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This article describes a new approach to the valua-
tion of commodity-contingent claims. The approach uses all
the information contained in the term structure of commodi-
ty futures prices in addition to the historical volatilities of
Sutures returns for different maturities. It is based on the
principle that no arbitrage opportunities should exist when
trading in futures contracts.

The framework is applied to price copper-contingent
claims. We analyze the daily returns for all copper futures

contracts traded at the Commodity Exchange of New York
between 1978 and 1990. By applying principal compo-
nents analysis to the data, we conclude that a three-factor
model describes the stochastic movement of copper futures
prices.

Finally, as an illustration of the approach, we use
the factor loadings obtained in the principal components
analysis to price the publicly traded copper interest-indexed
notes issued by Magma Copper Company in 1988.

ith the proliferation of financial instru-

ments linked to the price of commodi-

ties, such as futures, options on futures,

and commodity-linked bonds, the val-
uation of commodity-contingent claims is becoming
an increasingly important problem in financial eco-
nomics. It is particulatly suited for the evaluation of
natural resource investments.

The first commodity-contingent claims mod-
els, following the tradition of Black and Scholes
[1973] for equity-contingent claims, assumed that all
the uncertainty could be summarized in one factor,
the spot price of the commodity. Models of this type
include Schwartz [1982] and Gibson and Schwartz
[1991] for pricing commodity-linked securities, and
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Brennan and Schwartz [1985], Paddock, Siegel, and
Smith [1988], and Cortazar and Schwartz [1993] for
valuing real assets.

Looking at the variability of the cost of carry
for most commodities, it soon became apparent that a
second stochastic variable is needed to value com-
modity-contingent claims properly. In their two-fac-
tor model, Gibson and Schwartz [1990] assume that
the spot price of the commodity and the convenience
yield, defined as the difference between the interest
rate and the cost of carry, follows a joint stochastic
process.

In this article we take a different approach to
the valuation of commodity-contingent claims. Our
starting point is the whole term structure of existing
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commodity futures prices, and we assume that move-
ments in this term structure are determined by k fac-
tors. These movements are such that they preclude
arbitrage opportunities when trading among futures
contracts. We let the data tell us the number of rele-
vant factors k. Our approach is similar to the arbi-
trage-free term structure of interest rate movement
models developed by Ho and Lee [1986] and Heath,
Jarrow, and Morton [1990, 1991, 1992], and applied
by Reisman [1991] to commodities.

Our main contribution, however, is empirical.
Very little work has been done in trying to implement
this approach in the pricing of interest rate-contingent
claims and none for commodities. Our aim here is to
study the stochastic movement of futures prices of one
particular commodity, copper, and to show how to
implement the approach by pricing a bond whose
coupon payments are linked to the price of copper.

We analyze the daily prices for all copper
futures traded between 1978 and 1990 at the
Commodity Exchange of New York (Comex). By
applying principal components analysis to daily cop-
per futures returns, we obtain a three-factor model
that describes the stochastic movement of futures
prices.

We find that the most important factor in
explaining return variance represents shocks that have
a constant impact on futures returns of all maturities,
The other two factors impact differently on futures
returns with short-term, medium-term, and long-
term maturities, allowing for term structures of virtu-
ally any shape. Our results for the process of futures
returns are found to be similar to those reported in
the literature for bond returns.

Finally, as an illustration of the approach, we
price the publicly traded copper interest-indexed
notes issued by Magma Copper Company in 1988
using simulation techniques. Although we concentrate
on copper-contingent claims, a similar approach can
be used to value claims linked to other commodities
such as gold, silver, or oil.

I. THE MODEL
The model is similar to the one proposed by

Reisman [1991]. Let S(t) be the spot price of a com-
modity at time t, and F(t, T) the price of a futures

28 THE VALUATION OF COMMODITY-CONTINGENT CLAIMS

contract at time t, written on the same commodity,
for delivery at time T. At the maturity of the futures
contract, its price is equal to the spot price, i.e., S(T)
= F(T, T). We also assume that the futures contracts
are traded in a frictionless continuous market, and that
no arbitrage opportunities are available. !

As shown by Harrison and Kreps [1979] and
Harrison and Pliska [1981], under very general condi-
tions the absence of arbitrage opportunities in the
economy implies the existence of a probability mea-
sure under which asset prices follow a martingale,
This probability measure has also been called the risk-
neutral probability measure because it would prevail in
an economy populated by risk-neutral agents.
Additional names given to it are equivalent-martingale
measure and no-arbitrage-martingale measure.

