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JOURNAL OF FINANCTAIL AND QUANTITATIVE ANALYSIS
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FINITE DIFFERENCE METHODS AND JUMP PROCESSES ARISING
IN THE PRICING OF CONTINGENT CLAIMS: A SYNTHESIS

Michael J. Brennan and Eduardo 5. Schwartz#*

Since the seminal article by Black and Scholes on the pricing of corporate
liabilities, the importance in finance of contingent claims has become widely
recognized., The key to the valuation of such <¢laims has been found to lie in
the solution to certain partial differential eqguations. The best known of
these was derived by Black and Scholes, in their original article, from the
assumption that the value of the asset underlying the contingent claim follows
a geometric Brownian motion,

Depending on the nature of the boundary conditions which must be satisfied
by the value of the contingent claim, the Black-Scholes partial differential
equation and its extensions may or may not have an analytic solution. Analytic
solutions have been derived under certain conditions for the values of a call
option (Black and Scholes [1], Merton [11]}.,0f a risky corporate discount bond
{Merton [12]1), of Eurcpean put options (Black and Scholes {l], Merton [11]).
of the capital shares of dual funds (Ingersoll [81), and of convertible bonds
{Ingersoll [9]). In many realistic situations, however, analytic solutiong do
not exist, and the analyst must resort to other methods., These include the
finite difference approximation to the differential equation employed exten-
sively by Brennan and Schwartz [3, 4, 5], numerical integration used by Parkin-
son [13], and Monte Carlo methods advocated by Boyle [21.

Complementing the above work, Cox and Ross [6, 7] have analyzed the pricing
of contingent claims when the value of the underlying asset follows a jump pro-
cess rather than a diffusion process, and have shown that in the limit the jump
precess approaches a pure diffusion process. The major purpose of this paper
igs to demonstrate that approximation of the Black-3choles partial differential
equation by use of the finite difference method is equivalent to approximating
the diffusion process by a jump process and that therefore the finite difference

approximation is a type of numerical integration. In particular, we establish
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that the simpler explicit finite difference approximation is equivalent to
approximating the diffusion process by one of the jump pracesses described by
Cox and Ross, while the implicit finite difference approximation amounts to
approximating the diffusion process by a more general type of jump process.

As a preliminary to this, we show that certain simplifications of the numerical
procedure are made possible by taking a log transform of the Black-Scholes
equation. In the subhsequent sections we discuss the explicit and implicit

finite difference approximations, respectively,

I. The Log Transform of the Black-5choles Eguation

The bhasic Black-Scholes eguation is

2.2
1 + - =
(1) 1/2a0"s Hog + ¥S Hy + H_ - xH =0
where S is the value of the underlying asset, t is time, H(S,t} is the value
. . . . . 2, .
of the contingent claim, r is the riskless rate of interest, ¢  1s the instan-
taneous variance rate of the return on the underlying asset, and subscripts

dencte partial differentiation.

To obtain the log transform of (1} we define

(2) y = tns

(3) W(y,t} = H(5,t)

so that

4 Hg = W, e Y

(5) H = - W) &
{a) Hy =w.

Then, making the appropriate substitutions in (1}, we obtain the trans-

formed equation:

(7} 2

MCLJ—'

1 2
W o4+ (r - ZagTIW + W -~ vW = 0.
YY 2 ¥ t

Notice that {7) unlike (1) is a partial differential equation with con-

stant coefficients. This simplifies the numerical analysis, and, as we shall
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see below, makes it possible to empley an explicit finite difference approxi-

mation to (7], whereas the explicit finite difference approximation to (1] is

in general unstable.

