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Convergence within the EU: Evidence from
Interest Rates

TerRESA CORZO SANTAMARIA - EDUARDO S. SCcHwaRTZ™

The economic and political changes which are taking place in Europe
affect interest rates. This paper develops a two-factor model for the
term structure of interest rates specially designed to apply to EMU
countries. In addition to the participant country'’s short-term interest
rate, we include as a second factor a ‘European’ short-term interest
rate. We assume that the ‘European’ rate follows a mean reverting
process. The domestic interest rate also follows a mean reverting
process, but its convergence is to a stochastic mean which is identified
with the ‘European’ rate. Closed-form solutions for prices of zero
coupon discount bonds and options on these bonds are provided. A
special feature of the model is that both the domestic and the European
interest rate risks are priced. We also discuss an empirical estimation
Jocusing on the Spanish bond market. The ‘European’ rate is proxied
by the ecus interest rate. Through a comparison of the performance of
our convergence model with a Vasicek model for the Spanish bond
market, we show that our model provides a better fit both in-sample
and out-of sample and that the difference in performance between the

models is greater the longer the maturity of the bonds.
(JEL.:E43, C510).

1. Introduction

The economic and political changes that are taking place in Europe are
affecting financial markets, and interest rates are no exception. Changes in the
European level of interest rates affect the domestic interest rates and we can no
longer study these in isolation. In this paper, we develop a convergence model
which takes into account the influence of the European rate on the behaviour
of interest rates ot European Monetary Union (EMU) countries.

Since the seminal papers by Merton (1973) and Vasicek (1977), many
interest rate models have been developed. In the simplest form, interest rates
have been modelled as one-factor Markovian processes where the term
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structure is dependent on the short-term rate which itself is normally distrib-
uted. Empirical research, however. has suggested that multi-factor models do
significantly better than single-factor models in describing the behaviour of the
term structure in the real world.'

Although one-factor models represent the short end of the term structure
fairly well, they are inadequate to describe the behaviour of long-term rates.
This has led to two-factor models, which include either the volatility (Long-
staff and Schwartz, 1992) or the mean rate (Balduzzi, Das, Foresi and
Sundaram, 1997. Balduzzi, Das and Foresi, 1998) as additional factors.
Recently, some studics consider three or four factors, such as Balduzzi ef al.
(1996) and Chacko (1997). Both papers use, besides the short rate, stochastic
mean and volatility as additional factors. While Balduzzi er al. (19960)
conclude that volatility influences mainly short to medium-term yields and the
mean rate affects long yields more strongly, Chacko (1997) states that the
long-run mean is found to be the most important factor for the middle of the
yield curve, the stochastic volatility having a minor impact on the yield curve.

In this paper, we develop and estimate a two-factor model of the term
structure of interest rates. Following common practice, the first factor is
identified with the level of the short-term rate. The second factor is identified
with the central tendency of the short rate, which itself changes stochastically
over time. We refer to this model as a stochastic mean reverting model or
convergence model.

Stochastic mean reverting models have been successful in describing the
process followed by short-term interest rates. Among the reasons for the use of
stochastic mean models Balduzzi ef al. (1997) note that there is considerable
evidence of leptokurtosis (‘fat tails’) in the distribution of changes of interest
rates, which can be a consequence of time variation in the mean level. This
issue is specially important for the pricing of options where volatility plays a
crucial role. Moreover, a model which imposes a constant mean level may
overstate the volatility of the short interest rate because changes in the mean
are included in the volatility parameter. Finally, there are macroeconomic
based reasons, for example, changes in the level of inflation or exchange rates.
which are likely to be reflected in mean shifts in interest rates.

These reasons make stochastic mean models a convenient framework to
study the term structure of interest rates of European countries, given that for
some years after forming the EMU, participant countries are allowed to issue
debt in their home currency while simultaneously European debt will be issued
. 2
in euros.”

I Some studies that test these models are Stambaugh (1988), Longstaff and Schwartz (1992),
Litterman and Scheinkman (1991).

2 By 2002. the euro will be the only curreney but still participant countries will be allowed to
issue domestic debt contemporancously to the debt issued by the Furopean Central Bank.

¢ Banca Monte dei Paschi di Siena SpA. 2000.
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EMU participant countries fixed their bilateral exchange rate against the
euro in January 1999.% With fixed exchange rates, risk-free interest rates across
countries should be the same. Even before the formation of the EMU block,
we could observe how interest rates in the participating European countries
were converging. Nevertheless. even with a single currency, risk-free interest
rates across countries may be slightly different, reflecting different sovereign
risks.

Because participant countries are allowed to issue domestic debt contem-
poraneously with the debt issued by the European Central Bank, small
differences in domestic interest rates exist.? Since the level of interest rates
will affect bond prices and prices of interest rates derivatives, developing a
model that incorporates both the domestic rate and the central rate will
improve the valuation and hedging of these instruments.

