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Abstract

This paper studies the costs of applying single-factor exercise strategies to American
swap options when the term structure is actually driven by multiple factors. Using a
multifactor string market model of the term structure, we find that even when single-
factor models are recalibrated to match the market at every exercise date, the exercise
stratcgies they imply can be suboptimal. Based on estimates of notional amounts
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outstanding, the total present valuc costs of following single-factor strategies could be
several billion dollars. These results illustrate the importance of using well-specified term
structure models. ¢ 2001 Published by Elsevier Science S.A.
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1. Introduction

In the past few years, interest rate swaps have become one of the most
important sectors in the global fixed income markets. The Bank for
International Settlements estimates that the notional amount of interest rate
swaps outstanding at the end of 1999 was $43.9 trillion, nearly eight times the
$5.8 trillion notional value of Treasury debt outstanding. Given the size of the
swap market, it is not surprising that options to enter into swaps, or to cancel
existing swaps, represent one of the most widely used classes of fixed income
derivatives. Known as swap options or swaptions, the total notional amount of
these derivatives outstanding at the end of 1999 was on the order of $4.6
trillion, far exceeding the $15 billion notional value of all Chicago Board of
Trade Treasury note and bond futures options combined. '

The importance of the swaptions market derives from the key role that
swaptions play in corporate finance. Industry sources estimate that more than
50% of new agency and corporate debt issues are immediately swapped from
fixed into floating or from floating into fixed. Debt issuers that swap their debt
typically want the right to cancel the swap at future points in time. Similarly,
debt issuers that do not immediately swap their debt often want the right to
enter into a prespecified swap at later dates. Thus, swaptions arise as a natural
outgrowth of efforts by debt issuers to preserve their flexibility throughout the
financing cycle. Because of the long maturity of many debt issues, swaptions
are often exercisable over horizons that span decades. Intuitively, swaptions
can be viewed as calls or puts on coupon bonds, and our results are directly
applicable to callable and puttable bonds. As with callable and puttable debt
issues, a high percentage of swaptions have American-style exercise features.

Despite their importance, however, there are few areas in finance where there
is a greater divergence between theory and practice than for American-style
swaptions. On one hand, there is an extensive and well-established body of

"Estimated swaption notional amount based on summary statistics from the Bank for
International Settlements and the International Swaps and Derivatives Association.
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research showing that the term structure is driven by multiple factors.” On the
other hand, many Wall Strect firms use simple single-factor models in valuing,
hedging. and exercising American-style swaptions. If term structure dynamics
are driven by multiple factors, however, then the exercise strategies implied by
single-factor models may be far from optimal. resulting in significant erosion of
the value of the swaption to the optionholder as well as in hedging and
dynamic replication errors.

This paper studies the costs of following single-factor exercise strategies for
American-style swaptions in a realistic term structure framework with multiple
factors. Our approach consists of first simulating paths of the term structure
using the multi-factor model and solving for the value of the American-style
swaption when the optimal exercise strategy is followed. Using the same paths
of the term structure, we then solve for the value of the American-style
swaption by recalibrating a single-factor model to the market at each exercise
date and determining whether exercise is implied by the single-factor model at
that exercise date. The difference between the values of the swaption under the
optimal cxercisc stratcgy and the single-factor strategy directly measures the
present value cost of following the suboptimal single-factor strategy. In
repeatedly recalibrating the single-factor model, this approach closely parallels
standard market practice in which single-factor models are continually
recalibrated to a cross section of market prices to compensate for their
inability to capture the dynamics of the term structure.

The benchmark term structure framework used in this study is a multifactor
string market model similar to that used by Longstaff et al. (2001). String
market models blend the market-model framework of Brace et al. (1997) and
Jamshidian (1997) with the string-shock framework of Kennedy (1994, 1997),
Goldstein (2000), Santa-Clara and Sornette (2001), Longstaff and Schwartz
(2001). and others, and have the important advantages of being easily
calibrated and providing rich multi-factor descriptions of the dynamic
behavior of the term structure. Using a four-factor specification. we calibrate
the string market model to match closely the market prices of an extensive set
of European swaption and interest rate cap prices. The resulting benchmark
four-factor string market model has the advantage of being fully time-
homogeneous. Optimal exercise strategies and American-style swaption values
in the four-factor model are easily determined using the least squares Monte
Carlo (LSM) technique of Longstaff and Schwartz. As single-factor
alternatives to the benchmark term structure model, we use the well-known
and widely used Black et al. (1990) and Black and Karasinski (1991) models.

*For example, see Brown and Dybvig (1986), Stambaugh (1988). Litterman and Scheinkman
(1991}, Longstafl and Schwartz (1992). Chen and Scott (1993). Gibbons and Ramaswamy (1993).
Knez et al. (1994). Pearson and Sun (1994). Balduzzi et al. (1996), Duffie and Singleton (1997). Dai
and Singleton (2000a), Piazzesi (2000). Liu and Longstaff (2000), and Longstaff et al. (2001).



42 F.A. Longstaff et al.  Journal of Finuncial Economics 62 (2001 3966

This study contributes to the growing literature on the economics of
misspectfied derivatives models in three ways.” First. we find that single-factor
exercise strategies are suboptimal when the term structure is driven by a
realistic multi-factor model. For many common American swaption structures,
the present value loss from following a single-factor exercise strategy can be as
farge as 10-30 cents per $100 notional. While these losses are on the order of
the size of the bid—ask spread, they are nonetheless economically significant for
swaption holders who can avoid the losses by simply following the optimal
strategy. Given the enormous size of the swaptions market, the aggregate
present value costs to swaption holders from following single-factor exercise
strategies are easily as large as several billion dollars.

Note that these present value costs reflect the average cost over all paths. For
some paths, however, the costs can be much higher. To see this, note that for a
large number of paths, the swaption is always out of the money and any model
would tell the user not to exercise. Similarly, there are many paths where the
swaption is so deep in the money that any reasonable model would tell the user
to exercise. On the other hand, it is precisely when the exercise decision
becomes a tough call that it is most important to have a good model; for these
paths, the difference between single-factor and multi-factor exercise strategies
can be very large. For cxample, the present value costs of exercising when the
single-factor model signals exercise but the multi-factor does not can be as
large as $1.25 per $100 notional. This adds an entirely new dimension to the
potential effects of model risk.

Second, the results demonstrate that the popular practice of continually
recalibrating a misspecified single-factor model to match a cross section of
market prices does not fully compensate for its failure to capture term structure
dynamics. Intuitively, this is clear since no matter how well a single-factor
model is parameterized to match the cross section of market prices, it still
implies that changes along the term structure are perfectly correlated and only
allows the term structure to evolve in a very limited way. The dynamics of
the term structure, however, are fundamental in determining the value of
American swaptions because of the rich intertemporal nature of the optimal
stopping problem.

