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Time-Invariant Portfolio Insurance Strategies
MICHAEL J. BRENNAN and EDUARDO 8. SCHWARTZ*

ABSTRACT

This paper characterizes the complete ¢lasa of time-invariant portfolio insurance strat-
egies and derives the corresponding value functions that relate the wealth accumulated
under the strategy to the value of the underlying insured portfolio. Time-invariant
strategies are shown to correspond to the long-run policies for a hroad class of portfolio
insurance payoff functions.

THE LINK BETWEEN PORTFOLIO insurance and investment strategy was first
noted by Brennan and Schwartz [5], who pointed out that insurance companies
that had guaranteed the minimum payments they would make under equity-
linked life insurance policies could hedge the resulting liahility by following an
investment strategy derived from the Black-Schales [4] option-pricing model.
FPure portfolio insurance without any element of mortality insurance appears to
have heen offered first by the Harleysville Mutual Insurance Company in 1971;
however, a lack of public interest in this product led to its withdrawal by 1979.
Despite this initial lack of success, there has been, in recent years, an explosive
growth in the sale of portfolio insurance strategies to institutional portfolio
managers.’

Under ideal conditions, a simple portfolio insurance strategy ensures that the
value of the insured portfolio, at some sapecified date, will not fall below some
specified level. This property may be of considerable significance to portfolio
managers if their investment performance is monitored on a periodic basis and
if poor performance is heavily penalized; it may also be of significance to the
owner of an investment portfolio that is held to meet some known set of future
liabilities. However, there are at least two difficulties with this simple type of
portfolio insurance. First, under almost all circumstances, a simple portfolio
insurance strategy is inconsistent with expected-utility maximization.? Second,
in many circumstances, the specification of the precise date on which the
insurance is to be effective is arbitrary because institutional investment portfolios
typically have no predetermined final date. Moreover, the specification of the

* Both authars from Anderson Graduate Schoal of Management, University of California, Los
Angeles. We would like to thank Fischer Black, an anonymous referee, and the participants in the
Finance Workshaps at UU.C. Berkeley and the University of British Columbia and the European
Finance Association Meetings in Madrid for their helpful comments on this paper. This research was
supported in part by a grant from Leland, O’'Brien, Rubinstein Associates.

! See Gatto et al. [9].

2The pioneers in the sale of portfolio insurance strategies were Leland, O'Brien, Rubinstein
Associates.

1 Gee Brennan and Solanki [6] and Benninga and Blume [2].
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effective date of the insurance induces an investment strategy that is strongly
time dependent.

Leland [14] and Brennan and Solanki [6] have generalized the concept of
portfolio insurance to payoffs that are arbitrary functions of the value of some
reference portfolio and have analyzed the types of function that will be optimal
for individuals with different tastes and expectations. More recently, Perold [19]
and Black and Jones [3] have popularized one of these functions and the
associated investment strategy; this is the function that is appropriate for an
individual with constant proportional risk aversion if the investment opportunity
set is stationary; as Merton {15] and Hakansson [10] had shown earlier, if the
investment opportunity set is constant, such an investor keeps a constant
propartion of his or her wealth in risky assets. Besides its obvious simplicity, this
constant-proportion investment strategy has the advantage over the simple
portfolio insurance strategy of being time independent.

It is known from the work of Mossin [18], Leland [13], Hakansson [11],* and
others that, for broad classes of utility functions defined over terminal wealth,
the optimal investment strategy hecames constant as the horizon recedes. Given
the indefinite horizons of most institutional investment portfolios, it is therefore
of interest to consider the class of investment atrategies under which the fraction
of wealth allocated to risky assets is independent of time. The constant-propor-
tion atrategy is, of course, one member of this class, while, for a finite horizon,
the simple portfolio insurance strategy mentioned above is not.

In this paper, we offer a complete characterization of the class of time-invariant
insurance investment policies and their associated payoff functions and present
some particular examples. The setting is one in which there is a single risky
portfolio and a riskless security. The return on the risky portfolio is assumed to
follow an Itd process with a constant variance rate, and the return on the riskless
security is assumed to be an intertemporal constant. Although there exists a
broad class of time-invariant portfolio insurance strategies that are optimal for
some risk-averse expected-utility maximizer as the investment horizon recedes,
we consider the whole class of time-invariant strategies and ignore the issue of
an appropriate objective function for an institutional portfolio manager.’ .