The stochastic process followed by asset prices
under the equivalent-martingale measure is called the
risk-adjusted or risk-neutral stochastic process. A
direct implication of the martingale property is that
under this measure the instantaneous expected return
on all financial assets is equal to the instantaneous
riskless rate of interest, and the instantaneous return
on all futures contracts (which require no invest-
ment) is equal to zero (see Cox, Ingersoll, and Ross
[1981]).2

The starting point of our analysis is the risk-
adjusted process for commodity futures prices, which,
as mentioned above, has zero drift:

K
d;(—(:’;f—)) = Z’l by(t, T)dW, (1)

or equivalently, in stochastic integral form:

be(s, T)F(s, T)dW,(s) (2)

M=

F(L T) = F(O, T) + [}

]

k=1

where W, W, .., W are K independent Brownian
motions under the equivalent-martingale measure,
and b, (t, T) are volatility functions of futures prices.

From this specification of the futures price pro-
cess we can obtain the stochastic process for the spot
price. Applying Ité’s Lemma, Equation (2) can be
rewritten as:
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By setting T = t we determine the process for the

spot price S(t):

K
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Alternatively, we could start with the risk-adjust-
ed stochastic process for the spot price S(t) written as:

dS(t)
0 y(t)dt + kzl ey (t)dW, (5)

or equivalently, in stochastic integral form, as:
S(t) = S(0) + [, y(5)S(s)ds +

t K
[y X culs)S() dWi(s) ©)
k=1

where y(t) represents the instantaneous cost of carry
for investing in the commodity and ¢, (t) its volatility
parameters.

A simple interpretation of y(t) is that of the
instantaneously riskless return obtained by buying one
unit of the commodity spot and selling one futures
contract maturing in the next instant of time. It is akin
to defining the riskless interest rate as the return on a
discount bond that matures in the next instant of time.

It is now standard in the commodity pricing
literature to define the net convenience yield of a
commodity, d(t), as the flow of services that accrues to
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the holder of the physical commodity, but not to the
owner of a contract for future delivery (Brennan
[1991]). The no-arbitrage condition induces the
instantaneous cost of carry y(t) to be equal to the risk-
less interest rate r(t), minus the net convenience yield,
3(t). In our model this instantaneous cost of carry is
stochastic, reaching negative values when the net con-
venience yield is greater than the riskless interest rate.

To derive the process followed by y(t) we apply
Itd’s Lemma to Equation (4) and compare the corre-
sponding drift and stochastic terms with those from
Equation (5), obtaining:

o) = b, (t, t) @
o In F(0 . ab
=200 (S by o 2 s
t & (ob (s, t)
[, kzl (—“at—] AW, (s) ®)

Therefore, the specification of the process for
the futures prices completely determines the process
for the spot prices. The problem could also be formu-
lated in terms of the forward cost of carry instead of
futures prices.

Recall that in the interest-contingent claim lit-
erature both model specifications have been pursued.
Ho and Lee [1986] initially developed the no-arbi-
trage approach to the movement of the term structure
of interest rates by considering the process for the
bond prices as the primitive, while Heath, Jarrow, and
Morton {1992] started from the process for forward
rates. In the case of commodities, specifying both the
risk-adjusted process for the forward cost of carry and
for the spot price is equivalent to specifying the risk-
adjusted process for futures prices.

Let y(t, T) be the instantaneous forward cost of
carry of investing in the commodity at time T, as per-
ceived at time t. As in the definition of y(t), y(t, T) is
the instantaneously riskless forward return obtained by
buying one futures contract with maturity T and sell-
ing one with maturity T + dT. Then,

F(t, T) = S(t) epr y(t, s) ds) 9)
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We can write the stochastic process for y(t, T) as:

dy(t, T) = A(t, T)dt + i By (t, T)dW,(s) (10)
k=1

or equivalently,

y(t T) = y(0. T) + [ A(s, T)ds +

¢ K
[, X Bi(s T)dW,(s) (11)
k=1

Applying It6’s Lemma to (9), it can be shown that the
relation between the parameters of Equations (10) and
those in (1) and (5) are given by:

Alt, T) = —i [By(t. T)](ck(t) + LTBk(t, s)ds) (12)

k=1
bi(t. T) = cy(0) + [ By(t, s)ds (13)
_ db(t, T)
B(t, T) = 22 (14)

Thus, given the process for the spot price and for the
forward cost of carry, the process for the futures prices
can be determined.

II. PRICING AND HEDGING A
COMMODITY-CONTINGENT CLAIM

This model for arbitrage-free movements of
commodity futures prices does not describe the actual
movement of prices, but the one that would prevail in
a risk-neutral world. Using risk-neutral pricing proce-
dures (Cox and Ross [1976], Harrison and Pliska
[1981], and Heath, Jarrow, and Morton [1992]), we
can price contingent claims by computing the expec-
tation of the discounted payoffs under these modified

probabilities.
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The relevant discount factor for pricing pur-
poses is the risk-free rate, r. More formally, let V, be
the value at time t of a commodity-contingent claim
with payout X at time T. Then:

V, = I:Z[X exp(—ftT r(s)ds)] (15)

where E represents the expectations operator under
the risk-neutral probabilities.

