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Savings bonds, retractable bonds and callable bonds are each equivalent to a straight bond
with an option. Neglecting default risk the value of these contingent claims depends upon
the riskless interest rate. This paper employs the option pricing framework to value these
bonds, under the assumptions tl.at the interest rate follows a Gauss—Wiener process and that
the pure expectations hypothesis holds.

I

The savings or parity bond, the retractable or extendible bond and the
callable bond are, like the convertible bond, distinct types of fixed income
security which represent contingent claims. Two major questions arise with
respect to these securities: how they should be valued, and how the party who
holds the option to cash the savings bond, to retract the retractable bond, or
to call the callable bond, should exercise his option; these two issues are
logically inter-related and are the subject of this paper.

The savings or parity bond is a fixed income security with a given maturity,
which can be cashed at par at the discretion of the holder: it is in effect a
payable-on-demand loan with a predetermined interest rate. Such securities
are frequently used by national governments to tap the savings of small investors,
and often specify that only a limited amount of bonds may be heid by any
individual investor: examples include the U.S. Savings Bond, the Canada
Savings Bond, and various similar instruments issued in the U.K. The bond
may be a discount instrument, as for example, the Series E U.S. Savings Bond
which have an original maturity of five years and permit redemption at an
escalating series of redemption prices, designed so that the rate of return from
holding the bond rises as the length of time the bond is held increases; or the
bond may be a coupon instrument redeemable at par, as for example the
Canada Savings Bond, and the Series H U.S. Savings Bond. The coupon
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stream may be either level or rising through time: the latter scheme has the
effect of discouraging purchasers of the bond from redeeming them early.
Occasionally, coupon rates on outstanding issues of Canada Savings Bonds
are raised, also to discourage redemptions, at a time of rising interest rates.
This change in the terms of an outstanding issue is formally equivalent to the
redemption of the outstanding bonds and the issuance of new bonds, but is
preferred by the issuer and the holder, since it eliminates the transactions costs
that would otherwise be incurred.! The coupon bearing savings bond is identical
in concept to the parity bonds issued from time to time by Provincial Govern-
ments and Crown Corporations in Canada: as its name implies, the parity bond
is redeemable at par at any time. While thin secondary markets for parity
bonds exist occasionally, savings bonds are typically non-transferable so that
they cannot be sold, and no secondary market for them exists; however, this
presents no obstacle to the investor in an efficient capital market since the bond
can be priced and the optimal exercise strategy determined even if trading of
the bond is not allowed.

The guaranteed yield and guaranteed redemption value of these instruments
permit the purchaser to profit by declines in interest rates while protecting him
from the capital loss associated with rises in interest rates: as a result, such
bonds may be floated on a Jower yield basis than straight bonds of similar risk
and maturity. In fact, however, savings bond yields are sometimes set above
the yields on comparable straight debt instruments, while the type of purchaser
and the amount that may be purchased is restricted. Thus in the United States,
‘during World War 11 and the early postwar period, yields to maturity of all
series of savings bonds exceeded yields on long-term governments; and indeed
the E-bond rate generally exceeded market yields on Aaa corporate bonds’.”
In Canada, savings bond issues frequently yield more than regular Government
of Canada bonds of equivalent maturity as shown in table 1. Although the two
yield series in this table are not directly comparable since the Government of
Canada bonds were not selling at par and so offered some tax advantages as
well as differing in their duration from the savings bonds, it does seem that on
occasion the Canada Savings Bonds have offered a remarkable bargin to those
eligible to purchase them.

Savings bonds present a decision problem to the investor who must decide at
what time to redeem them. It is clearly not optimal to redeem them if the yield
on equivalent straight bonds is less than the coupon rate on the savings bond,
and it is possibly not optimal to redeem even if the yield on straight bonds
exceeds the coupon rate on the savings bond, either because the coupon rate
on the savings bond rises through time or, more generally, because of the possi-
bility that bond yields will rise even higher in the future. Therefore the investor

) 'The cost to the government of redeeming a Canada Savings Bond and issuing a new bond
is of the order of 1% of the face value of the bond.
2Hanc (1962, p. 24).
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must weigh carefully his current yield disadvantage against the possibility of a
capital loss if he switches into the straight bonds. Savings bonds also present a
valuation problem to the issuer who must determine the terms of the issue so
that the bond is attractive to purchasers, but not so attractive as to be unneces-
sarily expensive to the issuer: in a perfect capital market the terms will be set
50 that the market value of the savings bond, if it were traded, would be equal
to the par value at time of issue.