Our term structure model is exponentially affine and we obtain closed-
form solutions for the prices of bonds and European options on discount
bonds. American type options, options on coupon bonds and other exotic
derivatives can be easily solved using numerical procedures.

It should be noted that, in the model presented here, the market price of
risk for both stochastic processes is priced and can be estimated directly from
the data, without any need for further assumptions.

The characterization of the term structure dynamics developed in this
paper not only applies to a fixed exchange or single currency situation, but also
to the situation in which markets anticipate the formation of the EMU block,
when interest rates were induced to converge.

In this context, we test the model for the Spanish term structure. As a
proxy for the central tendency, we use the ecu’s interest rate. This is distinct
from previous work (Balduzzi er al., 1996) in which the stochastic mean is
treated as an unobservable. Proxying the mean rate by an observable allows us
to more efficiently investigate the pricing properties of the convergence model.
The short-term interest rate of the ecu’s deposits serves as a good proxy since
after 4 January 1999 all debt in ecus became debt in euros, and the interest rate
of this debt became the reference for all economies joining EMU.® The method
used for estimation purposcs is the generalized method of moments (GMM).
This method provides a simple but flexible framework that is robust to

* The conversion rate. for cach country, at which exchange rates was fixed is an interesting
and polemic topic (Obstfeld, 1998), but it lics beyond the scope of this paper.

* For instance, during November 1999, the Spanish three-years interest rate was 4.37 per cent
while the Italian one is 4.17 per cent and the German was 4.05 per cent.

* We arc aware that the ecu is not an exact proxy for the euro because it included currencies
like drachma and sterling that were not included in the euro. Another proxy for the curo rate could
be the DEM rate, but during the sample period, it was not clear what weight the German or any
other currency would have. In the absence of further information at that time. the use of the ccu
rate scems highly suitable.

¢ Banca Monte det Paschi di Stena SpA. 2000,
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misspecification in the behaviour of the residuals, and is very suitable to
estimate the system of equations we obtain, making use only of the certain
moment conditions and avoiding oversimplifying assumptions.

For a cross-section of Spanish discount bonds during the period June 1990
to December 1997, we compare the fit of our convergence model with that of a
Vasicek model which assumes a constant mean rate. The average in-sample
root mean square error (RMSE) for the convergence model is 3.9 per cent,
whereas for the Vasicek model it is 4.3 per cent. The average out-of-sample
errors are also smaller for the convergence model than for the Vasicek model.
The differences in favour of the convergence model are greater, the longer the
maturity of the bonds for both in-sample and out-ot-sample fit.

The results presented here should be interpreted with caution since the
distribution of interest rates in Spain has been changing in the recent past,
given that economic and political factors are forcing interest rates to converge.
The performance of the model can be expected to improve in the future, since
the reference rate will be more clearly defined and the distribution of interest
rates more stable.

The paper is organized as follows. In section 2. we introduce the stochastic
process followed by the European and the domestic interest rate. In section 3,
we derive the closed-form solutions for zero-coupon discount bond prices, and
for European options on the domestic bond. In section 4, as an example, we
present the data and discuss the application of the model to the Spanish zero
coupon bonds. Finally, we conclude in section 5.

2. A Convergence Model for Interest Rates

The basic element in the pricing of bonds and interest rates derivatives is
the specification of the interest rate process.® In this section, we define the
process followed by the domestic short-term interest rate, modelled as a two-
factor process, and the process followed by the European rate which is taken as
the benchmark process.

2.1. The Process followed by the Domestic Short Rate of Interest

Definition 1 The domestic short-term interest rate follows a stochastic
mean reverting process given by a stochastic differential equation (SDE) of
the form

“ (eneral equilibrium models that are consistent with these specifications can be constructed.
Some examples are Longstaff and Schwartz (1992) for two-factor term structures, Goldstein and
Zapatero (1996) for once-factor term structure.

¢ Banca Monte dei Paschi di Siena SpA, 2000.
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(1) dry = [a + by, — rg)]dt + G4dzy

where a, b and o4 are constants, vy is the domestic rate and r, the European
rate. The mean reverting level is the European interest rate which itself evolves
stochastically over time.

The presence of « in the mean reflects the fact that the convergence of
interest rates within the EMU will take place at the average interest level of the
core countries of the exchange rate mechanism (ERM), so the domestic
interest rate does not need to replicate cxactly the central interest level, and
minor divergences may exist.

The difference (r. — r,) represents the reversion of r; towards r,, b is the
speed of adjustment coefficient, and dz,; 1s an increment to a Wiener process.

This two-factor model provides a richer pattern of both term structure
movements and volatility structures than the one-factor models.”

2.2. The Process for the European Short Rate of Interest

Definition 2 The SDE followed by the European interest rate is a mean
reverting Ornstein-Uhlenbeck process,

(2) dr, = o(d — r.)dt + 0,.dz,

where ¢ is the speed of adjustment coefficient and d is the long-run mean level
of ¥v. and dz, is an increment to a Wiener process.