Assuming the payout X is uncorrelated with
the risk-free interest rate, Equation (15) becomes:?

V, = I:Z[X]ﬁ[exp(—f r(s)ds)] (16)

Therefore, we can price a commodity-contin-
gent claim as follows. First, estimate the model for the
movement of futures prices under the equivalent-mar-
tingale measure. Using these risk-neutral probabilities,
simulate the stochastic paths followed by the futures
prices, and determine all payoffs contingent on these
futures prices. Given that we have used the equiva-
lent-martingale measure in generating risk-adjusted
futures returns, we discount these payoffs at the risk-
free interest rate, obtaining the estimated value of the
contingent claim.*

To hedge or replicate the payoffs of a com-
modity-contingent claim, we need the same num-
ber of futures contracts as the number of factors
that explain the stochastic movement of the term
structure of commodity futures prices, assuming
that interest rates are not stochastic. The sensitivity
of the return of the hedging portfolio of commodi-
ty futures contracts with respect to each of the fac-
tors should be the same as the sensitivity of the
return of the contingent claim with respect to the
same factors.

The sensitivity of the return of each futures
contract with respect to the factors is given directly by
the volatilities functions in Equation (1). The sensitiv-
ity of the return on the contingent claim with respect
to the factors can be obtained numerically by perturb-
ing each of the factors separately, and computing the
change in price of the commodity-contingent claim
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divided by the perturbation. In practice, the futures
contracts chosen for the hedging portfolio should
have an exposure to the different factors that is as dif-
ferent as possible.

II. THE STOCHASTIC MOVEMENT OF
COPPER FUTURES PRICES

The model we have developed can be applied
to commodities such as oil, silver, or gold. We use it
to estimate the stochastic movement of copper futures
prices. We now describe the estimation methodology,
the data used, and the results.

Methodology

The intuition behind the model is that the no-
arbitrage condition imposes a restriction on the risk-
adjusted drift of the whole term structure of the
futures market. For the forward cost of carry process
the risk-adjusted drift must be a function of the
volatilities [see Equation (12)], and for the futures
price process the risk-adjusted drift must be zero [see
Equation (1)].

To estimate the model, we can use as the prim-
itive stochastic process the one followed by either the
futures prices, F(t, T), or the forward cost of carry,
y(t, T). We have shown how to derive one from the
other. For estimation purposes, however, it is more
convenient to use the process for the futures prices,
described in Equation (1), instead of the process for
the forward cost of carry, described in Equation (11).
(In our illustration of the use of the methodology to
value a specific contingent claim, however, we use the
forward cost of carry.)

Equation (1) describes the stochastic process for
futures prices under an equivalent-martingale measure
and not under the true probability measure. Although
actual futures prices may exhibit a non-zero drift,
volatility coefficients are not affected by the risk-neu-
trality assumption, and can therefore be estimated
using historical data.’

To estimate Equation (1) we must determine
the number of independent Brownian motions (K)
and the associated volatility coefficients, b, (t, T).
Assuming that volatility is only a function of time to
maturity (T — t), we can use principal components
analysis (PCA) to estimate jointly the number of
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orthogonal factors and the corresponding volatility
coefficients.®

More concretely, given F(t, T), the price at
time t of a futures contract for delivery of copper at
time T, we can approximate the left-hand side of
Equation (1) by:

dF(t, T) _ F(t, T) - F(t - 1, T)

(17)
F( T) Kt -1 1)

Following this procedure we can fill in a matrix of N
rows (each one representing a different trading date
t=1, 2, .., N) and M columns (each one represent-
ing different times to maturity, T= T —t, with T =1,
2, ..., M). Column 7 of this matrix can be interpreted
as the set of observations on the return on holding a
futures with maturity T. Equation (1) models these
returns as a linear function-of K independent factors.

In general we would require K = M factors to
explain all sample variance. Principal components
analysis, however, finds K < M independent factors
that explain a high proportion of the total variance.
Thus, each of the original M factors can be approxi-
mated by a linear combination of the computed prin-
cipal components, in which the coefficients, properly
scaled, correspond to the volatilities b, (t, T) in
Equaton (1).