Third, we show that the value of an American option given by a misspecified
model can be a seriously biased measure of the actual present value of cash
flows generated by following the model’s exercise strategy. Furthermore, this
bias can go in either direction. To illustrate, imagine that in a multi-factor

Y Other recent papers focusing on the pricing and hedging cffects of using misspecified derivatives
models include Dybvig (1988). Chan et al. (1992). Derman (1996). Dybvig (1997). Baksht et al.
(1997). Backus et al. (1998). Dumas et al. (1998), Green and Figlewski (1999). Gupta (1999). Hull
and White (1999), Jagannathan et al. (2000). Peterson et al. (1999). Brandt and Wu (2001).
Buraschi and Corielli (2000), Dai and Singleton (2000b), Driessen et al. (2000}, Hull and Suo
(2000), and Buraschi and Jackwerth (2001).
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world, the true value of an American option is $10. If an investor uses a single-
factor model to make exercise decisions over time. however. the cash flows
received by the investor might only have a present value of $9. Despite this. the
value estimate that comes out of the misspecified single-factor model could
easily be greater than $10 or less than $9 depending on how the model was
calibrated. A particularly insidious case occurs when the single-factor model
fortuitously gives a value estimate equal to the market price of $10. In this case.
the investor might be reassured that his model is well specified and never be
aware that the present value of his cash flows is less than the valuation given by
his model. Note that in an efficient market, an American option is only worth
its market value to an investor who follows the optimal strategy.

Although this paper addresses the exercise strategies of American-style
swaptions, the insights we obtain from the analysis have more general
applicability. In many other applications of financial and real options we make
simplifying assumptions to reduce the dimensionality of the problem. Our
analysis shows that caution is warranted, since in some cases, these simplifying
assumptions can induce suboptimal behavior with significant economic
implications. These results make clear the importance of using economically
realistic models for financial and real options and illustrate some of the dangers
of using overfitted, misspecified models.

The remainder of this paper is organized as follows. Section 2 provides an
introduction to the swaptions market. Section 3 describes the string market
mode] of the term structure. Section 4 explains how American-style swaptions
are valued in the benchmark model as well as in the single-factor alternative
models. Section 5 presents the results about the costs of following suboptimal
strategies. Section 6 discusses how the value of an American option implied by
a misspecified model can be a biased estimate of the present value of the cash
flows generated by following the implied exercise policy. Section 7 summarizes
the results and makes concluding remarks.

2. An introduction to swaptions

The underlying instrument for a swaption is an interest rate swap. In a

standard swap. two counterparties agree to exchange a stream of cash flows
over some specified period of time. One counterparty receives a fixed annuity
and pays the other a stream of floating cash flows tied to the three-month Libor
rate. Counlterparties are identified as either receiving fixed or paying fixed in the
swap.?
*For discussions about the economic role that interest rate swaps play in financial markets. sce
Bicksler and Chen (1986), Turnbull (1987), Smith et al. (1988). Wall and Pringle (1989). Macfarlane
et al. (1991). Sundaresan (1991). Litzenberger (1992), Sun ct al. (1993). Gupta and Subrahmanyam
(2000}, and Longstaff et al. (2001).
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For a typical swaption, the underlying swap has a forward start date.
In a forward swap with a start date of 7, fixed payments are made at time
14+ 0.50,7+ 1.00,7 + 1.50, ..., T — 0.50, and 7T, and floating rate payments are
made at times 7+ 0.25, 14+ 0.50,t+0.75,..., T — 025, and T. Let D(;,N)
denote the value at time ¢ of a discount bond with arbitrary maturity N.
Abstracting from credit issues, the value of the floating leg equals par at the
start date 7. Discounting this value at time 7 back to time zero implies that the
time-zero value of the floating cash flows is D(0, 7). Since the forward swap has
a time-zero value of zero, the time-zero value of the fixed leg must also equal
D(0, 7). This implies that the forward swap rate (required fixed coupon rate on
the forward starting swap). F(0,7, T), must satisfy

D(0,7) — D(0,T)
S0 DO, T+ i/2)

After a swap is executed, the coupon rate on the fixed leg may no longer
equal the current market swap rate and the value of the swap can deviate from
zero. Let V(z, 7. T, ¢) be the value at time ¢ to the counterparty receiving fixed in

a swap with forward start date t>¢ and final maturity date 7, where the
coupon rate on the fixed leg is ¢. The value of this forward swap is given by

FO,7,T)=2 ) (1

L2AT=1)
Vo T,0=5 Y Dt+i/D+D.T)— Do), 2)
=1
where the first two terms in this expression represent the value of the fixed leg
of the swap, and the third term is the present value of the floating leg which will
be worth par at time 7. For ¢ > 1, the swap no longer has a forward start date
and the value of the swap on semiannual fixed coupon payment dates is given
by the expression
P2
Vet T, 0 =5 > Dt +i/2)+ D, T) — 1. (3)

i=1

Note that in either case, the value of the swap is just a linear combination of
zero-coupon bond prices.

There are two basic types of European swaptions. The first is the option to
enter a swap and receive fixed. For example, let © be the expiration date of the
option, ¢ be the coupon rate on the swap, and T be the final maturity date on
the swap. The holder of this option has the right at time 7 to enter into a swap
with a remaining term of T — 7 and receive the fixed annuity of ¢. Since the
value of the floating leg will be par at time 1, this option is equivalent to a call
option on a bond with a coupon rate of ¢ and a remaining maturity of T—1
where the strike price of the call is $1. Alternatively, this can be viewed as a
derivative with payoff at time t equal to max(0, ¥'(t, 7, T,¢)). This option is
generally called a 7 into T — 1 receiver’s swaption, where 7 is the maturity of
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the option and T — 7 is the tenor of the underlying swap. This swaption is also
known as a 7 by T receiver's swaption. Note that if the option holder is paying
fixed at rate ¢ in a swap with a final maturity date of 7, then exercising this
option has the effect of canceling the original swap at time ¢ since the two fixed
and two floating legs cancel each other out. Observe, however, that when the
option is used to cancel the swap at time 7, the current fixed for floating coupon
exchange is made first.

The second type of European swaption is the option to enter a swap and pay
fixed, and the cash flows associated with this option parallel those described
above. An option that gives the option holder the right to enter into a swap at
time t with final maturity date at time 7 and pay fixed is generally termed a
tinto T — r orat by T payer’s swaption. Again, this option is equivalent to a
put option on a coupon bond where the strike price is the value of the floating
leg at time t of $1. Alternatively, the payoff at time t can be expressed as
max{(0, —V(r,7, T,¢)). A tinto T — 7 payer’s swaption can be used to cancel an
existing swap with final maturity date at time 7 where the option holder is
recetving fixed at rate c.

Although there are a number of different variations, the most common type
of American-style swaption is the 7 noncall 7 structure. A 7 noncall
receiver’s swaption gives the option holder the right to enter into a swap and
receive fixed at any of the fixed coupon payment dates t,7+ 0.50,
©+1.00,..., T — 1.00, and T — 0.50. Similarly, a T noncall T payer’s swaption
gives the option holder the right to enter a swap and pay fixed at the same
coupon payment dates. As before. either of these structures can be used to
cancel existing swaps at any of these coupon payment dates after making the
coupon exchange for that payment date. These options are sometimes known
as Bermuda swaptions, deferred American swaptions, or discrete American
swaptions; for simplicity, we refer to them as American-style swaptions.