The two processes are correlated with coefficient p
zqdz, = pdt

Given that the errors are normal, the specifications of both processes,
domestic and European, allow interest rates to become negative. It is well
known that if the current short term is well above zero, there is only a very
small probability of reaching a negative level.®

7 For instance, we can rcproduce volatility shapes, like the *humped® shape that are not
possible in one-factor models. For detail, see Hull and White (1994).

8 For a detailed study of this topic, see Rogers (1995). One way to prevent the occurrence of
negative interest rates is to assume that the short-term rate’s diffusion coetficient is proportional to
r“ when « > 0. In some cases, additional technical conditions are required. Cox, Ingersoll and
Ross (CIR) (1985) analyse the case where « = L. All the results of this paper can be extended in a
straightforward manner to the CIR model. )

¢ Banca Monte dei Paschi di Siena SpA, 2000.
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3. Bond-pricing Equations and other Interest Rate Derivatives

We first proceed to derive the bond pricing formulas for the European
(which depends on r.) and domestic bonds. The equation for the European
bond is well known since it corresponds exactly to the Vasicek case, so we
discuss it briefly and skip the proofs.

The European market price of risk obtained here is an input to the
equation for the domestic bonds.

Then we present the derivation of the closed-form solution to price
European options on the domestic zero-coupon discount bond. Throughout
the subsection, the term European (vs American) is used to denote the
exercise condition of the option. We do not discuss the valuation of
derivatives of the central interest rate since they are well known in the
literature.

3.1. The European Bond

Proposition I Let P(r., 1) be the price of a zero-coupon discount bond
with face value | ECU and t years fo maturity when the interest rate Is 1,
and following process (2). Its price is given by

(3) Pr,, 1) = exp[F(1) — r.G(T)]
where
G(r) = 1 — exp(—ct)
c
and
_ A od 2 2 2
Fo) = (G(1) — T)(c(ed : AeG.) —03/2) 70(,(f(r))
? ¢

3.2. The Domestic Bond

Proposition 2 Let P(ry. r.. 1) be the price of a zero-coupon discount
bond with face value 1 domestic curvency unit and T vears to maturity
when the domestic interest rate is vy and the central rate is r,. Its price is
given by

(4) P(ry, re, T) = expl A1) — ryB(v) — r.C(1)]

where A(-). B(-) and C(-) are functions that depend on T but not on rq or re.
The exact form of these functions is

¢ Banca Monte dei Paschi di Siena SpA, 2000.
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B(1) — :Vc_x]p(—br)
)

hB(T)(1 — exp(—cT))
T) = - —

C

1 bl
A(T) = 5T[=2aB(T) + C()(=2ed + C(T)o7 + 204, + BII2C(T)poyo,
+ 04224 + B(1)o4))]

Proof of Proposition 2 See Appendix A.

3.3. Options on Domestic Discount Bonds

From (4). we can write the stochastic process followed by bond prices
P(ry, r.. T) as:
dP(ry, ¥e, T)
P
where u(ry, r., T), U4(1), and v (1) are known functions of ry, 7., T and the
parameters of the interest rate processes (v,, and v, are only functions of

time).
Using Ito’s lemma, the volatility of P(r,, r., ) is

= vy, 1o, AT + U (T)dzg + U (T)d=,

o) = (Jf,B(T)2 + U?_C(T)z + 2p0,40.B(t)( (1)

and we have uscd the fact that £[d=z,, d=,] = pdt.

Since this is independent of the level of ry, r., the distribution of a bond
price at any given time conditional on its price at an earlier time must be
lognormal.

Consider a European call option C(ry, 7., f, T¢) on a discount bond with
exercise price K. Suppose that the current time is 7, the option expires at T,
and the bond expires attime 7 (¢t < T¢ < 7).

Given that C(ry, #., T¢) depends on the same random variables r, and r,,
it too must satisfy the equation (A.1). The only difference is that the terminal
value for the option is

Clry, vo, t, Ty = max(P(ry, ro. Te. Ty — K. 0)

Merton (1973) extends the Black-Scholes option pricing model to accom-
modate a stochastic term structure. His model applies to the process followed
by P(ry, 1., T) since the drift coefficient can be of general specification, while
the diffusion coefficient must be equal to a deterministic function times the
current bond price.

From the lognormal property, and the results in Merton (1973) and
Langetieg (1980), it follows that the option price C is given by

¢ Banca Monte dei Paschi di Sicna SpA. 2000.
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C = P(ry, ro, t, TYN(h) — KP(ry, 1o, 1. TeIN(h — 0Op)
where

1 Piry. ro, t. T) agp
h=—log — +
op P(ry, o, t. TOK 2

and ¢, is the variance of the logarithm of the price of the underlying bond at
the option expiration date

T
(73, = [ o (1)dt
St
or
Te
0% = {03[B(. T)~ B(r, TO)T + 03[ Clr, T) = C(x, T
g1

+2p0,0. B(t, 1) — B(t, TN C(r, T) — C(r, To)l}hdt
and finally,
0% = vu(t, Tey B(Te, T + velt, TeY C(Te, T
+ 2pva(t, Tewelt, Te)B(Te, TYC(Te, T)

where 1'3,(1‘, 7o), vf,(r, T¢) are the variances of #, and r,, respectively, and are
given by

, 1 —exp [—2c¢(Te — )]

¢ 2¢

Vi, Tey=o0

1 —exp[-2c(T¢e — 1)]
2c

vi(t, Te) = o7 (1= exp[~b(Tc = 1)
P I —exp| 22bb(T( Nl

Appendix B provides the derivation of vf,(t, Tc) and vf,( t, Te).