II. The Explicit Finite Difference Approximation

To obtain a finite difference approximation to (7), we replace the partial

derivatives by finite differences, and to this end define

Wi{y,t) = W{ih, jk) =W, .
1.3

where h and k are the discrete increments in the value of the underlying asset
and the time dimension, respectively. For the explicit approximation, the

partial derivatives are approximated by

W T (Wi-rl,j-|-]f._Wi—l,j+l}'(’2}1
W = (W 2w +W )/h2
vy i+1,3+1 1,3+ Ti-1,3+1
We = Wy ey 507k
so that the corresponding difference equation is
{8) Wi,j(l+rk) = awi—l,j+l +b Wi,j+l + ¢ Wi+l,j+l i= I, ..y {n=1)
j =1, «ou, m
where
1 2 1 12
a = [E(G/h} - 2(r - 50 1/hlk,
2
b = (1~ (o/M)" k1, and
2 .
¢ = /W7 e e - 17207 ke
For any given value of j, (8) allows us to salve for Ww. , (i =1, ..., n-1)
in terms of W, , .. The extreme values of W, ., W_ ., and W_ ., must be given
i,j+1 1,3 9,3} n,j

o 1 ;
by the boundary conditicons to the problem. Then, given the values of Wi i

corresponding to the maturity of the contingent claim, we may sclve (8)

1 . .. . s
Note that we are implicitly assuming that the lower boundary condition

is of the form W{G,t) = Zt. More generally the boundary condtion may be w(ijh,t)

= Zt; this will simply change the range of 1 in (8) without changing anything

egsential.
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recursively for all valuesg of wi i

Notice that the coefficients of (8) are independent of i and that
a+b+c=1. For the stability of the explicit solution, it is necessary
that the coefficients of {8} be nonnegative {(McCracken and Dorn [10]). While
appropriate choice of h and k may guarantee this for (8), the corresponding
coefficients of the explicit approximation to (1) depend on i, and will be
negative for sufficiently large values of i, so that this explicit finite dif-
ference approximation may not he applied to the untransformed equation (1).

For the nonnegativity condition to be satisfied, it is necessarxy that h
and k he chosen so that

1

< a2/tx - 502)|

-
A

{9) and

k i_azf(r - %02)2 .

If the conditions (9) are satisfied, the coefficients of the RHS of (8)
may be interpreted as probabilities since they are nonnegative. Writing p
+
for a, p for b and p for ¢, (8) becomes

1 - +

(1o i T e P O Wiengel PR W g PP

i, - (e Wivl,4+1

Thus the value of the contingent claim at time instant j may be regarded
as given by its expected value at (j+1) discounted at the riskless rate, r.
The expected value of the claim at the next instant is obtained by assuming

that y, the logarithm of the stock price follows the jump process

{11) dy =

which is formally identical te a jump process discussed by Cox and Ross [6&,

equation {8)], where u = 0. The local mean and variance aof {l1l) are

(12) Efdy] = hip" - p]
= (r - %oz)k .
(13) vidyl = b2t + p7] - (BrdyD)?

2
=0k-~(r—lc2)2k2 .

b

464



Thus the diffusicn limit of (ll} is
2
{14) dy = {r - 1/207)Ydt + ¢ dz

where dz is a Gauss-Wiener process with E[dz] = 0, E[dzz] = dt; this implies

that the diffusion limit of 45 is
{15) — =1r dt + g d=z.

Now as Cox and Ross [6] have pointed out, if a riskless arbitrage port-
folio can be established hetween the contingent claim and the underlying asset,
the resulting valuation equation is preference free. Therefore we may value
the contingent claim under any convenient assumption about preferences, in
particular under the assumption of risk neutrality, which implies that the
diffusion process for the underlying asset is {15 and that the value of the
contingent claim is obtained by discounting its expected future value at the risk-
less rate of interest as is done in (10).