Section I provides a formal definition of time invariance and derives the main
results. The value functions yielded by the time-invariant investment strategies
are characterized in Section II. Section III concludes the paper.

L. Time-Invariant Strategies

We assume that P, the value of the underlying risky-asset portfolio (the insured
or “reference” portfolio), follows a continuous stochastic process of the general

“ Mossin [18] showed that, if the utility function is of the extended power claass, the optimal
investment strategy tends asymptotically to the constant-proportiona policy. These reaults were
extended by Leland [13], who examined the class of utility functions for which the measure of
constant relative risk aversion converges as wealth approaches infinity. Hakansson [11] offers bounds
on the utility function that are sufficient to yield the constant-propottions investment policy
asymptotically.

% Indirect evidence that institutional portfolio managers are not concerned with expected utility
mazximization is to be found in the popularity of simple portiolio insurance.
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type:
— = pdt + odz, (1}

where dz is the increment to a standard Gauss-Wiener process and p is the
(possibly stochastic) instantaneous expected rate of return on the portfolio.

Let V(P, t) denote the value at time ¢ of the funds accumulated under a
particular investment strategy, the “value of the strategy”, We shall be concerned
with investment strategies under which

(i) the fraction of the reference portfolio held can be written as a right-
continuous function of, at most, the current value of the portfolio and
time, z2(P, ¢},

(i1} the balance of the funds invested under the strategy, V(P, t) — z(P, t)P,
is held in the riskless security, which earns at the continuously com-
pounded rate, r;

(iii} no funds are added or withdrawn so that the strategy is “self-financing”
(we shall refer to such investment strategies as “(generalized) portfolio
insurance (investment) strategies™).

The basis of the Black-Scholes [4], Merton [16] option-pricing model is that
any terminal payoff function of the form y (P} can be achieved by following an
investment strategy of the type we describe and that the value of the funds held
under the strategy, V(P, t), t <= T, where T is the payoff date, satiafies a certain
partial-differential equation, The following lemma, which is related to a result of
Merton [17],7 states that the value function under any investment strategy of
this type is a function only of P and t and that it satisfies the Black-Scholes
partial-differential equation.

LemMa: Consider a self-financing investment strategy in which an amount
z(P, t)P is invested in a reference portfolio with a value that follows the stochastic
process (1) and the balance is invested in riskless securities. Then the value of the
wealth accumulated under the strategy may be written as V(P, t), where

(i) the volue function V(P, t) satisfies the Black-Scholes equation:
%o’ PV, + rPV, + V, - rV=0 (2)
and
(ii) z(P, t) = V,(P, t). (3)

Proof: Let H(w, t) denote the value function for the self-financing strategy
z(P, t) at time ¢, where w € Q is the state at time ¢. Then

H{w, t) = 2(P, t}P + B{w, t), 4)

S Cox and Leland [7] describe such investment strategies as “path independent” and show that
these are the only efficient investment strategies for an expected-utility maximizer if the investment
opportunity set is canstant.

? See also Cox and Leland [7).
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where B(w, t) is the amount of funds held in the riskless security. Since the
strategy is self-financing,

dH = 2dP + rBdt. (5)
Conasider the value function V{P, ¢). [td’s Lemma implies that
dV = V,dP + [V, + %e?P?V,,]dt. (6)

Camparing coefficients in (5} and (8), it is apparent that dV = dH if the value
function V(P, ¢) is such that

Vo(P, t) = 2(P, t) (3)
and
V, + %o*P?V,, = rB. (7)

Then, if H{w, t,} = V(P, t), H(w, t) = V(P, £}, so that the value of the wealth
accumulated under the strategy depends only on the current value of P and &
Substitution for B from (4) into (7) vields (2). Q.E.D.

We are concerned with the characteristics of time-invariant investment strat-
egies, which are defined as follows.

Definition: A portfolio insurance investment strategy is time invariant if the
fraction of wealth under the strategy that is allocated to the reference portfolio
is at most a function of the current value of the portfolio, P:

PV,
Vv

= f(P). (8

As shown in the Lemma, the wealth accumulated under a generalized portfolio
insurance investment strategy at time T may be written as V(P, T') = y(P),
where y(P} is the terminal payoff function. Given the long investment horizons
of many institutional investors, it is of interest to characterize the class of payoff
functions, y(P), for which the associated investment strategy becomes time
invariant as the horizon recedes. This ¢lass is described by the following turnpike
theorem.

