices in a
linear fashion, they may he extracted by factor analysis of the untransformed
error terms, &; = v — ByA**).
The factor analysis model assumes that these errors may be expressed as

ﬁ.jg = Ek Ajkfkt + € (22)

where e is a residual error which is assumed to he serially and cross-sectionally
independent; fi. is the value of factor % in period £ and Aj is the loading of the
valuation error for portfolio f on factor k. By factor analyzing the valuation errars
it is possible to estimate the number of common factors affecting the errors, and
therefore, the number of relevant state variables which have been omitted from
the model.

Factor analysis revealed the existence of only one important factor, which
accounted for 83.5% of the total variance: the next most important factor contrib-
uted only a further 2.4%. This constitutes strong evidence for the existence of at

Table 5
Contemporaneous Correlation of Portfolio Valuation Errors
Portfolio
Maturity
(years} 1 2 3 4 8 6 7 8 9 10
1 1.00
2 82 1.00
3 .76 85 1.00
4 &7 80 95 Lo
5 60 .83 88 92 1.00
6 43 70 it 87 89 1.00
7 43 60 71 74 .76 .80 1.00
8 16 .40 A9 il 62 64 57 L0
9 54 70 .76 79 85 80 .79 61 100
10 53 i .79 .19 78 72 89 AB 79 1.00
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most one relevant state variable in addition to r and . Factor loadings for the 10
portfolios are given in Table 6. The factor score in each period was estimated by
regressing the errors for that period in the factor loadings: the factor scores were
found to have a serial correlation of 0.82.

If the assumption that A; and A, are constant is correct, then the dependence
of the valuation errors can arise only from the mis-specification of the stochastic
process for » and L If the problem is not due simply to selecting an incorrect
functional form for this process, but is due to omitting a state variable from the
joint Markov process of relevant state variables, then the state variable identified
by factor analysis of the valuation errors should enter the stochastic process for
r and I To test this hypothesis, the errors obtained from the nonlinear regression
() and (6) were regressed on the lagged values of the factor scores for the months
immediately following the quarterly calculations of the factor scores. In both
cases the lagged factor score explained about 8% of the variance of the errors: this
is significant at the 5% level and is evidence that the true stochastic process for
rand [ contains an omitted state variable. The question of the relative importance
of this state variable for hond pricing is taken up in the next section.

V. Conditional Predictions of Returns

To evaluate the ability of the model described in this paper to make predictions
of bond returns conditional on forecasts of the exogenous state variables, » and [,
rates of return were calculated for each quarter from 1964:1 to 1979:1 for each of
ten equally weighted portfalios of bonds of different maturities: each portfolio, n,
(n=1, ..., 10) consisted of all outstanding honds with a time to maturity of
between n and (n — 1) years at both the beginning and end of the quarter under
consideration.
The predicted rate of return of portfolio » in quarter ¢, B, is given by

Rn.t = (Fne + Cnz — Yn—1}/ ¥ne—r

where 3., is the predicted value of the portfolio at the end of the quarter, e, is the
coupon during the quarter, and y,. . is the value at the beginning of the quarter.

Four different rules were used to obtain y,,. It should be noted that none of the
prediction rules are true ex-ante forecasts since they rely on estimates of the
parameters of the stochastic process and A, which were derived from the data
available for the whole period: nevertheless, these predictions should provide an
indication of the ability of the model to make such true ex-ante forecasts.

Define B,.{r, I; A**) as the model value (based an A, = A**) of portfolio n at the
end of quarter {, when the interest rates are r and /. Then,

Tahle &
Factor Loadings of Portfolio Errors
Port-
folio I 2 3 4 & 6 7 8 g 10

Loading 0.15 0.55 1.00 1.33 1.77 1.96 1.73 1.86 2.40 2.39
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Rule 1: ¥ne = Bui(re, I A**)

The predicted value is simply the model value at the end of quarter using the
contemporaneous values of  and I This rule takes no account of the known serial
correlation in the valuation errors,

Rule 2: 3, = Basre, Ly X**) + Appfiar

Where p,1s the serial correlation in the factor score, A, is the factor loading and
fi-1 18 the factor score at the beginning of the quarter. This rule takes account of
the serial correlation in the errors arising from the influence of the common
factor.

Rule 3: 3= Builre, L; M) + pattne

This rule is similar to Rule 2 but adjusts for serial correlation on an individual
portfolio basis.

Rule 4: 3 = Bplre, I M%) + Aofe

Under this rule the model value is adjusted by the factor loading times the
actual factor score.