The price of a European put can be easily found from the call-put parity.

Unlike the case with a single stochastic factor, where we can decompose
an option on a coupon-bearing bond into a portfolio of options on discount
bonds (Jamshidian, 1989), in our two-factor model, it is not possible to mimic
this procedure. The reason is that with two interest rates, it is not possible to
build a one-to-one correspondence between strike interest rates and prices.
However, we can still find a numerical solution.? These solutions can also be
applied to value American options.

9 Possible approaches are Hull and White (1994) or Broadie and Glasserman (1997).

¢ Banca Monte dei Paschi di Siena SpA, 2000.
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4. Example: Empirical Implementation for the Case of Spanish Bonds

We now provide an empirical application of the convergence model. We
first present the econometric methodology employed in the estimation. Then
we describe the data used. The empirical implementation takes the Spanish
short-term interest rate as the domestic rate and the ECU’s short-term interest
rate as a proxy for the stochastic central tendency. Finally, we discuss the
results obtained and compare them with those obtained using a one-factor
constant mean Vasicek model.

4.1. Methodology

The econometric approach used in estimating the parameters of the
interest rate models is the generalized method of moments (GMM). This
technique is robust to misspecifications in the behaviour of the residuals since
it allows us to use certain moment conditions without specifying the full
density function.'” Some studies that already use this technique are Balduzzi
et al., (1997) and Chan et al., (1992).

Following the usual practice in these type of studies, we estimate the
parameters of the continuous-time model using a discrete-time version of
process

(5) Py — Fy = [a + b( For — I‘\-,)]AI + U\‘S\'f \4 Af
and
(6) Ferel — For = ¢(d — o)At + 0.EV AL

where the &, and the &, are correlated i.i.d. draws from a standard normal
distribution. The ry, are observations of the Spanish short-term interest rates at
each moment of time and ., are observations of the European short-term
interest rates at each moment in time.

We define

€y = Pyl — Fy — [a+ b(re — ra) At
from (5), and
Cor = Forrl = Fer — C(d - "er)At

from (6). Then the moment equations for our model are given by

10" Additionally, it is useful in models where the diffusion varies with the level of interest
rates. This fact would allow us to perform comparisons with models like CIR (Cox er al., 1985) in
a unified framework.

(" Banca Monte dei Paschi di Siena SpA, 2000.
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Elcq]1=0

E[&] =0iAt
E[(For — Fa)eu] = 0
Elcy] =0

E[c;] = oAt
E[rucs] =0

El¢ o] = po,0.At

In addition, for the estimation we also use the information contained in
the third moments,

E[3]1=0 and  E[]=0

The value obtained for the quadratic form after convergence, that under the
null hypothesis (that the third moments are zero, i.e. our variables are
symmetric) follows a y? distribution with two degrees of freedom, the number
of overidentifying moments.

Estimations using also the fourth moments of the residuals were per-
formed and the results turned out to be similar to the ones with just the third
moments. However, the convergence properties of the estimates involving the
fourth moments tended to be more unstable and sensitive to the starting values,
due to the increasingly complex behaviour of the objective function as higher-
order moments are included. For this reason, we do not report those estimates.

Were we to estimate the two regressions separately, we could use max-
imum likelihood to obtain more efficient results, since the model implies that
¢, and ¢,, are normally distributed. The estimate of the correlation coefficient,
however, would not be efficient. GMM allows us to provide asymptotically
efficient estimates of the seven parameters. Assuming that ¢, and ¢, follow a
bivariate normal distribution (BVN), maximum likelihood would allow to
efficiently estimate the seven parameters; but bivariate normality is not implied
by the model."

' The model just implies two variables that are normal separately: it is not necessary that
their joint distribution behaves as a bivariate normal. Nevertheless, we estimated the system by a
two-step maximum likelihood procedure (the joint likelihood of the seven paramcters is not
globally concave, and the joint estimation of the seven parameters is highly unstable). Thus. we first
cstimated the covariance matrix using the OLS residuals. Then we used this estimated covariance
matrix in the bivariate normal likelihood to obtain estimates of the intercepts and slopes. Results
(both after a first iteration, already cfficient. and after several iterations of the two-step procedure
with strong convergence criteria) were generally consistent with those of GMM, except for some
subsets of the data. This discrepancy. and the fact that BVN is not implied by the model. led us to
stick to the GMM results, which are more robust to nonnormal behaviour of the errors.