Table 1

Comparative yields of newly issued Canada Savings Bonds
(C8B) and Government of Canada Bonds (GCB) of similar
maturity.

Date of CS58: Yield GCB: Yield Gross sales

issuc to maturity to maturity of CSB
28] (7a) $(billion)
11.1.68 6.75 7.31 3.13
11.1.69 8.00 8.44 4.74
11.1.70 7.75 8.18 1.76
11.1.71 7.19 6.26 2.53
11.1.72 7.30 6.56 1.78
11.1.73 7.54 7.83 1.06
i1.1.74 .75 7.86 6.00
11.1.75 9.38 9.06 3.47

Although savings bonds appear to have received comparatively little attention
in the literature,” this neglect cannot be attributed entirely to their unimportance.
The total of Canada Savings Bonds outstanding in Canada is in the order of
$17 billion representing 39 9/ of the debt of the Canadian Federal Government,
and in the United States the $64 billion of savings bonds outstanding in 1975
was equal to 21 % of the total marketable debt of the Federal Government.

Retractable and extendible bonds, unlike savings bonds which are issued
primarily by governments, have been uscd as a financing instrument by private
corporations in Canada, and were especially popular in the late 1960’s. A retract-
able bond is a long-term bond which, at the holder’s option, may be retracted
or redeemed on a specified date prior to expiration.* For example, the Guif
Oil of Canada 81’s of 1989, issued in December 1969, were prepayable in
December 1974 at the holder’s option, exercisable between June 1973 and June

35ce however Burreil (1953) and Hanc (1962).

“Note that the distinction between a savings bond and a retractable bond is akin to the
distinction between American and European options, in that the savings bond can be redeemed
at par at any time before maturity, while the retractable bond can be redeemed at par only
at a specified date.



70 M.J. Brennan and E.S. Schwartz, Savings, retractable and callable bonds

1974.5 An extendible bond is similar to a retractable bond, but is nominally
a shorter-term instrument which may be extended for a longer period at the
holder’s option, possibly at a higher coupon rate. An example is the Bell
Telephone of Canada 8’s of 1977, issued in May 1969, and exchangeable at
the holder’s option from November 1970 to November 1975 into 8% % bonds
due in May 1990: in this case, the higher coupon rate available upon extension
may make it advantageous to extend the bond before the last possible date.
Since this paper is expository in nature, we make the simplifying assumptions
that the extension/retraction decision must be made on a single specified date,
that the option elected takes effect immediately, and that only a single coupon
rate is specified: generalization of the methods employed here to take account
of the specific features of individual bond indentures is straightforward. With
these simplifying assumptions, retractable and extendible bonds are identical
and each is equivalent to either a long-term bond with a put option on the bond
exercisable on the extension/retraction date, or a short-term bond together with
a call option on a long-term bond exercisable on the extension/retraction date:
in either case, the exercise price of the option is equal to the par value of the
bond.

The attraction of extendibles and retractables to corporate issuers is that they
permit the issuance of a long-term bond in the case of a retractable or a medium-
term bond in the case of the extendible at a lower coupon rate than would be
required on an otherwise similar straight bond. On the other hand, the corpora-
tion faces the risk, not present with a straight long-term bond, that the bonds
will be redeemed early if interest rates rise.

Given our assumptions about the nature of the investor’s option, his optimal
exercise strategy is straightforward: he should retract the bond if, on the
retraction date, the value of the bond, unretracted, is below par value: other-
wise, he should not exercise the retraction option. Hence, the major problem is
that of valuing the retractable bond.

Callable bonds are much more familiar to students of finance and have been
extensively analyzed in the literature.® However, none of the earlier analyses
have explicitly treated the problems of valuing callable bonds and of deter-
mining an optimal call strategy within the option pricing framework which
has proved such a versatile tool for the analysis of financial instruments since
the seminal work of Black—Scholes (1973) and Merton (1973). For an excellent
review of recent developments in option pricing see Smith (1976).