As with traditional American options, the value of an American-style
swaption is greater than or equal to the value of its European counterpart.
Since the underlying swap terminates at time 7, the value of an American
swaption converges to zero at time 7. This implies that an American swaption
should be exercised at time T — 0.50 if it is in the money. Hence. the value of an
American swaption is identical to that of an equivalent European swaption at
any time after the second to last coupon payment date for the underlying swap.
Furthermore, consider a standard T noncall 1 structure. Exercise dates for this
swaption range from time 7 to time 7 — 0.50. For each of these exercise dates.
we can find a European swaption with the same exercise date on the same
underlying swap. Designate the set of these European swaptions as the
corresponding European swaptions. Standard no-arbitrage results can be used
to show that the value of the American-style swaption must be greater than
or equal to the maximum of the values of all corresponding European
swaptions.
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3. The valuation framework

As the benchmark term structure framework for this study, we use the string
market model of Longstaff et al. (2001). This approach to modeling the term
structure blends the market-model framework of Brace et al. (1997) and
Jamshidian (1997) with the string-shock framework of Kennedy (1994, 1997),
Goldstein (2000). Santa-Clara and Sornette (2001), Longstaff and Schwartz
(2001). and others. String market models have the important advantages of
being easily calibrated to the market prices of a wide variety of fixed income
options while providing a rich multifactor description of the dynamics of the
term structure.

Closely following Longstaff’ et al. (2001). we take the Libor forward
rates out to 15 years., F,=F(,T,T;,+1/2), T, =i/2, i=1.2,....29,
to be the fundamental variables driving the term structure. As in Black
(1976). we assume that the risk-neutral dynamics for each forward rate are
given by

df; = 4, F;dt + 0,F;dZ,, 4)

where #; is an unspecified drift function, a; 1s a deterministic volatility function,
dZ; is a standard Brownian motion specific to this particular forward rate. and
1< T:.° Note that while each forward rate has its own dZ; term, these dZ; terms
are correlated across the forward rates.®

The correlation of the Brownian motions together with the volatility
functions determine the covariance matrix of forwards 2. To model the
covariance structure among forwards in a parsimonious but economically
sensible way. we make the assumption that the covariance between dF;/F; and
dF;/F; is time-homogeneous in the sense that it depends only on 7, — ¢ and
T; —¢. Although the assumption of time-homogeneity imposes additional
structure on the model, it has the advantage of being more consistent with
traditional dynamic term structure models in which interest rates are

“We assume that the initial value of £ is positive and that the unspecified #; terms are such that
standard conditions guaranteeing the existence and uniqueness of a strong solution to Eq. (4) are
satistied. These conditions are described in Karatzas and Shreve (1988, Chapter 5). In addition, we

assume that % is such that F; is nonnegative for all 1< 7.

®A more general approach would be to allow the volatility parameters o; to vary over time
according to some stochastic process. This would be consistent with the growing body of empirical
evidence documenting that interest rate volatility is stochastic. For example. sec Brenner et al.
(1996). Anderson and Lund (1997). Koedijk et al. (1997). and Ball and Torous (1999). In addition,
time series of both implied cap and swaption volatilities display persistent variation in their values:
see LongstafT et al. (2001). Atthough the extension to stochastic volatility is beyond the scope of this
paper, we note that the string market model framework can easily accommodate stochastic
volatility by either appending the dynamics for individual ¢; terms or by introducing additional
factors driving common variation in the o, terms.
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determined by the fundamental state of the economy.” Furthermore. since our
objective 1s to apply the model to swaps that make fixed payments
semiannually. we make the simplifying assumption that these covariances are
constant over six-month intervals. With these assumptions, the problem of
capturing the covariance structure among forwards reduces to specifying a
29 x 29 time-homogeneous covariance matrix X,

Although the string is specified in terms of the forward Libor rates, it is often
more efficient to implement the model using discount bond prices. By
definition,

F— 360 D(t, T))

B T T o

where a is the actual number of days during the semiannual coupon period.
Thus. the forward rates F; can all be expressed as functions of the vector of
discount bond prices with maturities 0.50, 1.00, ..., 15.00. Conversely, these
discount bond prices can be expressed as functions of the string of forward
rates, assuming that standard invertibility conditions are satisfied. The primary
condition 1s that the determinant of the Jacobian matrix for the mapping from
discount bond prices to forward swap rates be nonzero. If this condition is
satisfied, local invertibility is implied by the Inverse Function Theorem.
Applying Ito’s Lemma to the vector D of discount bond prices gives

dD =rDdit+J 'oFdZ, (6)

where 7 is the spot rate, 6 F dZ is the vector formed by stacking the individual
terms (¢, 7;) F;dZ; in the forward rate dynamics in Eq. (4). and J~' is the
inverse of the Jacobian matrix for the mapping from discount bond prices to
forward rates. Since each forward depends only on two discount bond prices,
this Jacobian matrix has a simple banded diagonal form; see Longstaff, Santa-
Clara, and Schwartz. The dynamics in Eq. (6) provide a complete specification
of the evolution of the term structure. This string market model is arbitrage
free in the sense that it fits the initial term structure exactly and the expected
rate of return on all discount bonds equals the spot rate under the risk-neutral
pricing measure.

Rather than specifying the covariance matrix X exogenously, we follow the
approach of Longstaff, Santa-Clara, and Schwartz by solving for the implied
matrix 2 that best fits the observed market prices of a set of market data. First,
we estimate the historical covariance matrix of percentage changes in forward
rates H from a time series of forward rates. Specifically, we obtain month-end

"Longstafl et al. (2001), Andersen and Andreasen (2000), and others argue that it may be
important to incorporate time-homogeneity in term structure models. We note, however, that the
results in this paper are robust to the assumption of time-homogeneity. Results very similar to
those reported in this paper were obtained in an earlier version of this paper which used a model
that was not time-homogencous.
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Libor and swap rates from Bloomberg for the period from January 1989 to
June 1999. Using a cubic spline. we estimate discount bond prices for each date
and compute forward rates. We estimate the sample covariance matrix from
these forward rates. We then decompose the historical covariance matrix into
its spectral representation H = UAU’, where U is the matrix of eigenvectors
and A is a diagonal matrix of eigenvalues. Finally, we make the identifying
assumption that the implied covariance matrix is of the form X = vy,
where ¥ is a diagonal matrix with nonnegative elements. This assumption
places an intuitive structure on the space of admissible implied covariance
matrices. Specifically. if the eigenvectors are viewed as factors, then this
assumption is equivalent to assuming that the factors that generate the
historical covariance matrix also generate the implied covariance matrix. but
that the implied variances of these factors may differ from their historical
values. Viewed this way, the identification assumption is simply the economic-
ally intuitive requirement that the market will price interest rate options based
on the factors that drive term structure movements.

Given this specification, the problem of finding the implied covariance
matrix reduces to solving for the implied eigenvalues along the main diagonal
of ¥ that best fit the market data. Recent evidence by Longstaff. Santa-Clara.
and Schwartz, however, suggests that the implied covariance matrix for
European swaptions is of rank four. Motivated by this. we estimate only the
first four eigenvalues and set the remaining eigenvalues to zero. We solve for
these four implied eigenvalues using a standard numerical optimization where
the objective function is the root mean squared error (RMSE) of the
percentage differences between the market price and the model price. In this
parameterization we solve for the implied X that best fits the July 2. 1999 values
of the six caps and the 42 European swaptions with 7 <15 shown in Table I,
where equal weight is given to caps and swaptions in the objective function.
This model fits the market quite well and the RMSE taken over all 48 prices is
only 3.54%. This RMSE is significantly smaller than the typical bid/ask spread
for the caps and swaptions, which is on the order of 6-8% of their value.