Data Description

CHARACTERISTICS OF THE FUTURES MAR-
KET FOR COPPER. The two most active copper
futures markets are the Commodity Exchange of New
York (Comex) and the London Metal Exchange
(LME). These markets have different characteristics in
terms of contract specifications and trading rules
(Anthes [1984], Rivalland [1985], and Statistical
Yearbook [1988]). We focus on the Comex copper
futures market.

Two different copper futures contracts have
been traded at the Comex. Until July 1988, the cop-
per futures contract consisted of a commitment by the
short position to deliver 25,000 pounds of Grade 2
electrolytic cathode copper at any Comex-approved
warehouse during any day of the month when the
future matures.” At the seller’s option, other copper
grades can be delivered at various prespecified dis-
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counts or premiums. Most futures contracts, however,
are not settled by delivery of the underlying commod-
ity, but rather by an offsetting futures contract.8

Trading of this copper futures contract was typ-
ically conducted in futures with maturities of the cur-
rent month, the next two calendar months, and any
January, March, May, July, September, and December
falling within a twenty-three-month period beginning
with the current calendar month. This contract traded
at the Comex until January 1990, under the trading
symbol CU.

A second copper futures contract began trading
at the Comex during 1988, under the trading symbol
HG. The main difference between this contract and
the CU futures is the higher grade of the copper
required for delivery, now defined to be Grade 1 elec-
trolytic copper. Also, futures of additional maturities
are traded, including the current and immediately fol-
lowing eleven calendar months, and every January,
March, May, July, September, and December falling
within a twenty-three-month period. During 1988,
the combined trading volume for these two futures
amounted to over two million contracts, or around
$50 billion.

PRICES ON COPPER FUTURES. We obtained
from the Center for Futures Research at Columbia
University more than 70,000 daily prices correspond-
ing to all copper futures traded at the Comex between
January 3, 1966, and January 15, 1991. The data are
organized in 287 files, 246 corresponding to prices of
the CU futures and 41 corresponding to prices of the

EXHIBIT 1
EXPLANATORY POWER OF PCA (THREE FACTORS)

Dates Observations Covarance Correlation
Jan. 78-Dec. 90 3272 0.9875 0.9879
Jan. 78-Jun. 84 1636 0.9928 0.9930
Jul. 84-Dec. 90 1636 0.9909 0.9904
Jan. 78-Mar. 81 818 0.9963 0.9961
Apr. 81-Jun. 84 818 0.9974 0.9974
Jul. 84-Sep. 87 818 0.9984 0.9984
Qct. 87-Dec. 90 818 0.9888 0.9881

Notes: Fraction of total variance explained by the first three com-
ponents of a principal components analysis on the daily returns on
copper futures. Each PCA is performed on the covariance and the
correlation matrixes, using data from different trading dates.
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HG futures. Each file includes the prices of a copper
futures contract with a specific maturity date. The 287
files correspond to futures that matured between
January 1966 and January 1990 for the CU futures,
and between January 1989 and September 1992 for
the HG futures.

Thus, during the thirteen months between
January 1989 and January 1990, the two different cop-
per futures contracts matured. Also, each specific
futures contract was traded at an average of almost 300
different dates.

DATA PREPARATION. First, we construct two
matrixes of daily returns, one for each type of futures
contract: CU or HG. Each element of the matrix is
computed using Equation (17), with M equal to
twenty-one months. The time to maturity is calculat-
ed assuming that futures expire on the twenty-eighth
of the delivery month. Although we have some prices
on futures that mature twenty-two and twenty-three
months ahead, this information is discarded because of
the thinness of this market.

Given that for any date futures with maturities
on only some of the next twenty-one months will be
traded, we aggregate the daily returns corresponding
to several maturities into seven quarterly periods. For
each trading date, we compute the average returns on
copper futures (both CU and HG) corresponding to
maturities that fall into a single period.® By aggregat-
ing returns into seven quarterly periods, we practically
eliminate the missing observation problem.

We end up with a matrix of daily returns. For
estimation purposes we use daily returns on futures
traded only between January 1978 and December
1990, or thirteen years of daily returns. ¢

Empirical Results

Exhibit 1 shows the explanatory power of PCA
for different time periods. The results are fairly similar
for all the trading dates and for both the covariance
and the correlation matrix.!! With three factors, the
model explains between 98.7% and 99.8% of total
return variance.

Exhibit 2 shows the explanatory power of the
one-factor, two-factor, and three-factor models across
all maturities. For purposes of illustration, we use
PCA on the covariance matrix of all daily returns
from 1978 to 1990.
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The principal components extracted from the
data explain a large proportion of the return variance
across all maturities. The first factor accounts for
around 93% of the total variance, the second factor for
around 4%, and the third factor for around 1%, for
most maturities. 12

To analyze the factor loadings obtained using
PCA, we compute the loadings on each of the three
main orthogonal factors that explain return volatility
on futures of different maturities. Exhibit 3 plots these
loadings.