We have established therefore that the explicit finite difference approxi-
mation te the Black-Scholes differential eguaticn is equivalent to making the
permissible assumption of risk-neutrality and approximating the diffusion pro-
cess (15) by the jump process (ll}. Notice however that the wvariance of the
approximating jump process given by {13) is a downward biased estimate of the
variance of the approximated diffusion process (14). The bias is equal to the
square of the expected jump, (r - %ﬁ2)k . Using the stability condition (9),
the upper bound on this bias is 04

The recursive valuation equation (10) may be regarded as a type of numer-
ical integration where the probabilities are taken, not from the normal density
function, but from a jump process, (11), approximating the Gauss-Wiener pro-
cess (14). This approach is almost identical to the numerical integration pro-
cedure employed by Parkinson [13], who alsqe approximated the normal distribu-

tion by a related but different three-point distributien.

III. The Implicit Finite Difference Approximation

The implicit finite difference approximation to (7) is obtained by approxi-

mating the partial derivatives by the finite differences

2

{16} W = (W 1/h

, =W, LW, .
¥y i+l,} i, i-1,3

(17) W o= (W

v~ Wi, 371,/
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(18} W, = (wi'j+l-wi'j

) /k
so that the differential equation is written in finite difference form as:

(19} a wi—l,j + b Wi,j + Wi+1,j = (1_rkjwi,j+]_ i=1l, ...

where

(20) a= (- 2em?+ie- P me
(21) b=1+ (U/h)zk

(22) ¢ = [~ Fo/m’ - 2r - 207 /nlk

For any value of j, (19) constitutes a system of n equations in the (n+2)

unknowns W, j(i = 0,1, ..., ntl}. To complete the system, it is necessary to
r

introduce two boundary conditions. Assume that these are given by knowing

W, . and W

a,3 n+l, i
(23) W, . =ao,
G.3 3
24 =
24 orr,i T 8
Then we may eliminate W, , and W , from the first and last equations
0.3 n+l, 3
of (19) to ohtain:
b Wl,j + W2,j = (l_rk)wl,j+l - aaj = fl
--00g0- -
. . R . .= - . = f,
{25} a Wl_l'j b Wlfj c W1+l,] {1 rk}w1,3+l i
-~0aao0 - -
a Wn—l,j +b wn'j = (l_rk)wn,j+l -c Bj = fn
This system of equations may be written in matrix form as
{26) AW = £ .
And by recursive solution of (26), knowing the values of W, , at maturity, we

!

generate the whole set of W, ; values. Note that since A is independent of j,
*
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the matrix must be inverted only once, 5o that each time step simply involves
the multiplication of a vector by this matrix inverse. This is admittedly a
more complex calculation than was required for the explicit solution: on the
other hand, the implicit solution procedure is potentially more accurate.

Our cbjective is to demonstrate that the elements of this matrix inverse
may be viewed as discounted prohabilities, and that therefore the implicit

solution procedure generates successively earlier values of wi 3 by discounting

the expected value at the end of the next time increment assuming risk neutral

rreferences.

The simple form of the matrix, A, suggests the use of Gaussian elimination

to solve the equation system. We proceed by multiplying the second equation
of (25) by (b/a) and subtracting from it the first egquation to obtain a trans-

formed second equation from which wl 5 has been eliminated: we proceed in this
L

way, multiplying each equation by ({b/a) and subtracting from it its transformed

predecessor, cobtaining the transformed system of equations:

* * = *
bl wl.] + cl w2'] f
* * = *
b2 W2,j + c2 wS,j f
--~0co00- -
* = *
(27 n—lwn—l,j * cn—lwn,j fn—l
b* W = f*
n o n,j n

In the first equation

1 1 1
and in general
{28) b; = (b/a) bi—l - cI_l
{29) ¢y = (e/al b},
{30) f; = (fi/a) b;-l - f;_l.

Substituting for c;_l in {28) from {29), we obtain the difference equa-

tion for b;:

(31) b¥ = (b/a) bY_, - (c/a) bY_

1 2°
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The solution to this difference equation, given the initial conditions

b* = h, ¢c* = ¢ is:

1 1
(32) p* = (ai/vbi-gac) (AT - it
i 1 2
where
2
(33) A= (b vb“-4ac) /2a
2
{34} 12 = (b - Vb -4ac) /2a.