Our choice of four factors should be viewed as an attempt to balance the risk
of overfitting with the benefits of capturing the dynamics of the term structure
correctly. To the extent that our model includes too few factors. however, our
results are likely to understate the costs of suboptimal single-factor strategies.
There are also other reasons for considering lower-dimensional specifications
of the covariance matrix. For example, lower-dimensional models have the
advantage of being more econometrically efficient and there may be less risk of
overfitting with a more parsimonious specification; see Dai and Singleton
(2000a). We also replicate our results using data from a number of other dates
during 1997, 1998, and 1999. The results are virtually the same as those
reported. Finally, we used alternative specifications in which all of the weight is
placed on the swaptions, or where caps are fitted exactly and the swaptions are
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Table 1
Broker swaption and cap volatilities

This table shows mid-market implied volatilities for the indicated at-the-money-forward European
swaptions and interest-rate caps for July 2. 1999 as reported by the Bloomberg system. Swaption
maturity represents the number of vears until expiration for the swaption. Swap tenor refers to the
length in years of the swap that the swaption holder enters into if the swaption is exercised. Cap
maturity refers to the number of years until the maturity date of the final caplet.

Swap tenor

Swaption

maturity 1 2 3 4 5 7 10
0.5 16.8 16.8 16.6 16.4 16.3 16.2 16.2
1 16.9 16.7 16.5 16.2 16.0 15.8 15.7
2 17.0 16.7 16.5 16.2 15.8 15.6 154
3 16.9 16.5 16.3 16.0 15.6 15.2 15.0
4 16.8 16.4 16.1 15.7 15.4 14.9 14.6
5 16.6 16.1 15.7 15.3 15.0 14.4 14.0
7 15.2 14.4 14.0 13.7 13.3 12.9 12.5
10 13.1 12.4 11.9 1.5 11.2 10.8 10.3
Cap maturity

2 3 4 5 7 10

Cap volatility 17.25 18.50 18.62 18.62 18.20 17.20

fitted as closely as possible. The results are robust to the choice of market
prices used in the calibration of the model.

4. Valuing American-style swaptions

Our approach to estimating the costs of following suboptimal exercise
strategies consists of first generating paths of the term structure using the
benchmark four-factor string market model. From these paths, we solve for the
value of an American-style swaption where the optimal four-factor exercise
strategy is used. Using the same paths. we then solve for the value of the
American-style swaption based on the exercise strategy implied by a
continually recalibrated single-factor model. The difference between the two
American-style swaption values represents the cost of following the suboptimal
single-factor exercise strategy. In this section. we first describe how we solve for
the optimal exercise strategy in the benchmark four-factor model. We then
describe how the single-factor alternative models are recalibrated to the market
at each exercise date and then used to define single-factor exercise strategies.
This approach to estimating the costs of suboptimal exercise follows Green and
Figlewski (1999) and Hull and Suo (2000) and is referred to as the *full-fledged
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simulation experiment’ by Andersen and Andreasen (2000). Although similar
to the approach used in earlier versions of this paper. this approach has the
advantage of more closely paralleling actual market practice in which single-
factor models are continually recalibrated to match the market.

In valuing Amcrican-style swaptions in the benchmark four-factor term
structure model. we use the least squares Monte Carlo (LSM) simulation
technique of Longstaff and Schwartz (2001). There are several key reasons for
using this valuation methodology. For example. standard binomial or finite
difference techniques are not computationally feasible because of the high
dimensionality of the string modecl. Furthermore, Longstaff and Schwartz
demonstrate that the LSM algorithm 1s accurate and computationally efficient.
Finally, the general convergence properties of the LSM algorithm have recently
been demonstrated by Tsitsiklis and Van Roy (2001).

The key to the LSM approach is the fact that at any exercise date. the
optimal stopping strategy for an American option is determined by comparing
the value of immediate exercise with the value of continuing to keep the option
alive. From standard option pricing thcory, however, this continuation value
can be expressed as a conditional expectation under the risk-neutral measure.
The LSM approach estimates this conditional expectation using the cross-
sectional information about the term structure in the simulation. Specifically,
the LSM approach regresses the discounted ex post cash flows from continuing
along each path onto functions of the current values of the state variables. The
fitted value from this regression is an efficient estimator for the conditional
expectation function. Exercising the option whenever the immediate exercise
value 1is greater than the estimated value of continuation defines a simple
stopping time rule, which Longstaff and Schwartz (2001) show closely
approximates the optimal stopping rule. In applying the LSM technique, we
use the first three powers of the value of the underlying swap, the first three
powers of each of the corresponding forward swaps. and the cross products of
the values of the current swap and the forward swaps up to degree three
as conditioning variables in forming conditional expectations. We explore
numerous alternative forms for the basis functions, but the results were
virtually identical to those reported for the specification we use."

Since the optimal exercise strategy at any exercise date is determined by the
conditional cxpectation function, we can gain some intuition about the
differences between single-factor and multifactor models by examining their
implications for the conditional expectation function. One well-known
property of single-factor term structure models is their implication that
changes in the term structure are perfectly instantaneously correlated across

“The L.SM algorithm has also been applied in solving dynamic investment portfolio problems.
For example, see Longstaff (2001) and Brandt et al. (2001). Simulation techniques arc also used by
Carr and Yang (2001) in valuing interest-rate options.
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maturities. It is important to observe that this feature is due entirely to the
fact that the time-series properties of the term structure are driven by a
single Brownian motion. and has nothing to do with how the single-
factor model is fitted (or overfitted) to match the cross section of current
market prices. A direct implication of this perfect correlation is that once
we condition on the current value of a single point along the term structure,
all other information about the term structure becomes redundant in forming
the conditional expectation. Thus. a single point along the term structure
becomes a sufficient statistic for making exercise decisions in a single-factor
model.

If the term structure is actually driven by multiple factors, then other
information besides the current value of the underlying swap becomes useful in
forming the conditional expectation. In a multifactor setting. the conditional
expectation depends not only on the current value of the underlying swap. but
on all forward values of the swap as well. Thus, because of the perfect
correlation inherent in single-factor models, single-factor exercise decisions are
made conditional on only a subsct of the relevant term structure information.
This is the sense in which single-factor models are myopic. In contrast, the
optimal multifactor strategy is determined by the conditional expectation
function which is based on all of the term structure information.

Intuitively. this result parallels Merton (1973) who shows that in a single-
factor setting. the optimal carly exercise decision for an American option is
determined entirely by whether the value of the underlying asset exceceds a
critical threshold. Thus, by its nature, a single-factor model implies that the
exercise boundary is one-dimensional. In contrast. when the term structure is
driven by multiple factors, the optimal exercise boundary is actually a
multidimensional surface. In general, the multidimensional optimal exercise
boundary cannot be well approximated by the one-dimensional exercise
boundary implied by a single-factor model.