In the following section we show that, under certain assumptions about the
term structure of interest rates, the value of all three instruments must obey
the same partial differential equation, which is almost the same as the equation

5Tt was clearly optimal for the investor to delay his decision on retraction to the last possible

date.
6See Elton and Gruber (1972), Jen and Wert (1966, 1967, 1968), Kalymon (1971), Pye

(1966, 1967), Weingartner (1967) and others.
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which must be obeyed by the value of a straight default-free discount bond.
However, the boundary conditions are different for the four different types of
bonds. We then show how this differential equation may be solved by numerical
methods for the different types of boundary conditions, and offer some numerical
examples. The paper concludes with an indication of possible extensions of this
type of analysis.

I

The stochastic nature of interest rates is central to the analysis of the three
instruments treated in this paper, and it is necessary therefore to start our
analysis from an assumption about the term structure of interest rates and its
stochastic behaviour over time. Lacking a well developed theory of the term
structure under uncertainty, we make the simplest possible assumption, namely,
that the pure expectations hypothesis holds, so that the instantaneous expected
rate of return on default-free securities of all maturities is equal to the instan-
taneously risk-free rate of interest.” We assume further that the instantaneously
risk-free rate of intcrest follows the stochastic process,

dr = p(r) dt+o(r) dz, 6y

where dz is a Gauss—Wiener process with E[dz] = 0, and E[dz?] = d¢. Without
a general equilibrium model of growth under uncertainty® the only restrictions
which may be placed on the functional forms u(r) and o(r) arise from the
existence of money: to avoid dominance by money the nominal interest rate
must be non-negative. A sufficient condition for this is that ¢(0) = 0 and
#(0) = 0 so that there is a natural absorbing or reflecting barrier at r = 0.

It is assumed that the capital market is perfect, with no transaction costs,
taxes, restrictions on short sales or other institutional frictions.

While callable bonds are issued by governments as well as corporations,
retractable and extendible bonds are issued only by corporations and are
therefore subject to default risk. We assume in the interest of simplicity that
all bonds discussed here are default free. The consequences of relaxing this
assumption are discussed in section V.

Given the above assumptions, the market value of any of the three securities
under consideration, which we denote generically by G, is a function only of
the current value of the riskless rate, r, and time, #, or, more conveniently, time
to maturity, t = 7—¢, where T is the maturity date, so that we may write the
value of the generic bond as G(r, t) where it is to be understood that the value
of the bond is also a function of its coupon rate and the boundary conditions.

"Note that under uncertainty this is not the same as assuming that forward rates are equal
to expected future spot rates.
8For an example see Merton (1975),
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Similarly, we may write the value of the pure discount bond, promising $1
at maturity, as a function of the current riskless rate and time to maturity,
B(r, 7).

Using Ito’s Lemma [McKean (1969)], the instantaneous return on the
riskless discount bond is given by

dB = B, dr+ B, dt-+1B,,(dr)%, (2)

where the subscripts denote partial derivatives. Then, since from (1),
dr? = ¢(r) dt, and dr = —dt, (2) may be written

d%? — —Bz+ll(r)%+%02(r)311 dH_U(")B1 dz. 3)

The pure expectations hypothesis implies that, since E[dz] = 0, the coefficient
of dt in (3) is equal to the instantaneously risk-free rate of interest, so that

36%(r)B; +p(r)By—rB—B, = 0. 4

Thus the pure expectations hypothesis implies that the value of a default-
free discount bond satisfies the partial differential equation (4). We assume that
the value of the bond tends to zero for very high interest rates at any time
prior to maturity, so that

lim B(r,7) =0, t©>0. )

Since the value of the bond at maturity is one dollar for sure, we have
B(r,0) = 1. (6)

The singularity of the diffusion coefficient at » = 0 yields a patural boundary
at the origin [see Feller (1952)]. Setting r = 0 in (4) and using a(0) = 0, we
have

u(0)B,(0, 1) — B,(0, 1) = 0. @)

Thus the value of a pure discount bond may be obtained as a function of
the instantaneous riskless rate and time to maturity by solving the differential
equation (4), subject to the boundary conditions [(5), (6), (N]. The solution
procedure will be described in the subsequent section. Observe that the whole
term structure of interest rates for a given riskless rate, r, is given by the values
of B(r, 7), T > 0, for the yield to maturity on a 1-period bond, R, is defined by

R, = -t 'InB(r,1, >0 (3)
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Applying Ito’s Lemma in a similar fashion to the value of the generic bond
under consideration,® its instantaneous rate of price appreciation is given by

dG = G, dr—G, dt+1Gy,(dr)?, 9)
so that, using (1) and dividing by G,
dG|G = y dt+6 dz, (10)

where

y = (=G, +u()G, +36%(r)G, )G and & = o(r)G,/G.