THEOREM 1: A necessary and sufficient condition for the investment strategy that
yields the payoff function y(P) to be asymptotically time invariant is that

lim E*[y"(P(THP(T)]
r-a  E*(y(P(T))]
where P(t) is the value of the reference partfolio at time ¢ and E*[-] denotes the

expectation with respect to the “risk-adjusted ” stochastic pracess® or the “equivalent
martingale measure *.°

= h{P(0)}, (9)

Proof: V(P, t) satisfies equation (2) subject to the boundary condition

# See Cox and Ross [8].
2 See Harrison and Kreps [12].
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V(P, T) = y(P). The solution may be written, for ¢ = (, as

V(P, 0) = e_'TJ; y(x) X ¢lx, T} dx, (10}
where
R A,
(x‘ T) =t p 2Ts P 2
¢ xov2xT

is the risk-adjusted lognormal density.
Differentiating (10) with respect to P yields, after some manipulation,

VpxP=_lnP_r—1/2cr2+ 1 [foyle) X 1Inxx¢lx, T) dx (11)
% Te> o’ To>  [oy(x) X ¢(x, T)dc ~

Using Stein’s Lemma,'® (11) may be written as

Vo X P _ E¥{y'(P(T)) X P(T)]
v E*[y(P(T))]

Hence,

V, X P

= f(P)

lim

T

if and only if condition (9) holds. Q.E.D.

We state without proof the following theorem, which characterizes a class of
payoff functions that induce asymptotically time-invariant investment strategies.

THEOREM 2: A sufficient condition for the portfolio insurance investment strategy
ta become time invariant as the horizon recedes is that the payoff function y(P) be
given by

(i) y(P) = max(P, k) + »(P),
(it) y(P) = . a:P% + n(P),

where n(P) is the payoff on any contingent claim with present value that approaches
zero as the date of the contingent payment recedes (i.e., | n(P)| < a + bP? for some
8 <1).

Since any monotone increasing payoff function is optimal for some risk-averse
utility function,!’ the above theorem extends the portfolio turnpike results of
Hakansson [11] and Ross [20] to the class of utility functions for which the
above payoff functions are optimal.

The following two theorems characterize the whole class of value functions
and investment strategies that are permissible if the investment strategy is time
invariant.

¥ See Rubinstein [21].
'l See Brennan and Solanki [6].
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THEOREM 3: Under a time-invariant investment strategy, the value function,
V{(P, t), is of the form

V(P, £) = e™[C, P + CoP™), (12)

where C,, C,, and ¥ are constants that are chosen to satisfy the initial budget
constraint, ¥ < (r + %a2)/24%, and

—(r — Y2a?) + V(r + %20%)* = 2yq*®
0!1 = 62 +

—(r — %aa?) — V(r + Y%ha?)? — 2va*
gy = 0'2 .

Proof : Integrating (8), the condition for time invariance, we obtain
V(P t) = k(t)g(P), (13)

where 2(t) is a constant of integration and

P
g(P) = exp[_'[: flx)/x dx]-' (14)

Since V(P, t) satisfies the partial-differential equation (2), (13) implies for
g’(-) #0and k(.) # 0 that

ha’Plg” + rPg’ — (r — k'JR)g = 0. (15)

Since g(-) is a function only of P, k'/k = v, a constant, so that ki{¢) = kee™.
Then, substituting the solution to (15) in (13} and using the definition of k(t)
vield (12). Q.E.D.

THEOREM 4: Under a time-invariant investment strategy f(P), the fraction of
wealth allocated to the reference portfolia is given by

f(P) = w(Ploy + (1 = w(P))ay, (16)
where
w(P) = CP)(C P + C,P*). 17
Proof: This follows immediately from (8) and (12). Q.E.D.

The value funetion (12} is multiplicatively separable in a function of time and
a function of the value of the reference portfolio. The parameter ¥ is a “growth
parameter”; it is the rate at which the value function grows for a given value of
the reference portfolio. As we shall see below, it is possible to construct value
functions with 2 minimum, in which case v is the guaranteed minimum long-run
rate of return. For a given value of the parameter -y, the constants of integration
C, and €, must be chosen to satisfy the constraint that the initial value of the
strategy be equal to the funds available for investment; therefore, for any value
of v, there exists a one-parameter family of value functions and investment
strategies.

Two simple cases correspond to one hundred percent investment in the
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reference portfolio, f(P) = 1, and one hundred percent investment in riskless
securities, f(P) = 0. It may be verified that these strategies correspond to the
value functions V(P, t) = C, X P and V(P, t} = C,e", respectively.