An alternative way of seeing this is from the perspective of the hedging or
replication strategy. Because of the perfect correlation inherent in single-factor
models, single-factor models imply that an American-style swaption can be
perfectly hedged by trading in the underlying swap. If therc are multiple
factors, however, then an American swaption cannot be completely hedged by
any single-security hedging portfolio, no matter how elaborately the single-
factor model is fitted to the cross section of market prices. Fitting a mode] to a
cross section of European swaption prices does not guarantee that the model
will capture the time-series properties or dynamics of the term structure.
Because of the intertemporal nature of the American swaption exercise
problem. the optimal exercise decision depends crucially on the dynamics of the
term structure. Thus, by failing to capture the dynamic behavior of the term
structure. single-factor models inherently miss a key determinant of the
optimal exercise strategy.
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In studying the costs of using single-factor models, we implement the well-
known and widely used Black et al. (1990) and Black and Karasinski (1991)
models as the single-factor alternatives within the four-factor benchmark term
structure framework. The Black., Derman, and Toy model is the default
valuation model for American-style swaptions in the popular Bloomberg
system, and the Black and Karasinski model is the alternative model in the
system. The Bloomberg system also allows swaptions to be valued using the
single-factor Hull and White (1990) model, but the user needs to provide
additional calibration information.

In the Black, Derman, and Toy model. the short-term rate r follows the
dynamic process

s'(1)

$(1)

dlnr = (,u(z) + In r) dr + s(r)dZ, (7)
where (1) is a drift function, s(7) is a volatility function, and Z is a standard
Brownian motion. This model is calibrated by fitting the drift function u(z)
and the volatility function s(7) to match both the initial term structure and
some set of fixed income option volatilities. Often s(z) is chosen to be constant,
and the model is calibrated to match the price of the t into T — 1 European
swaption corresponding to the first exercise date of the American-style
swaption. In the Black and Karasinski model, the short-term rate follows the
slightly more general dynamic process

dlnr = (u(t)y — p()Inrydr+ s()dZ, (8)

where u(r). (1), and s(7) are again functions of time that are calibrated
to match the current term structure and some set of fixed income option
prices.

To illustrate how the single-factor models are implemented in our
multifactor framework, we focus specifically on the case of the Black, Derman,
and Toy model; the approach for the Black and Karasinski model is almost
identical. In the first step, we use the string market model to simulate paths of
the discount function. Let D(i, i + t:/), where i = 0.50, 1.00, 1.50, ..., 14.50, and
t = 0.50, 1.00, 1.50, ..., 15.00 — i, denote the vector of simulated discount bond
prices for time 7 along path j. We next solve for the set of at-the-money interest
caplet and European swaption prices that would be observed in the market at
time i along path j given the four-factor model. Specifically, we solve for the
prices of at-the-money caplets with exercise dates ranging from i + 0.50 to the
final maturity date of the underlying swap and for the set of at-the-money
European swaptions with exercise dates ranging from i +0.50 to 7' — 0.50 and
where the final maturity date of the underlying swap is 7. In doing this, we
parallel the LSM algorithm in computing these values by regressing the
discounted ex post cash flows from these European style derivatives on the
LSM set of conditioning variables described above. The fitted values from
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these regressions, computed at the values of the conditioning variables at time /
and path j, provide unbiased measures of the values of these derivatives at time
i and path ;.

At time / along path j, we wish to recalibrate the Black, Derman, and
Toy model to match the current term structure D(i, 7+ f;j) and the prices
of fixed income derivatives that would be observed at that pomnt. From
Eq. (7). this recalibration is equivalent to defining the functions u(z:/,j) and
s(t;1,7) where the dependence on the date /i and path j is made explicit.
Conditional on the function s(r; 7, /), the function u(r; i, /) 1s solved numerically
by imposing the condition that the model match the current term structure
D(i, i + r;j). The next step 1s to solve for the volatility function s(7; 7, ) that best
fits these derivative values in a RMSE sense. Note that since there are typically
more caplets and swaptions than there are distinct values of s(t; /, ), the single-
factor Black, Derman, and Toy model cannot fit all of these
fixed income derivative prices exactly. Given the numerically intensive
nature of having to solve for the s(r;i,j) functions for each / and j, we use
the following parsimonious but economically sensible algorithm to
minimize the computational requirements. For each 7/ and j, we solve first for
the s(1; 1, /) function that exactly fits the time 7 prices of the interest rate caplets.
We then multiply this s(z;4,/) function by a constant amount, where the
constant 1s chosen to minimize the RMSE of the percentage differences
between the estimated European caplet and swaption market prices and the
prices implied by the Black, Derman, and Toy model. As before, the caps and
swaptions are given equal weight in this minimization. The advantage of this
approach is that we obtain a solution for s(1;/,) that provides the best overall
fit to the market prices of caps and swaptions while preserving the general
shape of the volatility function. Since we fit the current term structure
D(i,i+t;j) exactly at any exercise date for the American swaption, the
underlying European swaption with the same exercise date and final maturity
date 1s fitted exactly.

Once the pu(t;1,j) and s(z; i, 7) functions are specified at time 7 for path j, we
construct a standard Black, Derman, and Toy binomial tree for time / and path
j and value the American-style swaption using this tree. If the continuation
value of the American-style swaption implied by the tree is less than the value
of immediate exercise, the single-factor model then implies that the swaption
should be exercised at time i along path j. Repeating this procedure for all
times / and all paths j provides a complete specification of the single-factor
exercise strategy. The value of the American-style swaption is then given by
averaging over all paths the discounted cash flows given by applying the single-
factor exercise strategy. Because multiple optimizations are needed at each date
i and path j, computing the costs of suboptimal exercise for a single American
swaption is very time consuming, taking as long as 60 hours on a Pentium II1
750 mHz processor.
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5. The cost of suboptimal strategies

In this section. we study the costs of following single-factor exercise
strategies for American-style swaptions when the term structure is driven by
multiple factors. We first report the results when the Black et al. (1990) model
is used to make exercise decisions. We then report the case with the Black and
Karasinski model used as the single-factor model.

To evaluate the present value costs of using the single-factor Black. Derman.
and Toy mode! over time to make exercise decisions. we follow the procedure
described in the previous section. Specifically. we recalibrate the Black.
Derman. and Toy model to match the market at cach exercise date for an
American-style swaption and then use the corresponding binomial tree to
check whether exercise is optimal at that exercise date according to the
recalibrated Black. Derman., and Toy model. The cost of suboptimal exercisc is
then estimated as the difference between the value of the discounted cash flows
of the swaption obtained by following the optimal multifactor strategy and the
value of discounted cash flows of the swaption obtained by following the
strategy implied by the Black, Derman. and Toy model.

Define the American exercise premium to be the difference between the 7
noncall T American swaption value and the value of the corresponding 7 into
T — 7 European swaption. Table 2 reports the American exercise premia given
by the one-factor Black. Derman, and Toy model and the four-factor string
market model, the difference between these premia. and the difference between
these premia expressed as a percentage of the single-factor American exercise
premium.

Several important results are shown in Table 2. First. the value of the
swaption is always higher when the optimal strategy is followed than when the
single-factor strategy is followed. This demonstrates clearly that the single-
factor exercise strategy cannot approximate the optimal strategy accurately
enough to avoid some erosion in the value of swaption cash flows to an
optionholder. Second, the size of the difference between the American exercise
premia can be large in economic terms. For example. the difference between the
American exercise premia often exceeds ten cents per $100 notional and can
even exceed 30 cents for long-dated swaptions. Since a large percentage of
American-style swaptions are created in conjunction with the issuance of
corporate or agency debt, it is typical for these swaptions to have longer
maturities. Finally. the percentage differences between the American exercise
premia can also be significant. In some cases. these differences are close to
10%.