( Banca Monte dei Paschi di Siena SpA, 2000.
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It is important to acknowledge that the discrete version of the process in
(5) and (6) is only an approximation of the continuous-time specification.
However, for short time sampling intervals such as the one we use in our study
(one week). this approximation is almost exact; see for example Schwartz
(1997).

We also estimate a one-factor Vasicek model for the domestic term
structure. The results of this estimation are used as a benchmark to compare
them with the results of the convergence model. We also use the GMM method
for consistency with the previous estimation.

In the Vasicek case, the discrete-time version is

Fasl — Py = c(d — rg)At+ 0,5, VAL

where, as before, &, are i.i.d. draws from a standard normal distribution and
the r,, are observations of the Spanish short-term interest rates at each moment
in time. Defining

Cy = Fsgt — Fao — ((d - I‘S,)AI‘

the moment equations are
Elcy] =0  E[3]1=0At  E[rqy]=0

We again use the information in the third moment, E[¢}] = 0. In this case,
under the null hypothesis (the third moment is zero), the quadratic form after
convergence will follow a x> distribution with one degree of freedom.

To use the pricing models developed, we still need to obtain parameter
values for the markets price of risk (4, and 4,). To do so, for each model, we
search over different values of A until we minimize the prediction error i.c. root
mean squared error (RMSE), over a sample of Spanish and European bonds.
This is computed by

1 N 3
RMSE = | — P — A
Y Z,[ I

where N is the number of observations, P is the model predicted price and A,
is the actual market price for the ith observation.

4.2. Duata

We follow standard practice and treat the one-month interest rate as a
proxy for the instantaneous rate.

The short-term interest rates used are the one-month interbank middle
(between bid and ask) rate in the case of the Spanish market and the middle
interest rate for one-month deposits in the ECU one. We use weekly data from

¢ Banca Monte dei Paschi di Siena SpA, 2000.
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September 1990 to December 1997, Therefore we have 382 weekly observa-
tions of the interest rates. The period chosen was determined by the availability
of data and the need to have enough observations to perform the estimations.
The database used is Datastream.

Tables 1 and 2 provide the descriptive statistics of the interest rate data.
and Figure | shows the evolution of both rates.

To obtain the weekly prices for European and Spanish zero-coupon
discount bonds, we use the estimation of the yield curve'? with maturities 1, 2,
3. 5 and 10 also available in Datastream. Discount bond prices given in terms

of the yields are
P(t, T) = exp[—(T — nY(t. T)]

where P(t, T) is the price at ¢ of the discount bond maturing at 7, and Y (¢, T)
is its corresponding yield.

We have a total of 1910 discount bond prices (five observations per week
during 382 weeks) for each class of bonds (European and Spanish).

The first four months of 1998 are used for prediction purposes. Again, we
have five observations per week corresponding to bonds with 1, 2. 3.5 and 10
years to maturity which gives a total of 90 observations. Note that the
prediction period is not used for the computations of the parameters of the
interest rates processes, nor of the market prices of interest rate risk.

Table 1: Descriptive Statistics

Iy dr, Fo dr. Foo— F
Mean 0.10 -0.00026 0.071357 —0.00014 —0.0292
Standard 0.0319 0.0040 0.0244 0.00226 0.0129
deviation
Skewness 0.197 -2.0087 0.2228 0.2556 —1.01
Kurtosis —1.12 70.48 —1.4743 14.4 2.28
Maximum 0.1812 0.0431 0.12687 0.01437 —0.0055

Minimum 0.048 —0.0544 0.04 -0.015 —0.0929

Notes: Weekly data: 9°6:90-3112:97

Table 2: Correlations

dr. Fe = K r

dr 0.08  0.1948 e 0.929

Notes: Data from 9:6°90-31/12/97

2 We use the curve to the power of three.

¢ Banca Monte dei Paschi di Siena SpA, 2000.



‘;
- 86-I
i

r £6-§

‘r 26K
i
L z6-r

L g6-8

T

96-H

L 96-r
- 56-8
G6-H
- S6-I
- p6-S
- p6-H
L v-r

r £6-S

- E6-H
- £6-1

r 26-S

c6-H

g6-r

16-§

L6-H

U

FL6-r

l e A —+ 06-§

© A2 N < % @ < N
~ ~ -

~

18 A

(%) s8iepd 1S884031U/

(253

Short-term interest rates evolution

Figure 1:

Banca Monte dei Paschi di Sicna SpA, 2000.

&



256 Economic Notes 2-2000

4.3. Resulrs

The results of the estimation for the parameters of the interest rates
processes for the convergence model are presented in Table 3. The coefficients
are more significant in the case of #, than in the case of r.. The coefficient that
measures the speed of adjustment, b, turns out to be the most significant
parameter, thus confirming the reversion character of the Spanish interest rates
towards the European ones. As shown in the table, we cannot reject the nuil
hypothesis that the third moments are zero.

