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JOUBNAL QF FINANCIAL AND QUANTITATIVE ANALYSIS VOL 19, NO 4, DECEMBER 1984

A Two-Factor Model of the Term Structure: An
Approximate Analytical Solution

Stephen M. Schaefer and Eduardo S. Schwartz*

Abstract

This paper develops an approximate analytical solution to a twa state-variable model of
the term structure similar to the one proposed by Brennan and Schwartz. Unlike the BS
model, which was based on the consol rate and the short rate of interest, our madel is
based on the consol rate and the spread (i.e., the difference) between the consol rate and
the short rate. This change, merely a redefinition of variables, is made to exploit an as-
sumption, for which there is substantial empirical evidence, that these two variables (the
consol rate and the spread) are orrhogonal. Employing orthogonal state variables provides
the key simplification in providing an approximate solution to the fundamental valuation
equation.

. Introduction

The literature on the continuous-time approach to the term structure can be
divided into three parts. First, Vasicek [12] Cox, Ingersoll, and Ross [7] and
athers have described models in which the short-term rate of interest is the single
state variable. While these models generally admit closed-form solutions, their
empirical promise for pricing nominal bonds is limited because they imply that
all bond returns are lacally perfectly correlated and that the long-term interest
rate is a constant. Although there are, so far, no formal empirical tests of these
models, casual empiricism and sotne indirect tests [9] suggest that their perfor-
mance will not be goad. The second group consists of models involving two state
variables but where neither is an asset price. Two examples are the madels given
by Richard (190] and Cox, Ingersoll, and Ross [7]. The empirical implications of
these models are more plausible but the state variables on which they are based
(e.g., the inflation rate and the “‘real rate’”) often are not easily observed. Lastly,
in the third group we have models based on two state variables both of which are
readily observable and where at least ane is an asset price. The main examples
here are a series of papers by Brennan and Schwartz (3], [4], and [5]. Brennan

* University of British Calumbia, Vancouver, BC, Canada V4T 1Y8, and Lenden Business
School, London NWI 48A, respectively.
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and Schwartz (BS) have tested their model and the results are encouraging. The
major drawback of the BS madel is the absence of a closed form solution; instead
the model must be solved numerically.

In this paper, we pravide an approximate analytical solution to a model sim-
ilar to the one proposed by Brennan and Schwartz. Unlike the BS model, which
was based on the consol rate and the short rate of interest, our model is based on
the consal rate and the spread (i.e., the difference) between the consol rate and
the short rate. This change, merely a redefinition of variables, is made to exploit
an assumption, for which there is substantial empirical evidence, that these two
variables (the consol rate and the spread) are orthogonal. This idea was first pro-
posed and tested by Ayres and Barry (1], [2]; further empirical support is to be
found in Schaefer [11] and Nelson and Schaefer [3]. Employing arthogaonal state
variables provides the key simplification in providing an approximate solution to
the fundamental valuation equatiort.

The plan of the paper is as follows. In Section II, we present our model and
in Section [II we derive the approximate solution. In Section IV, we compare the
accuracy of this approximation with a full numerical solution. The results show
that, for typical parameters, the approximate solution gives results that are sur-
prisingly accurate. In Section V, we give our conclusions.

Il. The Model

In the spirit of Brennan.and Schwartz [3], [5], we assume that the prices of
all default-free bonds can be expressed in terms of two state variables. Like
Brennan and Schwartz, we take the cansol rate [ as one of the state variables.
However, as mentioned above, the second state variable is taken ta be the spread
s between the instantaneously riskless rate r and the consol rate; i.e., s =r — L
The consol rate is defined as the yield on a bond that has a constant continuous
coupon and infinite maturity. In a different analytical framework, Ayres and
Barry [1], [2] also use the spread and consol rate to madel the term structure.

Under our assumptions, we can express the value of any default-free bond
as V(s, {, 7, ¢) where 7 is the time to maturity of the bond and ¢ its coupon rate.
The state variables, s and {, are assumed to follow the system of stochastic differ-
ential equations

s
) dal

Bl(s, L,de + nl(s,i,r)dz[ .
B,(s,4,0)dr + 'r]‘.a(s,z,r)afz2 .

i

where ¢ denotes calendar time, and 4z, and dz, are standard Gauss-Wiener pro-
cesses with E[dz,] = E[dz.] = 0,dzi = dz? = dt, and dz,dz, = pdr; pis the
instantaneous correlation between the processes. (In the general derivation of the
model, we allow p to be nonzero. Later, when we specialize the model, we im-
pose the restriction that p equals zera).