To provide additional intuition about the costs of suboptimal cxercise. it is
also useful to compare the optimal and single-factor exercise strategies directly
in terms of their implications for the timing of the exercise decision. Table 3
provides summary statistics for the risk-neutral probabilities of exercise and



n

F. A Longstaff et al. Journal of Finuncial Economics 62 12001 ) 39-66 5

Table 2
Summary statistics for American exercise premia given by following the exercise strategies implied
by the Black et al. and string market models

This table reports the values in units of S1 per S100 notional value of the American exercise premia
for the indicated 7" noncall © American at-the-money-forward swaptions implied by the single-
factor Black et al. (1990) model as well as the four-factor string market model. The American
exercise premium is the difference between the American swaption value and the corresponding
European swaption value. The percentage difference is computed relative to the Black, Derman.
and Toy American exercise premium. Values are based on 5.000 simulated paths of the term
structure.

Single-factor Four-factor

Black. Derman. string market
Swaption and Toy American model American Pereentage
T T type exercise premium exercise premium Difference difference
5 1 Reevr 0.538 0.560 0.022 4.1
10 | Recvr 1.881 1.931 0.050 2.7
10 2 Reevr 1.303 1.329 0.026 2.0
13 1 Recvr 3.252 3.391 0.139 4.3
15 3 Reevr 1.854 1.974 0.120 6.5
15 5 Recvr 1.129 1.179 0.050 4.5
5 1 Payer 0.700 0.724 0.024 34
10 | Payer 2.546 2.657 0.111 4.4
10 2 Payer 1.687 1.783 0.096 5.7
15 2 Payer 4.400 4.710 0.310 7.0
15 3 Paver 2.504 2713 0.209 8.3
13 S Payver 1.521 1.607 0.086 3.7

the frequency with which the single-factor Black, Derman, and Toy model
implies that the American swaption should be exercised earlier, at the same
time. or later than implied by the optimal strategy. Table 3 also reports the
present value costs of exercising when the single-factor model implies that
exercise 1s optimal but the multifactor model does not, and the present value
costs when the single-factor implies that exercise is not optimal but the
multifactor docs.

Table 3 shows that American-style swaptions are often more likely to be
exercised when the Black. Derman, and Toy exercise strategy is followed than
when the optimal multifactor strategy is followed. Exceptions include some of
the longer-dated swaptions with [5-year horizons. The reason for this is clear
from the frequency with which the single-factor strategy tends to provide an
exercise signal earlier than the optimal strategy. The single-factor model leads
to earlier than optimal exercises between 10% and 22% of the time.
Alternatively. the single-factor model leads to delayed exercises between 1%
and 14% ol the time. Interestingly. the two models provide the same exercise
strategy 62 88% of the time.
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Table 3
Comparison of single-factor Black. Derman. and Toy and four-factor string market model exercise

strategies

This table reports summary statistics for the single-factor Black et al. (1990) and optimal four-
factor string market model exercise strategies. Probability of exercise represents the total percentage
of paths for which the swaption is exercised. The table also reports the percentage of paths for
which the single-factor model results in an excrcise decision earlier. at the same time. or later than
the exercise decision given by the four-factor string market model. The present value cost of
exercising when the single-factor model implies exercise is optimal at an earlier time than the four-
factor model is the difference between the immediate value of exercise and the present value of cash
flows gencrated by following the optimal strategy. averaged over all paths where the single-factor
model implies exercise carlier. and similarly for the present value cost of exercising when the single-
factor model implies that exercise is optimal at a later time than the four-factor model. The present
value costs are expressed in units of S1 per $100 notional value. All values arc based on 5.000
simulated paths of the term structure.

Present value costs

Probability single-factor of exercising when
Probability of model results in an single-factor model implies
exercise exercise decision that exercise 15 optimal
Swaption  Single-  Four- Same
T 1 type factor  factor Earlier time Later Earber Later
51 Recvr 71.36  68.80 10.78 88.62 0.60 —0.226 0.113
10 1 Recvr 7262 71.76 10.92 83.14 5.94 -0.377 —0.197
1 2 Recvr 7224 71.40 10.08 85.24 4,68 —-0.271 -0.053
15 1 Recvr 7426  74.62 17.22 70.50 12.28 —0.480 —0.522
15 3 Recvr 73.60  73.82 14.78 76.54 8.68 -0.286 -1.053
15 5 Recvr 71.78 71.26 12.14 82.08 5.78 —0.237 —0.629
51 Payer 68.12  65.76 12.78 85.32 1.90 —0.201 —0.069
10 1 Payer 71.06  71.22 17.42 72.54 10.04 —0.635 —0.334
10 2 Payer 69.68  68.92 17.14 75.28 7.58 —0.597 —0.401
15 1 Payer 74.50  75.28 22.58 62.78 14.66 —1.254 -0.943
15 3 Payer 72,32 7258 22.06 66.00 11.94 —1.090 —0.638
155 Payer 69.70  68.84 19.06 74.78 6.16 —0.678 —0.463

The present value costs shown in Table 2 represent the average cost over all
paths. These paths, however, include many paths for which the swaption is
always out of the money and for which no model would give an exercise signal.
Similarly, there are many paths where the American swaption is so deep in the
money that almost any reasonable model would imply that immediate exercise
was optimal. In some sense, the real test of a model is how well it performs for
those paths where the exercise decision is not at all clear-cut. To this end, we
focus first on the paths where the single-factor model implies exercise at an
earlier date than does the multifactor model. For these paths, we contrast the
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cash flows obtained by exercising at the date implied by the single-factor model
with the discounted cash flows obtained by following the optimal exercise
policy. The difference between the two directly measures the conditional
present value cost of exercising when the single-factor model signals exercise
but the multifactor model does not. From Table 3. these conditional costs can
be quite large, ranging from about 25 cents to as much as $1.25 per $100
notional.

Similarly. we focus on the paths where the multifactor model implies exercise
earlier than does the single-factor model. The difference between the cash flows
obtained by exercising at the date implied by the multifactor model and the
discounted cash flows obtained by following the single-factor strategy is again
very large. These conditional costs range from less than ten cents to more than
$1 per SI100 notional. These results demonstrate clearly that the cost of
following suboptimal exercise strategies can be much higher for some paths
than others.

As an alternative single-factor model, we use the popular Black and
Karasinski model. The approach is very similar to that described for the Black,
Derman, and Toy model with the exception that the mean-reversion function
B(1) needs to be specified. To do this, we define the function f(z: 4, /) that makes
the mean-reversion function for horizon 7 depend explicitly on the date 7 and
path j. At date /, we estimate the function f(r;7,/) by regressing the change in
In# from time 7 — 0.50 to ¢ on the value of Inr at time i, where the slope
coefficient on Inr is represented as a linear combination of the same
conditioning variables used to estimate the LSM regression at time /. The
fitted value of this linear combination of state variables is an estimate of the
conditional mean-reversion function f(r; 7, ). Since the regression is done using
the actual paths generated by the multifactor string market model, the
conditional mean-reversion function has the advantage of being based on the
actual distribution of the economy. In this sense, this gives a slight advantage
to the Black and Karasinski model since the estimate of f(z;/./) uses additional
information that would not be available to an investor who used only the Black
and Karasinski model with current option data to make decisions.