The standard errors of the intercepts and slopes obtained with GMM are
similar to the White-corrected errors (those corrected for heteroscedasticity).
This result does not hold for the standard errors of the variances and
covariance: with GMM estimation the standard errors estimated differ substan-
tially from the maximum likelihood or least squares ones, and are only valid
asymptotically. This is the reason why we do not report the r-ratio of the
standard deviations and the correlation.

Figure 2 graphs the weekly changes in the Spanish interest rate and its
weekly drift over the sample period. Excluding the period from September 92
to September 93 which corresponds to the European monetary crisis, changes
in the Spanish interest rate followed closely the drift of the convergence
model "

Using a cross-section of ECU bond prices with 1, 2, 3, 5 and 10 years to
maturity during the period September 1990 to December 1997, Table 4 shows

Table 3: Mcthod of Moment Estimation for Convergence Model specified in equations 5 and 6

,
a b a, ¢ d [ P 5

Coeff. 0.0938 3.67 0.032 0.2087 0.035 0.016 0.219 0.0003
t-stat 1.72 1.85 043 0.79

Notes: Weekly data: September 1990 December 1997: 382 obs: annualized coefficients: 52 weeks per year

Tablc 4: Estimation of the European Market Price of Risk Corresponding to the Parameters in

Table 3
Years to maturity No. obs Ae RMSE ME
1.2,3.5, and 10 1910 —0.655 0.0241 0.017

Notes: This table reports the price of risk using weekly data of a panel of European bonds. We report the in-
sample pricing errors: mean sum of squared crrors. (MSSE), root mean squared errors (RMSE), mean error
(ME). Estimation period: September 1990 to December 1997,

' This can be taken as cvidence of model misspecification. regime shifts or stochastic
volatility; there is alrcady some research in this direction concerning the Spanish market.
Regarding regime shifts Gomez-Biscarri (1999) can be consulted. Evidence about stochastic
volatility can be found in Corzo and Goémez-Biscarri (1999).
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Economic Notes 2-2000

that the best fit was achicved for a market price of Europcan interest rate risk
of A, = —0.635.

Using a cross-section of Spanish bond prices with 1. 2. 3, 5 and 10 years
to maturity, the estimation of the Spanish price of risk and the errors incurred
can be found in Tables 5 and 6. Using the previously estimated A, = —0.653,
we obtain A, = 3.315. The in-sample RMSE is 3.9 per cent and the mean crror
is 0.14 per cent. RMSE raises from 0.95 per cent for 1-year bonds to 6.1 per
cent for 10-year bonds.

Tables 7 and 8 show the same set of parameter estimates as Table 3 when
we divide the sample period into two equal subperiods. This allows us to see —
by looking at the r-statistic of » — that the convergence has been more
significative during the last three and a half years, although it has also been
important during the first subperiod. The parameter « losses importance at the
end reflecting that the rates are drawing closer so we are not able to estimate
with confidence the level of «, although we are able to do it for the whole
period.

Table 5: Estimation of the Spanish Market Price of Risk Corresponding to the Parameters in

Table 3
by — —0.635
Years to maturity No. Obs Ay RMSE ME
I 382 3.465 0.0095 —0.000007
2 382 3.020 0.0215 0.000204
3 382 3.105 0.033 0.000464
5 382 3.39 0.048 0.000900
10 382 3.391 0.061 0.002860
1,2.3. 5and 10 1910 3315 0.039 0.001446

Noies: This table reports the prices of risk using weekly data. In-sample pricing crrors. Period: September 1990
to December 1997.

Table 6: Out-of-sample Test; Convergence Model

A, = —0.6553 Ay = 3.315
Years to maturity No. obs RMSE ME
| 18 0.0182 —0.01818
2 18 0.03967 —0.03963
3 18 0.0649 —0.0649
5 18 0.11357 —0.11348
10 18 0.1766 —0.1764
[.2.3.5and 10 90 0.100 —0.0825

Notes: Prediction period: 18 weeks, January 1998—May 1998 (estimation period: September 1990 -December
1997)
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Table 9 reports the results of the estimation for the Vasicek model. The
speed of adjustment coefficient. though positive, is not significant. Again, we
cannot reject that the third moment is zero. In Table 10, we report the
estimation of the Spanish market price of interest rate risk and the errors. In
this case, 4, = —0.4316. the in-sample RMSE is 4.3 per cent and the mean
error 0.19 per cent. The fit of the model is worse than the one obtained with
the convergence model. It can also be seen that the errors worsen in the
Vasicek model as the time to maturity of the bond grows. For 1-year bonds, the
RMSE is 0.93 per cent for the convergence model and 0.95 per cent for the

Table 7: Estimation of the Convergence Model

a h a, ¢ d U, P ¥
Coeff. 0.1877 6.0639 0.0457 0.1869 0.0346 0.0198 0.20 9.15¢—006
t-stat 1.5 1.54 0.3 0.4