Similarly, using the pure expectations condition (4), (3) may be written as

dB/B = rdt+p dz, (1)
where
B = o(r)B,/B.
Consider forming a zero risk, zero net investment portfolio, consisting of

investments in the generic bond, the discount bond and the instantaneously
riskless security. Then, the classical hedging argument [see Merton (1973)]
implies that the value of the generic bond satisfies

16%(r)Gy, +1(r)G,—rG—Gy+c¢ = 0, (12)

where ¢ is the continuous rate of coupon payment on the generic bond.

This partial differential equation differs from that which must be satisfied
by the discount bond (4) only by inclusion of the coupon rate, c. It is apparent
that (12) is the requirement that the expected rate of return on the generic
bond, including both coupun and price change, be equal to the instantaneous
risk-free rate. Thus we have established that, if the pure expectations hypothesis
holds, it must also hold for default-free parity bonds, retractable bonds and
callable bonds. Fq. (12) may be regarded as the analogue of the Black-Scholes
differential equation, where here the underlying stochastic variable is the level
of interest rates, rather than the value of a common stock, as in their case;
note however the assumptions about the stochastic structure of interest rates
which were required to obtain (12).

9We use the term ‘generic bond’ to refer to savings bonds, retractable bonds and callable
bonds.
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While the market values of the three different types of bond we have collec-
tively labelled ‘the generic bond’ satisfy (12), they differ in the nature of their
contingent claim and therefore in the boundary conditions which must be
satisficd by the solution to the differential equation. It is of course these different
boundary conditions which give rise to the different market values of the three
instruments: we consider them in turn.

(i) The savings bond

The bond is assumed to have a par value of unity so that at maturity, © = 0,
the bond vaiue is unity for all values of r, yielding the terminal value condition,

G(r, 0) = 1. (13)

The assumed singularity of the diffusion coefficient at the origin yields the
natural boundary,

1(0)G1(0, 1) — G, (0, 1) +¢ = 0. (14)

Finally, since the bond can always be redeemed at a predetermined value
p(7), it will be redeemed as soon as the market value falls to p(t), giving rise
to the redemption condition,

G(r, 1) z p(0). (15)

(ii) The retractable bond

The rectractable bond is assumed to have a par vaiue of unity, so that we
have the same terminal value condition (13). If the interest rate falls to zero, it
will certainty not pay to retract the bond so that we have the zero interest rate
condition (14). Further, we assume that for very high interest rates the value of
the bond approaches zero except at final maturity and the maturity correspond-
ing to the retraction date, z,,

lim G(r,7) =0, ©>04#1,. (16)
r—»w0
On the retraction date, it will be optimal for the investor to retract if the
redemption value of unity exceeds the value of the bond if it is not retracted:
using 7, to denote the time to maturity of the bond at the instant after the
retraction date, this latter value is given by G(r, 7,), so that the value of the
bond the instant before retraction G(r, 7)) is

G(r, t)) = max[G(r, 1), 1]. 17
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Since after the retraction date the retractable bond is equivalent to an other-
wise identical straight bond, G(r, ©;') is equal to the value of a straight bond
with maturity . and coupon rate c.

Finally, we observe that since the investor may at his option treat the retract-
able bond as a straight bond with a maturity corresponding either to the
retraction date or to the final maturity, the value of the retractable bond prior
to the retraction date can fall below the values of neither of these straight

bonds.

(iil) The callable bond

Again the maturity value of the bond is given by the terminal value condition
(13), and since the bond will never be called if the interest rate is very high, the
limiting interest rate condition (16) holds.

When the bond is non-callable the natural boundary condition (14) obtains.

Finally, the optimal call policy must be determined. While this has been
treated elsewhere [Brennan and Schwartz (1975), Ingersoll (1976)] for the case
of callable convertible bonds and the same considerations apply here, we
restate the argument briefly for the sake of completeness. First, the Modigliani—
Miller Theorem (1958) assures us that the value of a firm is independent of its
financing policies under reasonable assumptions, so that by adopting a call
policy which minimizes the value of the bonds, the issuing corporation will
ipso facto be maximizing the value of the equity, which we take to be the
objective of the management. The value of the bonds will be minimized if they
are called at the point at which their uncalled value is equal to the call price:
to call when the uncalled value is below the call price is to confer a needless
gain on the bondholders, while to allow the bond value to rise above the call
price is clearly incompatible with minimizing the value of the bond.'® Hence
the optimal call policy gives rise to the call policy condition,

G(r,7) £ 1, T < T, (18)

where 7, is the maximum maturity at which the bond may be called.