Once the mean-reversion function is estimated, we then use the same
procedure as before to fit exactly the vector of zero-coupon bonds D(i, i + 1:))
through the drift function u(r;4,/) and solve for the volatility function (4, )
that best fits the at-the-money caplets and swaptions prices that would be
observed at date / and path j. Once calibrated to the market at date 7, we then
build a trinomial tree using an approach described by James and Webber
(2000) and evaluate whether exercise is optimal in the Black and Karasinski
model. The cost of suboptimal exercise is again the difference between the value
of the American-style swaption obtained by following the optimal multifactor
strategy and the value obtained by following the single-factor Black and
Karasinski strategy. The results are shown in Table 4.
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Table 4
Summary statistics for American exercise premia given by following the exercise strategies implied
by the Black and Karasinski and string market models

This table reports the values in units of $1 per S100 notional value of the American exercise premia
for the indicated T noncall T American at-the-money-forward swaptions implied by the single-
factor Black and Karasinski (1991) model as well as the four-factor string market model. The
American exercise premium is the diflerence between the American swaption value and the
corresponding European swuption value. The percentage difference is computed relative to the
Black and Karasinski American exercise premium. Values are based on 5.000 simulated paths of
the term structure.

Single-factor Four-factor

Black and Karasinski string market
Swaption American exercise model American Pereentage
T T type premium exercise premium Ditference difference
S | Reevr 0.351 0.560 0.009 1.6
10 1 Recvr 1.870 1.931 0.061 33
2 Reevr 1.299 1.329 0.030 2.3
13 | Recvr 3197 3.391 0.194 6.1
15 3 Reevr 1.861 1.974 0.113 6.1
13 5 Recvr 1.134 1.179 0.045 4.0
5 1 Payer 0.702 (.724 0.020 2.8
10 1 Paver 2,552 2.657 0.105 4.1
10 2 Payer 1.699 1.783 0.084 4.9
15 2 Paver 4.409 4.710 0.301 6.8
15 3 Payer 2513 2.713 0.200 8.0
15 5 Payer 1.510 1.607 (0.097 6.4

The results in Table 4 are very similar to those obtained using the Black.
Derman, and Toy model. As before. the American exercise premia based on
the four-factor string market model are all greater than the single-factor
exercise premia. Although there are significant theoretical differences between
the Black and Karasinski model and the Black. Derman. and Toy model. the
estimated present value costs ol following the single-factor exercise strategy are
very similar. Once again. the present value costs of suboptimal exercise can be
as large as 30 cents per $100 notional. A close examination of Tables 2 and 4
suggests that the present value costs are generally slightly less using the Black
and Karasinski model. This is not surprising since the Black and Karasinski
model has far more paramelers that can be fitted to market data.

Turning to the probabilities and timing of exercise. summary statistics are
presented in Table 5. In contrast to the results in Table 3. the probability ol
cxercise lollowing the Black and Karasinski strategy is generally lower than
under the optimal strategy. Furthermore. the Black and Karasinski strategy
results in fewer early exercises relative to the optimal strategy than does the
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Table 5
Comparison of single-factor Black and Karasinski and four-fuctor string market model exercise

strategics

This table reports summary statistics tor the single-fuctor Black and Karasinski (1991) and optimal
four-factor string muarket model exercise strategies. Probability of exercise represents the total
percentage of paths for which the swaption is exercised. The table also reports the percentage of
paths for which the single-factor model results in an exercise decision carlier. at the same time. or
later than the exercise decision given by the four-factor string market model. The present value cost
of exercising when the single-factor model implies exercise is optimal at an earlier time than the
four-tactor model is the difference between the immediate value of exercise and the present value of
cash flows generated by following the optimal strategy. averaged over all paths where the single-
factor model implies exercise carlier. and similarly for the present value cost of exercising when the
single-factor model implies that exercise is optimal at a later time than the four-factor model. The
present value costs are expressed in units of $1 per $100 notional. All values are based on 5.000
simulated paths of the term structure.

Probability of Probability single-factor Present value costs
exercise model results in of exercising when
an exercise decision single-factor model

implies that exercise
is optimal

Swaption Single- Four- Same
T type factor factor Earlier time Later Earlier Later
501 Reevr 68.68 68.80 2.44 95.40 2.16 —0.308 —0.076
101 Recvr 71.44 71.76 9.90 83.10 7.00 —0.314 —0.441
10 2 Recvr 70.78 71.40 6.40 86.60 7.00 —-0.227 —0.249
15 1 Recvr 74.56 74.62 21.58 68.28 10.14 —0.610 —0.549
15 3 Reevr 73.06 73.82 14.12 76.70 9.18 —0.398 —0.699
15 5 Recvr 70.58 71.26 8.96 83.50 7.54 —0.085 —0.644
501 Payer 66.02 65.76 6.14 90.36 3.50 —0.218 —0.298
10 1 Payer 69.90 71.22 13.56 74.36 12.08 —0.757 —0.268
10 2 Payer 68.20 68.92 12.90 77.50 9.60 —0.558 —0.432
15 1 Payer 73.78 75.28 20.80 63.12 16.08 —1.402 —0.785
15 3 Payer 71.44 72.58 19.24 67.42 13.34 —1.085 —0.710
15 5 Payer 68.32 68.84 15.62 75.96 8.42 -0.705 —0.697

Black, Derman, and Toy strategy. On the other hand, the Black and
Karasinski strategy results in delayed exercises a little more frequently than
the Black. Derman, and Toy strategy. Finally, the conditional costs of using
the single-factor exercise strategy can again be very substantial. Conditional on
not receiving an exercise signal from the optimal strategy, the cost of exercising
when the single-factor model implies that exercise is optimal can be as large as
$1.40 per $100 notional.

In summary, these results demonstrate that even when a single-factor model
is recalibrated to match the market at each exercise date, the exercise strategy
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or stopping policy implied by the single-factor model can be significantly
suboptimal. Since many American-style swaption structures have final
maturities of 10. 15, or more years, these results suggest that the present value
costs of following single-factor strategies over time can easily exceed 10 or 20
cents per $100 notional. Given that the total notional amount of American-
style swaptions outstanding is in the trillions of dollars, a back-of-the-envelope
calculation shows that the total present value costs to swaption holders from
following single-factor strategies could easily be several billion dollars. While
one could argue that costs on the order of ten cents per $100 notional
approximate the size of the bid-ask spread for these derivative products, it is
clear that these costs are economically relevant to swaption holders. who could
avoid them by simply following the optimal exercise strategy.

Finally, we note that while only results using the Black, Derman, and Toy
and Black and Karasinski models are presented here, we have also done similar
tests using alternative single-factor models. The results from these alternative
single-factor models closely parallel those reported in this section, demonstrat-
ing that our results are robust to the choice of the single-factor model. This
makes intuitive sense since it is the implication that term structure movements
are perfectly correlated across maturities, common to all single-factor models,
that is the primary reason for the suboptimality of their corresponding exercise
strategies. While we focus on American-style swaptions, it is also important to
observe that the differences between single-factor and multifactor term
structure models could be even more dramatic for other types of derivatives
such as options on interest rate spreads where values are heavily dependent on
correlation assumptions.

6. Valuation and misspecified models

In the previous section, we estimated the cost of following suboptimal single-
factor strategies. It is important to stress that the correct way to study the cost
of following single-factor strategies in a multifactor world is by comparing the
present values of the cash flows obtained by following the stopping rules on a
common set of paths of the term structure. If the market is driven by multiple
factors, the present value of the cash flows generated by following a single-
factor exercise strategy will be less than when the optimal exercise strategy is
followed.