While the investment. strategy characterized above is time invariant, the joint
distribution of the rate of return earned under this strategy and the rate of return
on the reference portfolio in general will be nonconstant, even if the distribution
of the return on the reference portfolio is constant. An institutional portfolio
manager is most often evaluated on the basis of the realized distribution of
returns on his or her portfolio. If the evaluation rule is constant, he or she is
likely to choose a strategy with a return distribution that is constant. The class
of such strategies is characterized by the following theorem.

THEOREM 5: A necessary and sufficient condition for the rate of return under a
portfolio insurance investment strategy to follow a constant stochastic process
(independent of P and t), if the return on the reference portfolio follows a constant
stochastic process, is that C, ar C, in equation (12) be equal to zero or, equivalently,
that w(P) in equation (16) be equal to zero or one.

Then

VP, t) = Cie"P™ (18)
or
VP, t) = Cae™ P>, (19)

Proof: (i) Sufficiency: Under this strategy, the fraction of wealth allocated to
the reference portfolio is constant, which implies that the instantaneous return
on the strategy is a fixed linear function of the return on the reference portfolic.
(ii) Necessity: Since the rate of return under the policy is a linear combination
of the riskless interest rate and the risky return on the reference portfolio, its
stochastic process can be constant only if the portfolio weight f (P) is a constant.
However, this implies that w(P) is constant, so that, from (17), C, = 0 or
C,=0. QED.

This investment policy has been previously recognized as the optimal portfolio
insurance strategy for an investor with constant proportional risk aversion when
the opportunity set is time invariant by Brennan and Solanki [6]; a related
strategy has been recently popularized by Black and Jones [3], who limit the
fraction of wealth allocated to the reference portfolio to unity.

An alternative notion of time invariance is that the value function V(P, t) is
time invariant. If this condition is satisfied, then the relative performance of the
strategy and the reference portfolio will also he time invariant. Investment
strategies vielding time-invariant value functions are characterized by the follow-
ing theorem.

THEOREM 6: The necessary and sufficient condition for the value function
V(P, t) to be time invariant (independent of t) is that the fraction of wealth
allocated to the reference portfolio be given by

f(P) = w(P} = (1 = w(P))2r/s?, (20)
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where
w(P) = CLP/(C\P + CP¥), (21)
Then the value function V(P) is
V(P) = C.P + C,PT%"™, (22)

Proof : For a time-invariant value function, V, = 0. Then (22} is the complete
solution to the ordinary differential equation obtained from (2). The investment
strategy (20)—(21) follows immediately from (8) and (22).

Comparing (12} with (22), it is apparent that the time-invariant value function
(22) follows from the time-invariant investment strategy in whichy =0. Q.E.D.

II. Characterizing the Value Functions

To illustrate the possible types of value function that are attainable under time-
invariant portfolio insurance investment strategies, Figures 1 through 6 depict
some representative value functions for different assumptions about v and for a
fixed pair of environmental parameters (r = 0.07 and o2 = (0.04). In constructing

YI(P)
"

-1
Figure 1. Value Functions for Time-Invariant Portfolio Insurance Policies When v = 0.0.

(r=007; 2*=0.04)
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VIP)

-1

Figure 2. Value Functions for Time-Invariant Portfolio Insurance Policies at ¢ = 0 When
d<y<r

{r =007, =004 «+=0.04)

these ﬁgures,I the reference portfolio is standardized so that V(1, 0) = 1 and the
value functions are shown for ¢ = 0. The standardization implies that the value
function (9) may be written as

VP, t) = e[cP™ + (1 — c)P] {12°)
or, for y =0, as
V(P) =eP + (1 — c)P~¥/?, (22*)

We shall refer to the value functions corresponding to ¢ = 0 or ¢ = 1 as the
“basic” value functions since all value functions may be constructed as weighted
combinations of these. '

A. Zero Growth Rate: v = (

Figure 1 shows the time-invariant value furictions that are obtained when
v = 0. Since o, = 1, the basic value function for ¢ = 1 is linear and corresponds
to a policy of investing one hundred percent of wealth in the reference portfolio.
The negatively sloped basic value function ¢ = 0 follows from a policy of shorting
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VIP)

-1
Figure 4. Value Functions for Time-Invariant Portfolio Insurance Policies at £ = 0 When v < 0.