The results of this section are summarized in table 2 for the discount bond
and the three different types of bond under consideration. For notational con-
sistency we have used the expression G(r, t) to denote the value of the discount
bond also.

il

In general there will exist no analytical solution to the differential equations
which must be satisfied by either the discount bond or the generic bond, so that

towhile the above argument applies strictly to corporate bonds only, we assume that a
government should also minimize the value of its callable bonds.
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it is necessary to employ a finite difference approximation to the equations in
order to find a solution. The three sets of boundary conditions satisfied by the
different types of generic bond, and the distinct problem posed by the discount
bond require somewhat different solution procedures and we describe them in
turn.
We deal first with the savings bond, since the solution procedures for the
iscount bond, the retractable bond and the callable bond are somewhat

similar.

(i) The savings bond

Writing finite differences in place of partial derivatives, the differential
equation (12) which must be satisfied by the parity bond can be approximated
byll

UGy 4V G+ WGy = Gy vek,  i=1,..,1=1, (19

i-1.j
j=1,...,m,

where U,, V; and W, are known, and
Gir, 1) = G(ry, 7)) = G(ih, jk) = G; 3

h and k are the discrete increments in the interest rate and the time to maturity,
respectively. In the example which follows, these parameters were sel al
0.005% per month and one half month respectively. The number of steps in
the time dimension, 71, is chosen to correspond to the maturity of the savings
bond under consideration (mk = T), and n is chosen sufficiently large that the
redemption condition (15) holds as an equality, for some value of r smaller
than nh, for all t considered: larger values of r are irreievant since the differential
equation does not apply when the interest rate is so high that the bond has
been redeemed.

From the natural boundary condition (14), U, = 0, so that (19) is a tri-
diagonal system of n linear equations in the (n+1) unknowns G, ; (i = 0,
1, ..., m for each j, which may be transformed into

G i+ 0,Gry = Wy, i=0,...,n—1, (20)

e

where the cosfficients of (20) are known, given the values of G, ;_; (i =
1,...,n). (20) is a system of (1) equations in the (n-+1) unknowns G, ; (i = 0,
)

11See McCracken and Dorn (1964) for a detailed explanation.

F
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Given the terminal value condition (13), G; =1 (i=0,1,...,n), the
remaining values of G, ;(i = 0,...,n;j = 1, ..., m) are determined recursively
by the following procedure, which takes account of the redemption constraint
(15), written in the finite difference notation as

Gi,; z p(jk)- 1)

Set G, ; = p(jk) and solve for G from (20). If G,_, ; = p(jk) solve the
remaining equations for G, ;; if G,_; < p(jk), set G,_; ;= p(jk) and solve
for G,_, ;. Again check whether G,_, ; £ p(jk), and continue in this manner
until aset of G; ; (i = 0, ..., n.) is obtained which satisfies the first (n,) equations
of (20): the remaining (n—n,) values of G, ; are equal to p(jk). We have thus
obtained a set of G, ; values which satisfy the differential equation subject to
the redemption condition (21). The minimum value of i for which G, ; = p(jk),
i = n,, corresponds to the critical interest rate r,, above which the bond,
should optimally be redeemed (r. = hn.). Thus the solution procedure, in
addition to providing a value of the savings bond, G, ;, for each time incre-
ment, for the whole range of interest rates considered, presents the optimal
redemption strategy in the form of a time series of critical interest rates at which
the bond should optimally be redeemed: the critical interest rate is that interest
rate at which the bond if it were traded, would sell at par.

n—1,j

(i) The discount bond

In the case of the savings bond, the redemption constraint (15) avoided the
need to consider interest rates above the maximum critical interest rates, which
is finite. With the discount bond, and retractable and callable bonds, however,
there is no such natural limit on the range of interest rates to be considered,
the limiting interest rate condition (16) applying only as r — oo. It is therefore
necessary to transform the state variable so that only a bounded range need
be considered. We do this by defining the state variable as s(r), where

s(r) = 1)(1+r). (22)
Note that 0 £ s(r) < 1. Applying Ito’s Lemma to s(r),

ds = s, dr+%s,,(dr)?, (23)
and since s, = —s?%, 5., = 25°, we have, using (1) and the fact that r = (1 —s)/s,

ds = [—52(s) +5302(5)] dt — s%0,(s) dz, (24)

where

1x(s) = u(r) and  o4(s) = a(r).
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Using lower case letters to denote the bond values as a function of s and 7,
b(s,7) = B(r,t) and g(s,7) = G(r, 7).