The actual magnitude of each particular factor
loading is not important because they have been nor-
malized so that the total variance of each of the
returns is equal to one. To obtain the actual percent-
age impact on the futures daily return, adequate scal-
ing is required.

Examination of Exhibit 3 shows that the shocks
represented by Factor 1 explain a great fraction of the
futures return volatility. Notice in particular the high
loading of Factor 1 relative to Factors 2 and 3. This is
consistent with Exhibit 2. Also, it can be seen that the
first-factor loading is fairly constant across all maturi-
ties, which implies that shocks have the same impact
on futures returns of all maturities.’

Factor 2 is the next most important factor in
explaining return volatility. It represents shocks that
have opposite effects on the return of short- and long-
term futures.'* Finally, Factor 3 represents shocks that
have the same effect on the return of both short and
long maturities, but this effect is opposite to the effect
on the returns of medium-term maturity futures.

The pattern of the factor loadings plotted in
Exhibit 3 resembles those found by Litterman and
Scheinkman [1991] and Ilmanen [1992] in factor anal-
ysis of bond returns. Litterman and Scheinkman
[1991] call our first factor the level factor, the second
the steepness factor, and the third the curvature factor,
depending on the effect of shocks of each of these fac-
tors on the returns of instruments of different maturi-
ties. In an eight-period aggregation, representing
maturities from six months to eighteen years,
Litterman and Scheinkman find that the combined
explanatory power of the first two factors is less than
91%.

Overall we find that the volatilities of copper
futures and of bond returns behave rather similarly in
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EXHIBIT 2
EXPLANATORY POWER OF PCA (ONE, TWO, AND THREE
FACTORS) ACROSS MATURITIES

T 1 Factor 1, 2 Factors 1, 2, 3 Factors
1 0.8963 0.9753 0.9872
2 0.9197 0.9735 0.9735
3 0.9292 0.9310 0.9973
4 0.9732 0.9847 0.9847
5 0.9628 0.9928 0.9938
6 0.9321 0.9830 0.9872
7 0.9301 0.9881 0.9911

Note: Proportion of the variance in the returns of futures of dif-
ferent maturities explained by the one-factor, the two-factor, and
the three-factor PCA models, on the covariance matrix generated
by all daily returns on copper futures corresponding to 1978-
1990.

terms of the number and the characteristics of the fac-
tors that explain them.

IV. PRICING A COMMODITY-
CONTINGENT CLAIM

There are many bonds whose final payment or
coupons are linked to the price of one, and sometimes
more, commodities (see, for example, Smithson and
Chew [1992]). And there are many options on com-
modity futures currently traded in the U.S. market. It
will be useful therefore to apply our results on the

EXHIBIT 3
PrINCIPAL COMPONENTS ANALYSIS FACTOR LOADINGS

Factor Loadings

1
0.8
0.6
0.4
2y T
__________ e e
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-0.2 —_ ST
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Factor t ————— Factor 2 =-=-==""~ Factor 3
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EXHIBIT 4
INDEXED INTEREST RATE ON MAGMA NOTES
Indexed Annual
Copper Price Interest Rate
(U.S.$ per pound) (annual percent)
2.00 or above 21.0
1.80 20.0
1.60 19.0
1.40 18.0
1.30 17.0
1.20 16.0
1.10 15.0
1.00 14.0
0.90 13.0
0.80 or below 12.0

Note: Annual interest rate corresponding to the quarterly coupon
of Magma’s copper interest-indexed notes, contingent on the
price of the closest-to-maturity copper futures.

stochastic movement of copper futures prices to price
an actual copper-contingent security.

We choose a rather innovative hybrid debt
security issued by Magma Copper Company in 1988
(see Smithson and Chew [1992], Moody’s Bond Survey,
and Moody’s Annual Bond Record). What is interesting
about this ten-year debenture is that it has embedded
within it forty option positions on the price of copper
futures, each one determining the coupon payment
according to the maturity of an option.

Description of Magma’s
Copper Notes Offering

Magma Copper Company is one of the four
largest U.S. producers of refined copper, with mines
located in Arizona. Until 1987, Magma was a wholly
owned subsidiary of Newmont Mining Corporation.
In 1988 Magma’s debt was rated for the first time.
Magma’s Copper Notes received a Bl Moody’s rating.

The copper notes, with face value of $200 mil-
lion, were issued on November 23, 1988, and are due
November 15, 1998. Quarterly coupons are contin-
gent on the prevailing copper price, according to
Exhibit 4. For copper prices in between those report-
ed in the table, the indexed interest rate is determined
by linear interpolation. Thus, the higher the price of
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copper, the higher the interest payment received by
the holder of the security.