Then, substituting for b;_l from (232) in (29}, c; may be written asg:

{35) ct = (ac//b2—4ac)(ki - xi).

The expression faor f; is obtained by substituting for b; in {30) and

solving recursively for f;, f; oo This yields

—— i
ta/vh“~4ac) I

(36) £ = L, £, (-1 3
PIRT
where : 3
Ly = A - A

The matrix inversian is completed by solving the system of equations (27)

starting with the last equation. Define Zi = Ejil Lj fj(—l)(l_J).
Then
= * * =
W fn/bn Zn/aLn

W _ “n-1 _c Lh-1 zn
-1, L
n-1,] aLn a2 Ln n+1

--0o0a--,
Z
Ln_q zn-q n-g+1
(37 w_,5= 24 i,
n=d a Ln—q Ln—q+l

LT

Ln—q+l Ln—q+2

2
[+ zn—g+2
+ 73 Foese T

L eas
a Ln—q+2 n-g+3

q 2
-Cc n
+ A a) L L
n  nt+l

- - Q Q0 == .

Set {n~q) = 1 and collect coefficients aof wi in (27), recalling that
r

j+l
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f, = (}rrk}wi’j+l. Denoting the coefficient of Wi,j+l by (l-rk)pi, we have-
| Li n J=-1i
38 . = — i, . . L.
(38) b, = ZJ:l(c/a) (l/LJ L3+1)
- .32 Ly L, j-i

{39) Pi g™ (17 71 di-q o n (c/a) (l/Lj Lj+1)

a j=i

L, L, - (i
(40) p,, =135 Beg o0 (e TPV gL .
i+g —_— I, 73+l
a J=1+g

The values of P, {q = 1-i,...,~-1, @, + 1, ... n-i) are the elements of the
i+g

.th -1 . , Lo
i row of A 7. We shall now show that as the boundaries become indefinitely

remote pi+q may be interpreted as the probahility that the logarithm of the

stock price will jump by gh. As the lower houndary becomes remote i, while
{n-i)=+® as the upper bhoundary becomes remote.

First note that

i i
a1 Mo AT Ay _ 1 L= /)
L, i+g _ L itg Y g _ i+q
i+g ll Xz 1 1 (l2/11)

and that since |12/ll[<1

{42) Lim i 1
ive 1., q

Hence as (n-i), i-wm,

2
: 1 1 c 1 < 1
(43) Limp, =p* == |—+ = —— + T o= | |,
PINE o a ll a,y 3 a2 3 3
. 1 1
n-i-o
2
= ll/(all - ¢}
and from (38) and (39)
(44) Limp. _=p* = (- %.)q p*, for g =1, ..., =
jo 179 -q 1 i

-iwee

2, . .
Since Al and 12 are the roots of the auxiliary equation of the difference

equation {31}, Xllz = ¢/a. Therefaore, |c/al12| = 112/ll|<l.
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i = = (2239 x = @
(45) ;lm pi+q pq (a11} pi, for gq 1, su., &, .

1
Consider the sum of the pa {q = ==, ..., +=}, S:
2 o 3 1 1 1.2
(46) S=pf (l-—S+ (=37 (57 L =Tl -F (2270
[a] [ all all all ll Al ll
2

i [P |l e

o all+c 1-3, o (1+Al)(akl+c}

and, substituting for p; from (43}

Ay

{47} 8 = TI:EITTEEZ:ET-.

But since ll is a root of the auxiliary equation of (31) and b = 1-({a+c) .,
(l+Al)(all+c) = ll sa that S=1. Thus the sum of the weights p; {g==-=, ..., +%)

equals 1.