(r =007, a*=004 «+=-0.04)

the reference portfolio by a constant fraction of wealth «,. Monotonically
increasing and strictly concave value functions are obtained by choosing values
of the mixing parameter ¢ > 1. However, by choosing convex combinations of the
two basic value functions (e.g., ¢ = %), it is possible to obtain a value function
with a minimum or “guaranteed” value. Moreover, in contrast to traditional
portfolio insurance strategies,"” the minimum value is realized on a set of measure
zero. However, like traditional portfolio insurance strategies, nonmonotone value
functions are unlikely to be optimal for expected utility maximizers.™

The value function is completely determined by the mixing parameter ¢, and,
for 0 < ¢ < 1, it has a natural interpretation in terms of the “cost” of insurance.
Thus, define p(P; ¢}, the relative value function, as the ratio of the wealth realized
under a particular portfolio insurance strategy to the value of the reference
portfolio:

V(F)

o(P; ¢c) = 5 e+ (1 — e)pi-2r/e’, (23)

2 Cf. Brennan and Schwartz [5] and Rubinstein [22].
1 See Arrow [1]. '
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VIP)
o

!

Figure 4, Value Functions for Time-Invariant Portfolio Inaurance Policies at ¢ = 0 When
5 = r=007.

{o? = 0.04}

Then
lim o(P;¢) =c. (24)

P—ane
Therefore, (1 ~ ¢) may be interpreted as the proportional cost of the insurance
strategy under favorable outcomes. The benefit of the insurance strategy depends
on the minimum of the value function. Differentiating the value function (22°),
it can be seen that the value function is minimized'* at

tafa?+2r)
P = [Qr(l c)] @5)

o

The minimum value is obtained by substituting from (25) in (22 ). Table I gives
the minimum values for different values of the mixing parameter ¢. For example,
¢ = 0.95 guarantees that the value function will never fall below 0.84 and that
this minimum is not attained until the reference portfolio value falls to 0.69. The
implied “insurance cost” as measured by the value of the strategy relative to the

1 The second-order condition is satisfied if 0 <e¢ < 1,
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-
i ey

VIP)

=1

Figure 5. Value Functions for Time-Invariant Portfolio Insurance Policies at t = 0 When 4 > »
and ¢ < 9r.

(r=007; o =004 ~ =009

value of the reference portfolio for high values of the reference portfolio is 1 —
0.95 = five percent. Similarly, an “insurance cost” of about twenty percent
guarantees that the value function never falls below its initial value of unity.
Under this strategy, the guaranteed minimum rate of return for any horizon is
ZEro.

B. Growth Rate below the Interest Rate: v <rand v # 0

Figures 2 and 3 depict the value functions ohtained when 0 < ¥y < rand ¥ <0,
respectively. The basic value function ¢ = 1, which is linear when v = 0, becomes
increasing concave for 4 > 0 and increasing convex for v << 0. The hasic value
function ¢ = 0 remains decreasing convex for all values of ¥, the convenxity
decreasing in +.

Note that, when v # 0, the value functions are no longer time invariant but
shift up at the (possibly negative) rate ~.

The investment strategies discussed by Black and Jones [3] and by Perold [19]
correspond to the bhasic value function ¢ = 1, which results from investing a
constant fraction of wealth in the reference portfolio. The richer class of time-
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ViP)
™

~}

Figure 6. Value Functions for Time-Invariant Portfolio Insurance Policies at t = 0 When ¥ > r
and o > 2r.

Table T

Minima of the Value Function When «
= {} for Alternative Values of the
Mixing Parameter ¢*

¢ P* V(P*)
0.80 0.97 1.00
0.90 0.81 0.94
0.95 0.69 0.84
0.97 0.61 0.76
0.99 0.48 (.61

*r = 0.07; 2 = 0.04.

invariant investment strategies described in Theorem 4 yields arbitrary linear
combinations of the two basic value functions as shown in equation (127).
Moreover, for convex combinations (0 < ¢ < 1), the value function attains a
minimum that rises over time at the rate . These value functions yield guaran-
teed minimum or “insured” long-run rates of return equal to +. Differentiating



296 The Journal of Finance

Table II
Minima of the Value Function at £t = 0
for Alternative Values of v and the
Mixing Parameter ¢*

v = —L.04
c P V{P*, 0)
0.80 0.93 0.99
0.80 0.80 0.90
0.95 Q.70 0.78
0.97 0.63 0.69
0.99 0.5t 0.52
¥ = 0.04
¢ P V(P*, 0)
0.80 1.12 0.99
0.90 0.89 0.99
0.95 0.72 .94
0.97 .62 0.89
0.99 .45 A.77

2r =007 ¢ = 004,

(12°) with respect to P, it is seen that this minimum is attained at

_ {1 oy —weq)
p*= [— @~ oay c)“z} , (26)

coy

and the guaranteed minimum value for any time ¢ is obtained by substituting
(26) into (127).