For each of the four rules, the Root Mean Square Error of the quarterly rate
of return prediction was calculated, and the actual rate of return was regressed
on the predicated rate of return:

Bu=a+ BRnt+€nt

The results are reported in Table 7 along with the standard deviations of the
quarterly rates of return. Rule 1 performs poorly, which is not surprising in view
of the substantial serial correlation observed in the errors. Rules 2 and 3 which
take account of the serial correlation do substantially better, the RMSE of the
forecast being of the order of 1% of the value of the portfolios. When the actual
factor score is employed (Model 4) the RMSE drops further to about 1%.

It seems clear from the above that, while the posited two factor model is only
moderately successful in predicting future bond values, a three factor model is
quite adequate. This suggests that the expanded three factor model could provide
the basis for a usable bond portfolic management model. First, the variance-
covariance matrix of bond returns may be inferred from the covariance structure
of r, I and the third factor using the conditional valuation predictions of the
maodel. Secondly, given predictions of r,  and the third factor, fairly accurate
assessments may be made of the expected returns on the bonds: while it is
unrealistic to expect portfolio managers to predict the unknown third factor
directly, this may be done indirectly by predicting the value of one particular
maturity bond: the value of the third factor may then be inferred from this and
the predicted values of » and L.

Finally, there remains the intriguing question of whether the valuation errors
obtained from Model 4 using the actual factor score represent transitory errors
which may be attributed to market inefficiency, or whether they are due to
further model limitations.

REFERENCES

Ayres, H. F., and J. Y. Barry, 1974, “Dynamics of the Government Yield Curve”, Financial Analysts
Journal, {35), pp. 31-39,



Conditional Predictions of Bond Prices and Reiurns 417

Brennan, M. J. and E. 8. Schwartz, 1977, “Savings Bonds, Retractable Bonds and Callable Bonds™,
Journal of Financial Economics, (5) pp. 67-88.

, 1979, “A Continuous Time Approach to the Pricing of Bonds”, Journal of Banking and
Finance,, (3), pp. 133-155.

Cogx, J. C., 1975, “Notes on Option Pricing I: Constant Elasticity of Diffusions”, unpublished draft,
Stanford University.

Cox, J. C, J. E. Ingersoll and 8. A. Ross, 1978, “A Theory of the Term Structure of Interest Rates”,
Research Paper No. 468, Stanford University.

Dothan, U. L., 1978, “On the Term Structure of Interest Rates”, Journal of Financial Ecammms
(6), pp. 59-69

Malinvaud, B., 1966, Statistical Methods of Econometrics (North Holland, Amsterdam),

Park, R. E., 1966, “Estimation with Heteroscedastic Ervror Terms", Econometrica, (34), p. 884.

Parks, R. W, 1967, “Efficient Estimation of a Systern of Regression Equations when Disturbances are
both Sel'm].l),r and Contemporaneously Correlated”, Journal of the Amencnm Statistival Associ-
ation, {62), pp. 500-609.

Pesando, J. E.,, 1978, “On the Efficiency of the Bond Market: Some Canadian Evidence”, Journal of
Political Economy, (86), pp. 1057-1076.

Richard, S. F., 1978, “An Arbitrage Model of the Term Structure of Interest Rates”, Journal of
Financial Economics, {6} pp. 33-57.

Ross, 8. A., 1976, “The Arbitrage Theory of Capital Asset Pricing”, Jowrnal of Economic Theory,
(13), pp. 341-360.

Sharpe, W. R., 1963, “A Simplified Madel for Portfolic Analysis”, Management Science, (9), pp. 277-
293.

Vasicek, 0., 1977, “An Equilibrium Characterization of the Term Structure”, Jowrnal of Financial
Economies, (8), pp. 177-188.

DISCUSSION:

STEPHEN M. SCHAEFER*

Progress on the problem of the term structure since the 1940’s has been meagre.
In contrast, the work of the present authors, and the related work referenced in
their paper, represents a highly promising line of thought. In these models, as the
authors explain, the value of a hond of any maturity is expressed as a deterministic
function of 4 number of state variables. In the present paper, the state variables
are taken to be two interest rates—a short rate and a long rate. The authors
suggest—and I fully agree with this—that models of this type may be of practical
use in bond portfolio management, perhaps the most obvious example being
performance measurement.

Before passing on to the details of the paper, we might consider for a moment
the question of whether models of this kind are properly viewed as a “theory” of
the term structure. After all, to put it simply, the theory of the term structure
concerns the economics of the relationship between the long rate and the short
rate. However, the Brennan and Schwartz model determines interest rates on
intermediate maturity instruments given the long and short rates. Thus the
present paper might be viewed as presenting a theory which reduces the dimen-
sionality of the term structure problem, rather than providing a theory of the
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