Nores: September 1990-- April 1994: 191 observations: annualized cocfficients

Table &: Estimation of the Convergence Model

)
a h o ¢ d U, I e

Cocff. —0.0085  0.687 0.0087 1.01 0.045 0.0101 0.31 0.0058
1-stat 0.95 1.76 1.26 0.98

Notes: May 1994 -December 1997: 191 observations: annualized cocflicients

Table 9: Estimation of a Vasicek Model for the Spanish
Term Structure

¢ d o, P
Coeff. 0.524 0.0747 0.032 0.0003
t-stat 1.47 1.29

Notes: Weekly data September 1990-December 1997: 382
obs.: annualized coefficients; 52 weeks per year

Years to maturity No. obs A, RMSE ME

1 382 --0.39 0.0093 0.00012
2 382 —0.395 0.022 0.00039
3 382 —0.395 0.0348 0.00093
5 382 —0.407 0.0525 0.00172
10 382 —0.449 0.069 0.00297
1,2,3,5and 10 1910 —0.4316 0.0433 0.00191

Notes: This table reports the prices of risk using weekly data; in-sample pricing errvors
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Vasicek model, but for 10-year bonds, the RMSE with Vasicek are 6.9 per cent
and with the convergence model are 6.1 per cent. The convergence model
seems to be more adequate to value long-term interest rates derivatives.

The average out-of-sample RMSE (Table 11) is 10.0 per cent for the
convergence model and 10.5 per cent for the Vasicek one. Once more. the
differences between both models is greater as the time to maturity of the bonds
grows longer.

Table 11: Out-of-sample Test, Vasicck Model

Ac=—04316

Years to maturity No. obs RMSE ME

1 18 0.0155 —0.0155
2 18 0.0415 —0.0415
3 18 0.0698 —0.0698
5 18 0.1193 —0.1192
10 18 0.1829 —0.1827
1

,2.3.5and 10 90 0.105 -0.0857

Notes: Out-of-sample pricing errors for Spanish bonds
Prediction period: 18 weeks. 7-January/98—30:April. 98
Estimation period: September 1990—December 1997

5. Conclusions

We have developed a two-factor term structure of interest rates model that
applies to EMU countries, and provided closed-form solutions for the prices of
bonds and European options on zero-coupon discount bonds.

The model is a stochastic mean reverting model. The first factor is
identified with the level of the short-term interest rate of the country participat-
ing in EMU, and the second factor is identified with a ‘central rate’ or a rate of
the debt issued by the European Central Bank. The economic intuition under-
lying the model is provided by the fact that after EMU is established, each
country will be able to issue national debt contemporaneously with the debt
issued by the Central Bank. With a fixed exchange mechanism or with a single
currency, economic theory and empirical evidence indicate that the interest
rates of both debts will have to be very close, but not necessarily equal. The
fact that domestic interest rates are converging to the European rate should be
taken into account for valuation purposes, especially for the case of interest
rates derivatives.
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One important contribution of the model is that the prices of risk of both
factors can be estimated from easily accessible data.

To assess the model’s performance with some degree of confidence, we
need to wait until the EMU has been in place for some time. Nevertheless, we
do a preliminary estimation for the case of the Spanish term structure taking
the one-month interbank interest rate as a proxy for the first factor and the one-
month interest rate on the ECU deposits as the stochastic central mean. We
obtain a good in-sample and an out-of-sample fit. We also provide a compar-
ison with the results of a Vasicek model estimation for the Spanish interest
rate. It is shown that, when valuing zero-coupon bonds, the errors are smaller
with our convergence model, and that this improvement is especially marked
for long-term bonds.

¢ Banca Monte dei Paschi di Siena SpA, 2000.
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APPENDIX A

Proof of Proposition 2

If P(r,, r., T) is the price of a discount bond with face value | domestic
currency and T years to maturity dependent on ry(ry, 7o, T) (1) by Ito’s lemma,
P must follow the SDE:

dP(Fry, ¥, T 1 1,

A('IP*) - Pm drc/ + Pr‘,dru + PrdT + 5012113/1/11/‘/1— + EO—:’PIZ"‘U({T

+ P0G P, dT

where P.,. P, Pr. Poy,, P, Py denote partial derivatives.
Standard no-arbitrage conditions will lead us to obtain the following
differential equation for the bond price

E(DP) — r4P — A,0,P,, — 2,0.P, =0

where D denotes the Dynkin differential operator, 4, is the market price of the
domestic interest rate risk and A, is the market price of the European interest
rate risk. Alternatively, we can write:

(A1)

i
[[l -+ b(r(’ - I‘[/) - /.{dod]Pl;/ + [C(d - ru) - )"(’()—L’]P/‘, -+ Ea(szdd

1
+ E(IiPM + p00, Py — Py — raP =0

The boundary condition for this PDE is P(ry, r., 0) = 1
We guess a solution of the form (4).'* These class of solutions are often

4 This is quite standard, as we know that assuming affine functions for the drift and variance
terms in the processes for our state variables assures an affine solution: see Duffic and Kan (1996).
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denoted as the ‘exponential-affine’ form, following the work by Duffie and
Kan [1996].