: . 3
Moreover each element pa is nonnegative so long as

(48) n’ <otz - H7

Thus since the pa are nonnegative and sum to unity, they may he interpreted
as probabhilities and we have

o

(49) w, . = i-rk z * W, .
1,] ( ) q=_mpq i+gq,j+1
=]
by * W, s
1+rk q=_mpq i+eqg,j+1l

Again, the wvalue of the contingent c¢laim at time instant j may be re-
garded as given by the expected walue of its wvalue at {(j+1} discounted at the
riskless rate, r. 1In this case the expected value of the claim at the next in-

stant is obtained by assuming that y, the logarithm of the stock price, follows
P

z h
Eﬁﬁ,/"q

-~ Q
dy = %ﬁ
L T
&

~ —gh

the generalized jump process

3For a proof see Appendix.
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The locan mean and variance of this process are shown in the Appendix to

he given by

(50) Eldy] = (r - %{Jz}k

122 2

(51) viayl = o%k + (¢ - 6B 7 K7

Taking the diffusion limit as k>0, vy again follows the stochastic differen-
tial equation (14) which again implies that the stochastic process for § is
{15}. MNotice that for finite k the variance of the jump process approximation
to the diffusion process is biased upwards by the square of the expected size
of the jump. This suggests that the accuracy of the implicit method could be
improved by adjusting the variance used in (19) by subtracting from the true
variance the square of the expected change in the logarithm of the underlying
asset value obtained under the assumption of risk neutrality.

Thus the implicit finite difference approximation to the log transform
of the Black-Scholes differential equation (7} is also equivalent to approxi-
mating the diffusion process by a jump process. In this case the jump process
is a generalized one which allows for the possibility that the stock price will
Jump to an infinity of possible future values rather than just three. It would
appear that this "more realistic" approximation would result in more accurate
determination of the value of the contingent c¢laim, but this conjecture must

walt upon detailed numerical analysis.

IV. Summary

In this paper we have established that the coefficients of the difference
eguation approximation to the Black-Scholes partial differential equation cor-
respond to the probabilities of a jump process approximation to the underlying
diffusion process. The simpler explicit finite difference approximation corre-
sponds to a three-point jump process of the type discussed by Cox and Ross [6],
while the more complex implicit finite difference approximation corresponds to

a generalized jump process to an infinity of possible points.
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APPENDIX

1. Condition for nonnegativity of weights in implicit solution.

(43) can also be written as
2 2 3
p* = (b + Vb -dac) /(b“-4ac + bvb -4ac)

but from (21) b » ¢, and from {(20), {(21) and (22) b2-4ac > 0. Therefore

E Y R
p; >0
Then from (44) p*q > 0,iff ll < 0 which from (33} requires that a < 0.
Then from (45), p; > 0, also iff ¢/a > (, 20 that ¢ must also be negative.

From (20} and (22}, ¢ and a are negative if and only if (48} is satisfied,

2. Mean and variance of the generalized Jump Process.

o

- I qp*
q=1

E(dy} = h ap

*
1 q

[LI B

q a

Substituting for pa and P:q from (44) and (45},

i P - L2
E(dy)hh['ax {1 2 +3(a)\] e )

1 all 1

1 2 3 v

+ =1 -= 4+ 2 - .. {] P* .
kl Al ll2 1
Summing and using (43},
ach X A
1 1 1
E(dy) 2 + 2
(ak, +c) (27| allz—c

E(dy) = {(a-c¢}h = (r - %qg)k .

Q.E.D.
- 2 o 2
Vi{dy) = I p* (-gh -{a-c)h}” + I p* (gh -(a-cih)
a=0 ! q=1 q
2 * 2 T2 2
=h Lqg p* + Iq p*-{a-c) .
q=0 9 g=1 q

Summing the series and substituting for p; as above we obtain:

, | Aty ach, (ar,=c) A )
v{dy} = h { 3 - 3 } 5 = (ac) .
(1+Al) (aAl+c) ah, -¢
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Simplifying yields:
2
V(dy) = -h" [{at+c)b + 4dac]

and, substituting for a, b, and ¢, we obtain (51).
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