Interest payments are due February 15, May
15, August 15, and November 15 of each year, with
the principal due November 15, 1998. The copper
notes have other features that we disregard in our
illustration of the methodology.

Pricing Methodology

To price the simplified version of Magma'’s
copper notes, we start by simulating the stochastic
process of futures prices. For each of the remaining
coupon payment dates until maturity, we generate
random shocks on the futures prices, according to the
factor structure estimated for copper as above. Using
these futures prices, we determine the coupon pay-
ments, according to Exhibit 4. Once each coupon is
determined, we discount it at an appropriate rate.

We value the security on November 28, 1991,
just after the November coupon has been paid. The
risk-free term structure of interest rates on that date
was obtained from the prices of U.S. Treasury Strips.
The relatively low Moody’s credit rating implies a
substantial default risk embedded in the security. Since
our model does not consider default risk, we must add
to the risk-free rate an appropriate risk premium. We
estimate this risk premium by looking at the default
premium of similar securities at the estimation time
and later price Magma’s copper notes using a range of
possible risk premiums.

Our model for the stochastic process of futures
prices assumes that the current futures prices for all
maturities relevant for computing payoffs are known.
Thus, we need the current price of futures that
mature during each of the twenty-eight quarters
between November 1991 and November 1998. This
information is not available because the copper futures
that are publicly traded have a much shorter maturity.

To estimate the initial futures prices for all
twenty-eight quarters we extrapolate existing prices as
follows. For the first six quarters, we use actual prices
of traded futures that mature in December 1991,
March, June, September, and December of 1992, and
March 1993. Given that during these first six quarters
we have actual market prices for both the bonds and
the futures, we are able to compute the implicit quar-
terly convenience yield during this period, finding
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that it ranges from 2% to 2.9%.

Using the actual term structure of interest rates
and an estimated constant convenience yield for the
seventh to twenty-eighth quarter, we compute our
estimate for the initial futures prices. Later we price
Magma’s copper notes using a range of initial conve-
nience yields. Details of the procedure are described
in the appendix.

Exhibit 5 shows the result of this extrapolation
process. It plots the risk-free discount function, the
initial six futures prices, and the final twenty-two
extrapolated futures prices, assuming a constant quar-
terly convenience yield of 2.5% from Period 7 to
Period 28.

Finally, for simulating the twenty-eight remain-
ing coupons of the security, we need volatility esti-
mates for each of the three factors, corresponding to
the twenty-eight maturities. Through principal com-
ponents analysis on futures prices we estimate the fac-
tor loadings for the first seven maturities. These load-
ings are scaled so that the resulting return volatility
matches the historical volatility, for each maturity. For
the remaining twenty-one maturities we assume the
loadings for each of the factors are the same as those
estimated for Period 7.

Exhibit 6 plots the estimated (Periods 1 to 7)
and extrapolated (Periods 8 to 28) factor loadings,
propetly scaled.

The simulation program to price Magma’s cop-
per interest-indexed notes starts by filling in futures
prices for Quarters 7 to 28, according to the extrapo-
lation procedure described above. Then, it computes
risky discount factors for each of the twenty-eight
quarters by adding the default risk premium to the
riskless rate implicit in the inputted riskless discount
bond prices. The program then generates a random
path for the futures prices, according to the three-fac-
tor model loadings.

For each coupon payment date, it determines
the price of the closest-to-maturity futures and com-
putes the coupon amount using Exhibit 4. This
coupon payment is then discounted at the risky dis-
count factor. In Period 28, the principal is added to
the corresponding coupon payment and discounted at
the risky discount factor.

The sum obtained from the addition of all dis-

counted payments represents one simulated value of
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EXHIBIT 5
U.S. TREASURY STRIPS AND FUTURES PRICES

Prices
120 -

Futures

100 1

8ot

60 1

401

Maturity

PP U S S U R S | PP SR |
+ Tt *

27

Prices for all U.S. Treasury Strips and for the first six futures are
market values as of November 28, 1991. Prices for futures with
maturity seven to twenty-eight periods ahead are extrapolations as
shown in the appendix.

Magma’s copper interest-indexed notes. This step is
repeated until 10,000 simulated prices of the security are
obtained. Finally, the average price across all simulations,
and the standard deviation of this estimate, is computed.