Applying Ito’s Lemma to b(s, 1)

(E _ [_SZH*(S)"‘SSGi(S)]bl_b2+'12‘545;2k(5)b11 dt
b b
2
_s_%s)bl dz. 25)

Arguments similar to those presented in section IT imply that the coefficient
of dr in (25) be equal to r = (1 —s)/s, so that we obtain the following partial
differential equation for b(s, 7):

1—s
154 03b1s + [=5704(5) +5°03b —— b=b, = 0, 26)

and the boundary conditions corresponding to the limiting interest rate con-
dition (5), the terminal value condition {6) and the zero interest rate condition
(7) are

b(0, 1) = 0, 27
b(s,0) = 1, (28)
tx(Db;(1, 1) +b,(1, 7) = 0. (29)

Since the boundary conditions are in the form of equalities, the differential
equation (26) can be solved numerically by the methods described in McCracken
and Dorn (1964). Then, using the relationship between r and s, (22), we obtain
values of B(r, t) for different values of r and .

(iii) The retractable bond

Arguments similar to those just given for the discount bond lead to a differen-
tial equation for the value of the coupon paying retractable and callable bonds
identical to that derived for the discount bond (26) except for the inclusion of
the coupon, c,

1—s
%S“ai(S)gu+[—s2u*(s)+s3ai(S)]g1——s— g—g+c=0. (30)
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We know from (17) that the value of the retractable bond on the retraction
date is equal to the greater of unity and the value of a straight bond with the
same coupon and a maturity equal to the longer maturity of the retractable
bond. Let tj* denote the maturity of the retractable bond on the retraction
date. Then the value of the corresponding straight coupon bond may be com-
puted from the soluticns to the discount bond problem discussed earlier,
b(s, 7). In particular, b(s, 7) is the present value of $1 to be delivered in © periods
if s(r) = s(r = (1 —s)/s). Hence the value of the straight bond, R(s) is approxi-
mated by

R(s) = ck i* b(s, 1) +b(s, T}, @31

where c¢ is the coupon rate on the straight bond.
Now, measuring the maturity of the retractable relative to the retraction
date, we have as the maturity value condition,

g(s, 0) = max[R(s), 1]. (32)

Prior to the retraction date, the value of the retractable bond obeys the
differential equation (30). The boundary conditions which must be satisfied
correspond to s = 0 (r - o) and s = 1 (+ = 0) and are given from (16) and
(14) by

g(0,1) =0, T > 0, (33)
p*(Dg (1, 1) +g.(1,1)—c =0, 1>0. (34)

Differential equation (30) with its boundary conditions can be solved by
standard numerical techniques to obtain the value of the bond as a function of s
and hence also of the instantanecusly riskless rate, r.

(iv) The callable bond

The value of the callable bond, g(s, 1), satisfies the differential equation (30).
At maturity the value of the bond is given by the terminal value condition (13),
so that

While the bond is callable it satisfies the limiting interest rate condition (16)
and the call policy condition (18) which we write as
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g(l,)=0, >0, (36)

gs,70) =1, 1<, (37)

where 1, is the time to maturity at the first call date.

Since the solution to the differential equation (30) for the callable bond must
satisfy the inequality (37), as well as the boundary conditions (35) and (36),
it is derived by the same procedurc employed for the parity bond, which also
determines the optimal call policy as a function of s (or r) and 7.

When the bond is not callable the call policy condition is replaced by the
zero interest rate condition (34), and the differential equation (30) with boundary
conditions (35), (36) and (34) is solved by standard numerical methods.

v

While several alternative models of the stechastic process of the riskless rate
of interest have been proposed,'? no empirical evidence exists as to the relative
merits of these models. Since empirical estimation is beyond the scope of this
paper a simple stochastic process for the interest rate was assumed, to illustrate
the analysis of the previous sections. In particular we assume u(r) = 0 and
o(r) = ro (with o constant), which correspond to a driftless geometric Brownian
motion (o is taken as 0.045 per month).