Substituting the derivatives of the posited guess into equation (A.1), and
then simplifying by separating terms as coefficients of r, and r,, we arrive at
the following transformation of the PDE:

(A.2) raB(T)b + B, — 1] + r,[C(t)c — B(D)b + C;] +
[—aB(t) + B(t)A,04 — C(1)cd + C(T)A.0,

1 5 I,
+ EO'?/B“(T) + 50;(‘2(1) + C(7)B(t)poy0. — A, ] =0

For (A.2) to be uniformly satisfied over the support of r; and r,, all three of the
terms in brackets must be equal to zero. The solutions for 4(t), B(t), and C(1)
in (4) are found by integrating a system of ODEs:

BTb+ B, —1=0

C(tye— B(t)b+ C, =0

1
—aB(1) + B(T)Ay0, — C(1)cd + C(T)A,0, + Ea?,Bz(r)

1
+ E(Jf,CZ(T) + C(v)B(t)poy0, — A, =0

subject to three boundary conditions: B(0) = 0, C(0) = 0 and A4(0) = 0. ]

APPENDIX B

Derivation of vi(t, T¢), vi(t, T¢).
Given the specifications

dr. = c(d — rp)dt + 0.dz,
and
dry = [a + b(r, — Vd)]d[ + oydz,

the processes followed by r.(7) and r,(7), with T = Tc — ¢, are respectively
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T
e (‘”7“'(/11+U€l e T = (1)
Jo

r(T)=¢ T+ cdl
Jo

T T T
Fa(T) = e P (1) + aJ eMds + b] e e TH + Cd[ e Ty
0 Jo Jo

T T
+ (]UJ e Tgs (u))ds + (FL[J e dzy(5)]
0 0

In the case of r.(7) it is well known (Jamshidian, 1989) that the variance of
the process is
1 —e 2¢(1)
2¢

2
¢

V(Z,(T) =0

In the case of r,(1) the random part can be written as

T T T
/)()‘UJ e"””f”[ e Tz (1)ds + O'L/[ e M0 i)
0 Jo Jo
and, by Fubini’s Theorem,

T

bo(,J e Pr ”J e Tz (u)ds = bae[

T
e"”’”" e T ddz (1)
0 0 Jo

Jo
or,

T
o.(l — e’h(”)J e Tz (1)
0
So, the variance of r (1) is

—2¢(1) 1 —¢ 2h(1)

l—e
2 H(1)\2 2
(l_e T)) +0¢{T

v(zj(r) =0, e

Non-technical Summary

The economic and political changes that are taking place in Europe are
affecting financial markets, and interest rates are no exception. Changes in the
European level of interest rates affect the domestic rates and we can no longer
study these in isolation. The paper develops and estimates a two-factor model,
called the convergence model, for the term structure of interest rates specially
designed to apply to EMU countries. It takes into account the influence of the
European rate on the behaviour of interest rates of EMU countries.

EMU participant countries fixed their bilateral exchange rate against the
euro in January 1999. With fixed exchange rates, risk-free interest rates across
countries should be the same. Nevertheless, even with a single currency, risk-
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free interest rates across countries may be slightly different, reflecting different
sovereign risks. Because participants™ countries are allowed to issue domestic
debt contemporaneously with the debt issued by the European Central Bank.
small differences in domestic interest rates exist. Since the level of interest
rates will affect prices of interest rates derivatives, developing a model that
incorporates both the domestic rate and the central rate will improve the
valuation and hedging of these instruments.

The convergence model is a stochastic mean reverting model. Following
common practice, the first factor is identified with the level of the short-term
rate. The second factor is identified with the central tendency of the short rate,
which itself changes stochastically over time. It is assumed that the central or
‘European’ rate follows a standard mean reverting process.

The term structure model is exponentially affine and closed-form solutions
for the prices of bonds and European options on discount bonds are obtained.
In the mode! presented, the market price of risk for both stochastic processes is
priced and can be estimated directly from the data, without any need for
further assumptions.

In this context, the model is tested for the Spanish term structure. The
short-term interest rate of the ccu’s deposits is used as a proxy for the central
tendency. This is distinct from previous work in which the stochastic mean is
treated as an unobsecrvable. Proxying the mean rate by an observable allows us
to more efficiently investigate the pricing properties of the convergence model.

The method used for estimation purposes is the generalized method of
moments. For a cross-section of Spanish discount bonds during the period June
1990 to December 1997, the average in-sample root mean square crror
(RMSE) for the convergence model is smaller than that of a Vasicek Model
(3.9 per cent versus 4.3 per cent). The average out-of-sample errors is also
smaller for the convergence model. The differences in favour of the new model
are greater, the longer the maturity of the bonds for both in-sample and out-of-
sample fit.

The characterization of the term structure dynamics developed in this
paper not only applies to a fixed-exchange or single-currency situation, but
also to any situation in which markets anticipate that interest rates are forced
to converge.
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