Pricing Results

Exhibit 7 plots the value of Magma’s copper
interest-indexed notes given a quarterly convenience

EXHIBIT 6
FACTOR VOLATILITIES ESTIMATED AND EXTRAPOLATED

Volatility
0.02 1
Factor 1
04015«\ ___________________________________________
0.01
Factor 2
0.0051
""""" Factor 3~
0 \.44.‘;3".".":".“:":":":":"4.":"!‘?":‘?':":".":’3.
AR
-0.005 - Maturity
0.0t L
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EXHIBIT 7
PRICE OF MAGMA’S COPPER INTEREST-INDEXED NOTES
VERSUS DEFAULT RISK PREMIUM

Price

110 1

108 +

106 1

o4y Annual Risk Premium

102 ; : ,
0,035 0,040 0,045 0,050 0,055

Constructed by running 10,000 simulations and assuming a quar-
terly convenience yield of 2.5%.

yield of 2.5%, and annual risk premiums that vary
from 3.5% to 5.5%. For each set of parameters we ran
10,000 simulations. Notice that as the default risk pre-
mium increases, the value of the security decreases.!®

Exhibit 8 shows the value of Magma’s copper

EXHIBIT 8
PRICE OF MAGMA’S COPPER INTEREST-INDEXED NOTES
VERSUS CONVENIENCE YIELDS

Price

111 7

110,5

110t

109,5 1

109

108,5 1

108

107.5

107 1

106,5 1 Convenience Yield (per Quarter)

106 . , . . . , .
o ~ -+ «© «© (=] N < 73 © o
N N N N N (2] « m © « d
2 2 9 €@ © o o © o o ¢
(=] o o o o o o o o o o

Constructed by running 10,000 simulations and assuming an
annual default risk premium of 5%.
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EXHIBIT 9
PRICE OF MAGMA’s COPPER INTEREST-INDEXED NOTES
VERSUS VOLATILITY

Price
111

110,5 1
110 1
109,5 1
109 ¢
108,5 ¥
108 ¢
107,56 ¢+

107 1
106,5 1 Volatility Factor

106 + + + + + + + + . + 4
040608 1t 1,2 1416 18 2 22 2426 28 3

Constructed by running 10,000 simulations, assuming an annual
default risk premium of 5%, a quarterly convenience yield of 2.5%,
and volatility shocks that range from 0.4 to 3 times historical averages.

interest-indexed notes considering an annual default
risk premium of 5% and quarterly convenience yield
of 2% to 4%. As expected, as the convenience yield
increases, the value of the security decreases.

Finally, Exhibit 9 analyzes the effect of the
volatility of futures prices on the value of Magma’s
copper interest-indexed notes. To perform this exper-
iment we multiply all three factors by the same
volatility coefficient. We plot the price estimate
assuming an annual default risk premium of 5% and a
quarterly convenience yield of 2.5%, for volatility fac-
tors that range from 0.4 to 3.6

We find no monotonic relationship between
volatility and security price. This is not surprising,
given the shape of the payoff function of each
coupon: it is convex for low copper prices, but con-
cave for high copper prices. These payoffs can be
mimicked by a portfolio of short and long positions
on bonds, calls, and puts, with volatlity increasing the
value of some of these positions, while decreasing the
value of others and rendering an ambiguous net effect.

V. CONCLUSIONS

Our approach to the valuation of commodity-
contingent claims uses all the information embodied
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in the current term structure of futures prices in addi-
don to the volatilities of historical returns on futures
contracts of different maturities. Our illustration
shows its application to value copper-contingent
claims.

We analyze a data set composed of thirteen
years of daily copper futures traded at the Comex.
Using principal components analysis, we determined
that three orthogonal factors are able to explain over
98% of daily return variance.

Finally, as an illustration of the methodology,
we price by simulation an actual copper-linked securi-
ty issued by Magma Copper Company, using the fac-
tor loadings for copper futures returns.

This approach offers a promising alternative
for the pricing of commodity-contingent claims.
Further research is needed on the relative merits of
modeling the movement of the whole term structure
of futures prices compared to earlier approaches that
estimate the stochastic process of prices correspond-
ing to one or two maturities only. This is especially
critical when we are interested in the behavior of
futures prices for maturities for which we do not
have current prices.

Several extensions and refinements are possible.
In modeling the factor structure for copper futures
prices we are, in effect, combining shocks to interest
rates and convenience yields. Some exploration into
separating these two effects by jointly analyzing
returns on copper futures and discount bonds could
prove fruitful.

It would also be of interest to apply our frame-
work to other commodities such as gold or oil. Our
results could also be used to price commodity-contin-
gent claims with early exercise features (American
options), which require numerical solutions because
they cannot be valued using our simulation method.

Finally, and perhaps most importantly, this
approach would be useful to value real assets with
payoffs contingent on commodity prices.

APPENDIX
EXTRAPOLATION OF FUTURES PRICES

In this appendix we explain the procedure to esti-
wate initial futures prices for all twenty-eight maturities,
Siven that only the first six are observed in the market.