By following Cax, Ingersoll and Ross [7] and Brennan and Schwartg [3], it
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is easy to show that, under the assumptions above, the value of all default-free
bonds must satisfy the following partial differential equation

| 1 2
jnivm + MV, o+ jnzvu + Vs(ﬁl - )‘l'ﬂl)

2)
+V(ny/l=sl) -V, - Vs +H+c=0.

Here A, is the market price of “*spread’’ risk and is at most a function of s, { and

t, but independent of the maturity of the bond. Ta derive {2}, we have used the

fact that the consol rate is inversely proportional to the price of the consol bond

that must also satisfy the diffential equation.! The bond must also satisfy an ap-

propriate boundary condition determining its maturity value Vs, /, 0, c).

In this paper, we are concerned with default-free discount bonds and the
term structure of interest rates, so in what follows we will set ¢ = 0. In a perfect
market, any straight coupon bond can be valued as a portfolio of discount bonds,
80 there is no loss of generality in this analysis.

To solve equation (2), we must make specific assumptions about the nature
of the stochastic processes given in (1) and about the functional form of the mar-
ket price of spread risk, A,. We assume that the spread follows an Ornstein-
Uhlenbeck process: a mean-reverting pracess with a constant variance. This pro-
cess has been used previously by Vasieek [12] to model the short-term rate, ».
However, it is prabably more reasonable to assume that the spread rather than the
short rate follows a process of this kind because it allows negative values. Also,
the spread is more likely than the short rate to have a fixed mean, a point recog-
nized by Brennan and Schwartz [5] in their specification of the joint process for r
and L

Like Brennan and Schwartz, we assume that the variance of changes in the
consol rate depends on its level. However, the process we assume for the consol
rate follows [7] in making the variance proportional to its level. The specific
form of the stochastic process assumed is, therefore

(3a) ds = m(p — s)dr + ydz

(3b) di = B,(s,L,n)dr + cﬂafz2 .

In (3b), we have left the drift term in general form because, as we have already
seen, any drift would be compatible with equation (2}.

From this point, we shall also assume that A, the market price of spread
risk, is a constant, A.? [n addition, we now take into account the empirical regu-

! This has allawed us to substitute B, — A1, = i/ — s/ in the coefficient of V, in equation
(2}, where X, is the market price of the consal rate risk.

? Without grear difficulty, the madel could be generalized ta include the case where & | is a linear
function of s.
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larity, mentioned earlier, that the spread is uncorrelated with the long rate and set

p = (. Under these assumptions, equation (2) for a discount bond becornes
1 2 1 2 .
7Y Ve 507V + Vom(l — 3)

+ Vot sy~ eV -V, =0,

{4)

subject to the terminal boundary condition

(5) Vis,£0y = L0,
where
f Ay
o= p-=.

Equation {(4), subject to boundary condition (3), is the valuation equation of our
model for discount bonds. Unfortunately, it has no known closed-form solution
and so, in general, numerical procedures would be required for its selution. In
the following section, we present an approximate analytical solution to this
problem.

lll. An Analytical Approximation

The procedure we used to obtain our approximation is to derive the exact
solution to an equation that is closely related to (4). We are able to solve this
related equation by separating it into two parts: one part depends only on s and
the other depends only on {. The related equation is identical to (4) except that the
term s in the coefficient of V; is a constant, §

Lo 1 29 oo . S72 s T OO
© YVt 50 Wyt V(=) + V(0" —18) = (1+5)V -V, =0,
with boundary condition
(7) Vis,,0) = 1.0
The solution to (6) subject to (7) can be written? as
(8) Vis,hr) = X0 Y,
where X (s, 7) is itself the solution to

1 2 .
(9) 7Y X . +tXm({l—-s5)-—sX-X =0,
with terminal boundary condition
(10) X(s,0) = LO,
and ¥Y{!, 7} is the solution to
Ls2ry P\ -l —¥ =0
(n 77 u+(“’ )s_ k=
3 See [6], p. 33.
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—

with boundary condition
(12) Y(L0) = 1.0 .