To examine the implications of our assumptions about the term structure of
interest rates, we valued a pure discount bond considering all maturities up
to 20 years, and then used (8) to convert the bond values into yields to maturity.
This yielded a terim structure of interest rates for each value of the instantaneous
riskless rate. Three represeniative term structures are shown in fig. 1. The
assumptions we made about the term structure were, first, that the instantaneous
riskless rate follows a random walk without trend, so that the expected future
spot rate is equal to the current spet rate; and secondly, that the pure expecta-
tions hypothesis helds so that the expected instantaneous rates of return on
riskless bonds of all maturities are equal. As we observed in footnote 7 this does
not imply that the term structure of interest rates is flat; rather, as we see in
fig. 1, the term structure is downward sloping, so that forward rates are down-
ward biased estimates of future spot rates, the degree of bias increasing with
the current level of the spot rate. Thus, if the instantaneous riskless rate is
4.81 9, the yield to maturity on a 20 year bond is 4.48 9;, while a current spot
rate of 12.129; implies a yield to maturity on a 20 year bond of only 10.38 9.

128ee for example Merton (1975), Vasicek (1976) and Cox, Ingersoll and Ross (1976).
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Using the methods of sections II and IIT we valued:

(i) a 5-year savings bond with an 89 coupon rate;
(i) a 5-year bond with an 8%, coupon rate, callable at any time;
(ili) a 20-year bond with an 8%, coupon rate, retractable to 5 years.
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Fig. 1. Term structure of interest rates (for three alternative values of the instantaneous
riskless rate) derived from the pure expectations hypothesis when the spot rate follows a
geometric Brownian motion without drift.

To provide a standard of comparison we also valued a straight 5-year bond
with an 8% coupon rate. This was done by noting that B(r, 1), the value of a
discount bond promising $1 in 7 periods when the current riskless rate is r
is the present value of $1 in t periods when the riskless rate is r. Applying these
present value factors to the coupon stream and maturity value of a straight
coupon bond we may calculate the value of the straight bond for any assumed
level of the current riskless rate, r. The values of the three types of generic bond
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and the straight coupon bond are shown as functions of the riskless rate in
fig. 2.

The retractable bond may be regarded as a straight coupon bond plus the
option to purchase a 15-year coupon bond after five years. This option is most
valuable when interest rates are low so that at low rates of interest the value
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Fig. 2. Bond values as a function of the instantaneous riskless rate. Coupon rate: 8%. Time
to maturity: retractable bond, 20 years (retractable after 5 years) and others, 5 years.

of the retractable bond substantially exceeds that of the straight bond. At high
rates of interest it becomes less likely that the option will have any cxercise
value so that the value of the retractable bond approximates that of the straight
bond.

The savings bond is equivalent to a straight coupon bond plus an American
put option to sell the bond at par. At low interest rates the straight bond is
above par so that the value of the put option is low and the savings bond value
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approximates that of the straight bond. At higher rates of interest it becomes
optimal to exercise the put option so that the value of the savings bond becomes
equal to the par value of unity.

The callable bond is equivalent to a straight bond less the value of an
American call option to purchase the bond for the value of unity. Hence, unlike
the retractable and savings bonds whose values are never excceded by that of
the straight bond, the value of the callable bond is never greater than that of
the straight bond. At high interest rates, the value of the straight bond is
low so that the value of the call option is also low, and the callable bond value
is close to that of the straight bond. On the other hand, the optimal call policy
ensures that the value of the callable bond never rises above the call price of
unity which is therefore the upper bound for low interest rates.

In fig. 3 the values of the three types of bond we are considering are shown as
functions of the value of the straight coupon bond. In the figure the value of
the option feature on the bond is given by the distance of the bond value from
the 45° ray.

As we explained in sections II and IIT the valuation procedure also deter-
mines the optimal strategy for exercising the option inherent in the three types
of bond. The optimal strategy for the retractable is to retract if the value of a
15-year bond on the retraction date is less than par. For the savings bond and
the callable bond the optimal strategy for exercising the option is expressed as
a time series of critical interest rates at which the option should be exercised.
These are shown in fig. 4 and correspond to the critical interest rates for
exercising a call (the callable bond) and a put (the savings bond) on an 87;
coupon 5-year bond. The discontinuities in the critical interest rate series are
attributable to the discreteness of the solution procedure.