While this latter point may seem straightforward, it is occasionally claimed
that American-style swaptions can be “worth more in a single-factor model
than in a multifactor model’ (e.g., Andersen and Andreasen (2000) and Brace
and Womersley (2000)). The reason for this claim stems from an interesting
apparent paradox. Specifically, if the holder of an American swaption uses a
single-factor model to value the option as well as make exercise decisions, the
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value implied by the single-factor model can exceed the value implied by the
multifactor model. Thus, the swaption holder could be led to believe that the
swaption was actually more valuable using a single-factor model to make
exercise decisions.

This paradox can be resolved, however, by first noting that in comparing
values implied by a single-factor model with those implied by a multifactor
model. the dynamics of the term structure are not held fixed. Because of this,
the comparison between the two models is meaningless; the two calibrations
are not comparable. A second. but potentially even more important. point is
that American option values implied by a misspecified model need not equal
the present value of the actual cash flows generated from following the exercise
strategy implied by the misspecified model. Hence, the American swaption
value imphed by a misspecified single-factor model is an illusory number that
can be a severely biased estimate of the present value of cash flows actually
received by a swaption holder who follows the single-factor strategy.

To illustrate the point that a misspecified model will give a value for
American options that need not equal the present value of cash flows obtained
by following the implied exercise strategy, consider the following example. Let
X and Y denote the prices of two risky assets. One-period and two-period
European exchange options are available in the market with payoffs of
max(0, X7 — ¥) and max(0, X — Y>), respectively. If r = 0.10, the two assets
have a correlation of 0.98, each has a current price of 100, and the volatility of
both assets is 0.10, then the standard Margrabe (1978) model implies prices for
these options of 0.80 and 1.13, respectively. Now assume that we want to value
an American exchange option that is exercisable at times /= | and 2. It is
easily shown that early exercise of this American exchange option is not
optimal, and that the correct value 1s 1.13.

Now assume, however, than an investor has the mistaken belief that X is
constant over time and that market prices of these options are driven by the
single factor Y. This investor now views the one-period and two-period
exchange options as simple put options on Y with strike prices of Xy, and the
investor can match their market prices by assuming that the volatility of Y is
0.100 during the first year and 0.152 during the second year. Given this
calibration, the single-factor model implies that the value of the American
exchange option is 1.37. When this investor arrives at r = 1, the value of X may
have changed, and he will need to recalibrate the single-factor model to reflect
the new price of the remaining European exchange option. It 1s easily shown
that once this calibration is performed, the investor will never find it optimal to
exercise early at time ¢ = 1. Thus, the actual cash flows received by the investor
will have a present value of 1.13 since they are the same as under the optimal
strategy. The bottom line is that although the misspecified single-factor model
values the American exchange option at 1.37, the actual present value of the
cash flows is only about 82% of the amount that the investor would have been
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willing to pay to acquirc the American exchange option. Note that at both
r =0 and 1. the single-factor model is calibrated to match the market prices of
all European exchange options. Despite this. the misspecified single-factor
model results in a valuation for the American exchange option that is severely
upward biased.

This example suggests that if the term structure is driven by multiple factors.
the American option values given by a misspecified single-factor model are
unreliable since they do not equal the present value of the cash flows generated
by following the single-factor, multifactor, or any other strategy. Thus,
comparing the value implied by a single-factor model with the value implied by
a multifactor model is a questionable exercise. Single-factor and multifactor
models can only be compared in terms of the present value of the cash flows
generated by their exercise strategies while holding fixed the term structure
model.

The fact that American option values implied by a misspecified model are
biased poses some subtle but important risks to option holders. For example,
consider an investor who believes that the term structure is driven by a single-
factor model and calibrates his model to exactly match a cross section of
European swaptions. Now imagine that the single-factor model just happens to
match the current market price of an American swaption as implied by the true
multifactor model. This investor might well conclude that since his model
matches both the European and American swaption prices, his single-factor
model is adequate. In fact, however, the cash flows generated by following the
single-factor strategy would have a lower present value than the market price
of the American swaption. The only clues that this investor might have that
there was a problem with his model would be the frequent need to recalibrate,
persistent hedging errors. and a general tendency for his portfolio to
underperform expectations. This underperformance would appear inexplicable
to the investor since the valuations implied by the single-factor model would
match the market. The problem, of course, is that the American swaption is
only worth the market price to an investor who follows the optimal multifactor
strategy. Purchasing an American swaption at the market price is a negative
NPV investment to an investor following a suboptimal single-factor strategy.

7. Conclusion

This paper studies the costs of following single-factor exercise strategies for
American swaptions when the term structure is actually driven by multiple
factors. A number of important contributions emerge from this study.

® We estimate the present value costs to the holder of an American swaption
who uses a single-factor model to make exercise decisions when the term
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structure is driven by multiple factors. These present value costs are
substantial and can be avoided by swaption holders through simply
following the optimal strategy. Based on current market statistics, the total
present value costs of following suboptimal strategies implied by single-
factor models could be on the order of several billion dollars.

® These results illustrate that if the dynamic specification of @ model does not
match actual market dynamics. the American exercise strategy implied by
the model will be suboptimal. This is true no matter how extensively the
model is recalibrated to match a cross section of current option prices. Our
results demonstrate that the common practice of continually recalibrating a
single-factor model to match the market does not fully compensate for its
failure to capture the actual dynamics of the term structure:; overfitting a
misspecified model does not eliminate its weaknesscs.

e Furthermore, if the dynamics of a model are misspecified. then American
option values implied by the model will be biased estimates of the actual
present value of cash flows generated by following the exercise strategy
implied by the model.

These results make a strong case for moving beyond simplistic single-factor
models to more realistic (and easier to calibrate) multifactor string market
models in fixed income markets. The results also make clear the importance of
using economically realistic models in derivatives applications and point out
some of the subtle dangers of overfitting misspecified models. These lessons are
important to consider given the widespread industry practice of frequent
recalibration of simplistic models as un alternative to the rigorous econometric
modeling of fundamental market variables. The results also have clear
implications for the issue of model risk in hedging and dynamic replication
of derivatives; the process of having to recalibrate a model drives a wedge
between the value of a derivative and the value of the dynamic hedging
portfolio that attemplts to replicate its payoff. Furthermore, the hedging and
dynamic replication of derivatives may be less forgiving of model misspecifica-
tion than the optimal exercise decision for American options.”

Finally, although we have focused on fixed income markets. these findings
are relevant to many other markets and applications. For example, it is a
common practice in many options markets to continually update implied
Black-Scholes volatilities to correct for the failure of the model to capture the
stochastic behavior of volatility. Even if the Black-Scholes model is continually
adjusted to fit the current market prices of European options. however, the

“One interesting issue which we leave for future research is the extent to which single-factor
exercise strategies can be partially “corrected” of their biases by using the multifactor information in
the term structure. For example. can single-factor strategies be improved by overriding the exercise
decision in a way that depends on multiple points along the term structure? We are grateful to the
referec and John Uglum for suggesting this possibility.
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single-factor exercise strategy implied by the model for American options may
be far from optimal in a market where volatility is stochastic. Binomial tree
approaches will suffer from the same problem.
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