Equation (9], in s, 1s essentially the same as the valuation equation, in r, derived
by Vasicek (12). The solution is

X(s,7) = exp L—;(l - exp(—m'r))(sx — s) — 75,

(13) )
Y 2
- ——3(1 —exp({—m1r)) |,
4
where
2
n Ly
S, = -z
2,72

Similarly, equation (11}, in {, is isomorphic to an equation in r given by Cox,
Ingersoll, and Ross [7]. The solution to (11} with boundary condition (12) 1s

(14) Y(i7) = A(Tyexp[-B(1){] ,
where
. Qaexp{(§ + o)r/2} 2
Al = [(f T a)(expat) — 1) + Za} ’

2(expar) — 1}
(§ + ay(explar)y — 1) + 2w

B(1) =

1

and
o = Js“l + 207

The product of equations {13) and (L4} is the solution to equation (6), subject to
boundary condition (7). Thus, the yield on a pure discount with maturity 1 is
given by ’

(19 R{s\im)y = —

an v,
T

= 5, — F('r)(sao - s) + G(1) + %{B(T)Z — LonfA(T))},

where 5.., A{7) and B (1) are as defined above,

F(r) = (l—exf[:r(r—m'r))’

and
YZ 2
G(r) = —5(1 - exp(—m1))”
dm™ T
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Equation (15) is used in Section 1V, where we compare yields from our approxi-
mation with those from a full numerical solution to equation (4).

The remaining task is to specify the value of 5§ to be used in equation (14).
For this purpose-—~but not, of course, in deriving the solution to (6)—we ignare
uncertainty in both the original equation (4) and the related equation (6).# These
equations then become

(4" m(h = )V, + (0" = Is)V, = 1+ HV =V, = 0
(6" m(— )V, +{a* — 1)V, -+ HV -V, = 0,

Both of these equations, with boundary conditions (5) and (7), respectively, can
be solved analytically. The value of § used in our approxiration is the one that
makes the solutions to (4') and (6"} equal. The details of the solution are in the
Appendix.

In general, § will depead on the current values of s and { and the time to
maturity of the discount bond, in addition to the parameters of the stochastic
processes. This means that the yield on a pure discount bond is not, in general, a
linear function of s and ! as equation {15) might suggest.

This completes the description of the approximate analytical solution. [ts
usefulness will depend on its accuracy in pricing bonds for realistic values of the
parameters of the equations. In the following section, we compare the analytical
approximation (V) with the numerical solution to the true equation (V) for rea-
sonable values of the parameters of the equation.

IV. Accuracy of the Approximation

In this section, we compare yields obtained using the analytical approxima-
tion, represented by equations (8), (13), and (14) with those obtained by the nu-
merical solution of the exaet equation (4). The nurmerical procedure employed
was the Alternative Direction Implicit (ADI) method as described by McKee and
Mitchell [8].

In our caleulations, we used the two sets of parameters shown in Table 1.
The first set, the Base Case, reflects values of the same order of magnitude as
those reported in [3] and {9]. Because in computing § we have ignored the sto-
chastic part of the processes for s and ! (see equatians (4’ and (8"}), we wished to
investigate the sensitivity of the approximation to an increase in variance. Ac-
cordingly, in the High Variance Case in Table 1, the standard deviation of the s
and { processes have doubled. In all our calculations, we have assumed a zero
value for A. This is unlikely to influence our results to the extent that, for every
nonzero value of A, there is a corresponding value of . that would leave the
value of L unchanged (see the definition of L after equation ¢{4)}. In practice, the
value of A {or alternatively (i) must be estimated from bond prices (see [S]).

41t is to be assumed that because of this the approximation will be less accurate for higher
variances. Far our purposes, however, the relevant question is the effect an bond prices and yields for
reasoniable vafues of the parameters. The effect of this simplification on bond prices and yields is
examined in Section IV,
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TABLE 1
Parameters of Stochastic Process and Market Price of Spread Risk

Base Case High Variance Case
m o= 72 m = 72
W= —.01 wo= -0
vy = 007 v = 014
o? = 0003 ol = 0012
A= 0 A= 0

Stachastic Process
ds = miw ~ 8)dt + ydz,
i = g idz,

We have carried out two tests of the accuracy of the approximation. First,
we compared the yields on discount bonds estimated with the approximation with
yields computed from a numerical solution of the exact equation. In evaluating
these comparisons, we must remember that the numerical solution itself is sub-
Jject to error. The second test was to use the approximation to calculate the price,
and from this the yield, on a consol. This computed vield can be compared with
the value of the consol yield, which is an input (state variable} in the model. This
latter test investigates the internal consistency of the model without relying on
comparison with a numerical solution.