Table II gives values of P* and the initial guaranteed minimum value,
V(P*, (), for different values of the guaranteed growth rate vy and the mixing
parameter c.

C. Growth at the Interest Rate: v = r

Figure 4 shows that, when v = r, the basic value function ¢ = 1 becomes a
horizontal line rising at the interest rate as the investment strategy consists of
investing everything in the riskless asset. Values of ¢ > 1 yield monotonically
increasing, strictly concave value functions, but there exist no value functions
with a minimum,

D. Growth above the Interest Rate: r < 4 = (r + Yag*)}/24%1°

In this case, hoth basic value functions slope down and approach zero for large
values of P as long as ¢° < 2r, Then all value functions either are monotonically
decreasing or contain an interior maximum. Figure 5 illustrates this case.

When ¢ > 2r, both basic value functions are positive, monotonically increas-

% 'The upper bound is the maximum value of 4 for which the value function is defined. At this
baund, the basic value functions are coincident.
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ing, and strictly concave so that all convex-combination value functions share
this property. Figure 6 depicts an example of this case.

E. Switching Strategies

As we have already mentioned, the time-invariant portfolio insurance strategies
we have described that offer a minimum guaranteed rate of return when y < r
possess nonmonotone value functions that imply short positions in the reference
portfolic over the negatively sloped range. A feasible policy that avoids this
problem while retaining most of the properties we have discussed'® involves
switching hetween two time-invariant strategies according to P 2 P*,

Consider the policy of switching hetween the two classes of stationary strategies
described in Theorem 2:

fP)=w(Pa + (1 — w{P))a, if P> P*
=0 if P= P*
where
P* _ —02(1 _ C) {1feey—ay} (27)
s 304 )

Under this hybrid policy, which is depicted in Figure 7, wealth increases at the
riskless interest rate (and the whole value function shifts up at the same rate) if
P = P* If P > P*, the whole value function shifts up at the rate «.

Thus, the value function may be written as

V(P, t) = e*[cP™ + (1 — ¢)P*] for P> P*
=e for P = P* (28)
where
=gy +(1—g)r
and § is the fraction of the time since ¢t = 0 for which P > P*
It is apparent that this policy guarantees a minimum rate of return of .

III. Conclusion

We have analyzed a class of time-independent portfolio ingurance strategies in a
simplified setting in which the interest rate and the risk of the underlying
portfolio are known constants. To each strategy there corresponds a value
function relating the value of the funds accumulated under the strategy to the
value of the underlying reference portfolio. These value functions shift up at the
rate v. Indeed, they are the only class of constant-growth-rate value functions.
A natural generalization is to consider value functions that shift up at the rate
and shift to the right at a different rate x.'” This class of value functions is
attainable by allocating to the reference portfolio at time ¢ a fraction of wealth

¥ The proposed policy, however, is nat path independent.
7 r may be thaught of as the long-run rate of inflation.
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VIP)
5]

.

- f
S
[

-1

Figure 7. Value Functiona for a Strategy of Switching between Two Time-Invariant Policies aa
P Z P*. (The functions shift up at a rate ¥ when P > P* and at a rate r when P < P*)

(r=007; =004 v=-004 ec=05)

equal to some function of the “discounted” value of the reference portfolio,
f(Pe™™). While such policies are not time independent, they may be of interest
in their own right and correspond to time-invariant strategies if the reference
portfolio is defined in real terms and the rate of inflation is a constant .

Time-independent investment strategies were shown to be the appropriate
long-run portfolio insurance strategies for a broad class of insurance payoff
functions. Since all monotone increasing payoff functions may be supported by
some rigsk-averse utility function, our results extend earlier turnpike theorems.

We have not attempted to deal with the issue of an appropriate objective
function for institutionally managed portfolios. A complete theory must deal with
the problems created by the agency relationship between the portfolio sSponsor
and the portfolioc manager, as well as taking account of transaction costs and
uncertainty regarding the interest rate and risk parameters.
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