Finally, in order to compare the explicit coupon costs of financing with the
three different types of instrument we constructed table 3. In this table it is
assumed that all bonds are floated at par, and the table gives, for various
assumed coupon rates on a straight bond sold at par, the coupon which would
have to be placed on a savings bond, a retractable bond or a callable bond if
that bond were to be sold at par. The table was constructed by interpolating
to find the instantaneous riskless rate at which an X% straight bond would sell
at par. Then for each type of generic bond we found by interpolation the coupon
rate which would be required for it to sell at par, given that riskless rate. For
example, if an 89, coupon straight bond could be sold at par, the required
coupon rate on a savings bond would be 6.57%, on a retractable bond 6.85%,
and on a callable bond 9.45%.

A%

In this paper we have shown, under certain assumptions about the term
structure of interest rates, how three kinds of fixed income security, each of
which involves a different type of contingent claim, may be valued. The interest
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of the moedels developed lies in their explicit attention to the stochastic nature
of interest rates. Besides the possibilities for testing the models, further work is
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Fig. 3. Bond values at time of issue as a function of the value of a straight bond with the same
coupon rate: 8. Time to maturity: retractable bond, 20 years (retractable after 5 years) and
others, 5 years.

required in two major directions. First, the model of the stochastic process for
interest rates is high restrictive, and extension of the analysis to encompass
more general stochastic specifications would be highly desirable.
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Fig. 4. Critical riskless rate for exercise of bond options as a function of time: 8%, 5-year

savings bond and 8 %, 3-year callable bond.

Table 3
Coupon rates required for bonds to sell at par as a function
coupon required for the straight bond to sell at par.

Required coupon on

Coupon on
straight savings retractable callable
bond bond bond bond
2.00 1.63 1.67 2.19
3.00 2.45 2.50 3.33
4.00 3.25 3.35 4,53
5.00 4.05 4.21 5.78
6.00 4.89 5.08 6.83
7.00 5.74 5.96 8.26
8.00 6.57 6.85 9.45
9.00 7.38 7.75 10.62
10.00 8.20 8.65 12.06
11.00 9.06 9.55 13.07
12.00 9.91 10.46 14.27
13.00 10.77 11.39 15.67
14.00 11.63 12.33 16.62
15.00 12.50 13.28 18.20

16.00 13.36 14.24 19.27
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Secondly, while in this paper we have considered interest rates as the sole
stochastic variable, the analysis may be extended to the pricing of contingent
claims whose value depends not only on the level of interest rates, but also on
the value of some other security whose return follows a similar but distinct
stochastic process; examples of such contingent claims include not only the
convertible bond and convertible preferred share, but also warrants and other
option contracts, as well as corporate bonds subject to default risk.

Thus, suppose that the value of the contingent claim may be written as
G(x, r, 1), where x is the value of the underlying security which follows the
stochastic process,

dx = (ax—C)dt+ox dz, (3%)

where C is the rate of distribution to holders of the underlying security.

Then, considering the formation of a zero net investment hedge portfolio
consisting of investments in the contingent claim, the underlying security, a
long-term bond and the instantaneously riskless security, it may be shown that
the value of the contingent claim must satisfy the partial differential equation,'?

19°x*Gy; +0ypxGy,+46°G,,

+(rx—C)G,+uG,—G3—rG+c =0, (39

where ¢ is the continuous coupon payment on the contingent claim, and p is
the instantaneous correlation between the return on the underlying security
and the change in the riskless rate of interest. Given the boundary conditions
which are determined by the specific nature of the contingent claim under con-
sideration, this equation may be solved for the value of the contingent claim.

The equation should be contrasted with the similar equation also derived
by Merton (1973, eq. (34)), assuming that interest rates are stochastic. This
analysis avoids our strong assumptions about the term structure of interest
rates by assuming that the value of the contingent claim is homogeneous of
the first degree in the value of the underlying security and the value of a dis-
count bond with a maturity equal to that of the contingent claim. While this
assumption may be appropriate for a European type option which receives no
distributions, or for an American type option which will not be exercised prior
to expiration, it does not seem reasonable for a continuously exercisable con-
tingent claim which may also receive distributions; for such securities the
methods of this paper are more appropriate.

13See Merton (1970).
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