SUNMMER 1994

Recall the relation between spot and futures
described in Equation (9):

F(t, T) = S(t) exp(J‘(Ty(t, 5) ds)

in which y(t) = r(t) — 8(Y).
A discretized version of the above is:

t
E =S, exp[Z(rt - 5,)1}_1] (A-1)
1=
from which it follows that:
_El_ - e(r‘—st)At (A-2)
.

By a similar argument, we _have the relation involving the
price of a bond at time ¢, B;:

= ¢THAT (A-3)

Solving for 8, using Equations (A-2) and (A-3), we have:

8: = -—l-—ln Bl—lFl—l
At B/F,

(A-4)

During the first six periods we have actual market
prices for both the bonds and the futures. For each month
for which we have futures prices, we compute the implicit
quarterly convenience yields using Equation (A-4), and
report them in Exhibit A. Notice that convenience yields
range from 2.0% to 2.9%.

Assuming that the convenience yield is constant for
Periods 7 to 28, but using the term structure for the period
obtained from actual bond prices, we obtain extrapolated
prices for the initial futures prices for all twenty-eight
maturities, using the relation:

(A-5)

F, = F x BBl exp(—3A1)

t+l1

ENDNOTES

The authors thank the Center for Futures
Research at Columbia University for providing the data for
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EXHIBIT A
IMPLICIT CONVENIENCE YIELDS — DECEMBER 1991-
MARCH 1993

Maturity Futures Bonds S
Dec. 91 104.25 99.69 0.024
Jan. 92 103.75 99.37 0.027
Feb. 92 103.15 99.06 0.020
Mar. 92 102.85 98.69 0.026
Apr. 92 102.35 98.31 0.029
May. 92 101.75 97.94 0.027
Jun. 92 101.25 97.53 0.027
Jul. 92 100.75 97.13 0.025
Sep. 92 99.90 96.34 0.022
Dec. 92 99.05 95.04 0.029
Mar. 93 97.90 93.44

this study, and participants at seminars in British Columbia,
Michigan, Osaka, Sydney, and the Western Finance
Association meetings in Whistler for helpful comments.
Special thanks to FONDECYT and DIUC-Pontificia
Universidad Catolica de Chile for partial financial support.

Frequently, futures contracts allow the short posi-
tion to make delivery of any of several grades of a single
commodity, at any exchange-approved location. In our
model we define the spot price as the futures contract price
at maturity. Prices for immediate delivery of a commeodity
of a particular grade at a particular location are sometimes
referred to as the cash price. The model does not require
actual cash prices to equal spot prices, or even to exist. In
developing the model, we require only that no arbitrage
exist in trading among futures.

2If interest rates are non-stochastic, forward prices
are also a martingale under the risk-adjusted process. For
stochastic interest rates, however, in general forward prices
are not a martingale under the risk-adjusted process.

3For example, if interest rates are non-stochastic.
In this case, all the uncertainty in the model would be
related to spot prices and convenience yields.

4Using the risk~free interest rate assumes there is
no default risk.

5This is strictly correct only for instantaneous
returns. Because in the empirical tests we use daily returns,
it will be approximately correct.

SHeath, Jarrow, and Morton [1991] use a similar
procedure, but applied to percentage changes in forward
interest rates. For good reviews of principal components
analysis, see Morrison [1990] and Harman [1967].

7Actually the delivery date rule is somewhat more
complex, including an obligation that the seller submit to
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the clearing house a notice of intention to deliver within some
prescribed dates, prior to the actual delivery.

8Roughly 2% of all commodity futures contracts
are settled by deliveries (Horn [1984]).

9Even though prices of the CU and HG contracts
are significantly different, daily returns should be similar.
Averaging all daily returns on futures with maturities in
neighboring months is equivalent to considering that
investors hold portfolios of these futures.

10%/e discard returns on futures traded during the
first fifteen days of 1991 and before 1978 because of severe
missing observation problems.

1R ecall that if principal components analysis is
performed on the covariance matrix, observations are
weighted by their variance, while if it is performed on the
correlation matrix, all observations have the same weight.

12Note that the model assumes that the relevant
factors totally explain the movements in futures prices.

3To have the same impact on retums in our context
means to explain the same fraction of the total return variance.

14Notice that the magnitude and the sign of each
shock is random, with mean zero. Thus, a positive or
negative loading does not provide any information by
itself, but only in relation to the sign of the other factor
loadings.

5For a reasonable annual default risk premium of
5% we obtain an estimated price of $109.8, which is 1.67%
higher than the $108 recorded as the closing price for that
day at the American Stock Exchange.

16A volatility factor equal to 2.0 induces a return
volatility that is twice the historical figure.
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