Table 2 reports summary statistics on the difference between yields on dis-
count bonds computed using the approximation and yields derived from the nu-
merical solution. The most relevant results are given in panels a and ¢. Panel a
uses the base-case parameters and gives summary statistics for a range of values
of the spread between — 3 percent and + 5 percent and values of the cansol yield
between O percent and 20 percent. The resuits show that for maturities of be-
tween one and twenty years the maximum absolute error was 3.25 basis points.
The mean errars are less than one basis point for 21l maturities and the root mean
square reached a maximum of 1.24 basis points at 20 years. Errors of this magni-
tude can safely be ignored for empirical purposes.

With the higher variance {panel ¢} and the same range of valuves for s and /,
the maximum absolute error rises to 8.59 basis points. However, the root mean
square error is helow 4 basis points at 20 years and this level of accuracy would
be acceptable for most purposes. These results give some support to the conjec-
ture in footnote 4 that the approximation would be less accurate for higher vari-
ances. We emphasize that the parameters used in panel ¢ are high compared with
those typically observed in post-war U.S. data.

Panels b and 4 show that the errors are larger for extreme values and s and {,
but here again the maximum absolute error is only 9 basis points for the base-
case parameters and 2| basis points for the high variance case.

For Table 3, we used the approximation to calculate the price of a consol.?
The table shows the yields implied by these prices and these yields should be

5 We actually camputed the price of a 200- year annuity.
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TABLE 2

Summary Statistics on Differences between Approximate Analytical Salution and
Nurmnetrical Solutian

Tieme ta Differences {Basis Points)
Maturity Raot Mean Mean

{(Years) Mean Square Absolute Maximum Minimum

Fanel a: Base Case Paramaters with Spread Range + 5% and Cansol Range @, 20%

1 0.84 1.11 1.1 2.08 -1.497

3] 065 0.80 0.74 146 -0.97
¢ 0.37 0.58 .49 1.24 -0.73
15 a.12 Q.75 0.81 2 46 -1498
2Q -0.03 1.24 0.28 274 -3.25
Fanel b Base Case Parameters with Spread Range = 10% and Cansol Range 0. 25%

1 0.80 1.30 1.1 323 -1.97

5 .40 0.85 075 1.46 -3.00
1Q Q.15 .89 4.72 1.28 -356
15 -0.03 1.60 1.21 310 ~551
20 —-0.22 288 217 6.67 -9.08
Panel ¢: High Variance Case with Spread Range + 5% and Consol Range 0, 20%

1 (.59 Q.81 Q.71 1.57 -1.56

5 013 .49 Q.41 106 -1.18
10 -0.74 1.35 1.05 1.40 —~379
15 —1.21 236 174 3.07 -6.33
20 -1.20 351 269 6.88 -8.599
Panel ¢ High Variance with Spread Range + 10% and Consol Range 0, 25%

1 0.55 1.08 .90 290 -1.43

) —0.25 1.01 .68 1.06 —4.67
10 ~1.17 233 1.59 1.43 -8.31
15 -1.57 4,34 315 7.61 —-13.80
20 —1.30 7.30 552 17.77 -20.81

Nates: 1. Base case parameters are those given in Tabie 1,
2. High variance case parameters are thase give in Table 1 but with standard
deviations daubled:; ie, v = 0.014 and ¢ 2 = 0.0012.

compared with the consol yield used in the computation. In Panel a, which gives
the results for the base-case parameters, the maximum error is 4 basis points and
this occurs for a consol yield of 5 percent and a + 5 percent spread (i.e., a 10
percent short rate).

[t is interesting to point out that in these results, the implied yields for high
values of the consol yield are extremely accurate whereas, in the comparison
with the numerical solution, it is precisely in these areas, for long maturities, that
the ervor is greatest. The reason for this, of course, is that when interest rates are
high, even relatively large errors in spot rates for long maturities have little effect
an the prices of consols and of long-term bonds in general. In other words, it
seems that the approximation is least accurate where it matters least.

In Panel b of Table 3, we give the corresponding results for the high vari-
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TABLE 3

Intarnal Consistency of the Analytical Approximation
{Entries are computed consol yields (annual} in percent.)

Spread
Consal Yield —5% 0% + 5%

Fanel a: Base Case Parameters

5 4.99 501 5.04
10 9.99 1000 10.01
15 14.99 15.00 15.01
20 20.00 20.00 20.00
25 2500 25.00 25.00

Panel &: High Variance Case Paramaters

5 535 5.45 5567
10 10.01 10.07 10.14
15 1497 15.00 15.04
20 1998 20.00 2002
25 24.98 24 99 25.01

ance case. As we waould expect, the results are less accurate, particularly for low
values of the cansol yield.

V. Conclusion

A significant barrier in the implementation of continucus time models of the
term structure is that realistic models generally have no closed-form solutions.
The purpese of this paper has been to present a madel that is empirically relevant
and to develep a method for obtaining solutions of adequate accuracy without
resarting to a full-scale numerical solution. The conclusive test of the model and
the approximation i, of course, in testing it using actual data. This will be the
subject of further research by the authors.

Appendix

In this appendix, we describe aur procedure for caleulating §. This is equiv-
alent to selving equations (4') and (6) and then deriving the value of § that
makes the solution to (§°), which depends on £, equal to the solution to (4'),
which does not. To solve (4') and (6'), it 1s useful to view the solution to (4)—
the ““true’ valuation equation—as an expectation.

Cox, Ingersoll, and Ross [7] have shown that the solution to (4) can be
written as

(Al) V(sit) = E_ | exp -j(s(r) + I()dey|
0
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where E() denotes expectation with respect to the risk-adjusted processes for s
and {. For our problem, the risk-adjusted versions of the original processes (3a)
and (3b) are

(A2a) ds = m(Q — s)dr + ydz |
and
(A2h) dl = (02 — sl)ds + ¢ ldz,.

For the purposes of computing §, we ignore uncertainty in equation {Al). Thig
allows us to write (A1) as

(A3) Visd,m) = exp[—js(r)dt]cxp{—[i(r)dt],
] 4]

where 6(-] is the solution to (A1} under certainty, and where the paths of s and /
are described by the following pair of deterministic differential equations

ds

(Ada) o = M =5,
and

!
(Adb) % =a° —sl.

To compute V, we must solve the system (A4) with initial conditions s = sqand {
= [y forz = 0 and then compute the two integrals in (A3). This is trivial for s but
nontrivial for {. This latter calculation is equivalent to computing the mean of {
from time zero to time 7, that is

(AS) ! = 1sz: .
TO

The solution to the system (A4), and, therefore, to (AS), depends on whether the
initial value of 5 (s4) is greater than, equal to, or smaller than ji. Thus we have
a) Forsy = i,

: exp( - Vo) V'l . a’y(a.V, v)] i AR

B mT = (n — a)n!
(A62)

PT

UF(OL) f:r_2
Zrz[‘(a—[—n+l) am

n=1
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{b) Forsy =1,
2 2
o

T

_ IOfL -a
{A6h) = —5—( —exp(—fin)) +
iy

(c) Forsy, <{,

. r lexp(VIViim  y* = prFr
[:,_.(L_H:__,(@,O_.F_O.k .__0___...._

i P o (e + myn!

a (n — a)n!

y lv‘r—a _ Vﬂ—u . i(‘_ l)n(von—uc . ":a—u:)‘|

(A6e) :z(l ()
1 B -V
_E|:m'r + ; (n)on! ]
(=) — ew(-13) | &xfng) - 1(n)
_[ o+ 1 O+HZ§ (c[z+n)n! ’
where
v, = L; all

V. = Vyexp(—mr)

=]
]

= B8
m

['(x) is the gamma function

o

Fx) = f{x”'exp(—r)dr,
i

and y{p, x} is the incomplete gamma function
I

Yp.X) = jtp_lcxp(—r)dr,

1]

Under equation (6), the risk-adjusted process, corresponding to (A2 a-b),
gives rise to the following pair of deterministic differential equations {(which cor-
respond to A4 a-b)

d .
(A?a) d_i = m(“" - S) '
(A7b) % =g 4.
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Equations (A7a) and (A4a) are identical, but in (A7b) the coefficient of ! is a
fixed parameter, §, rather than the variable s that appears in (Adb). We now
choose §, so that the values of V, under (A7a-b) and under (Ada-b), are the same,
Because the process for s is identical in the two systems, the value of V is pre-
served if the mean value of { under {A7h) is the same as the mean value of { under
(Ada-b). The latter is given in equations (A6a-c); the former is easily obtained
as’

(A8) T e 1
= ———— (1 — exp(—§1)) + — .
o :

Equating (A8) and (A6) we obtain a nonlinear equation for § that can be easily
selved numerically. Comparing (A8) with (A6b) we see that when s, is equal to
fiL, then § is also equal to (.
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