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- Value-at-risk and asset allocation with stable
return distributions*
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SUMMARY: The paper reviews recent empirical evidence on the implications distribu-
tional assumptions can have on financial decision making. Specifically, we compare the
empirical validity of decisions on risk assessment and asset allocation that are based
on the — commonly adopted — normal assumption to those based on the heavy-tailed
stable Paretian assumption.
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1. INTRODUCTION

There is overwhelming empirical evidence that the returns on speculative
assets follow heavy-tailed and, sometimes, skewed distributions and thus
violate the assumption of normality. Among the various distributions that
have been proposed as alternatives to the commonly used normal model,
the stable Paretian distribution (in short, stable distribution) represents a
particularly attractive candidate. The use of the stable distribution in the
context of asset returns was put forth by Mandelbrot (1963) and Fama
(1963), who were the first to seriously question the normal assumption for
asset returns. The stable distribution is capable of capturing heavy tails and
skewness, while preserving many of the desirable analytical properties of the
normal. An important property is that stable distributions have domains of
attraction. The Central Limit Theorem for normalized sums of identically
and independently distributed (i.i.d.) random variables determines the do-
main of attraction of each stable law. Therefore, any distribution in the
domain of attraction of a specified stable distribution will have properties
that are close to those of the stable distribution. Another attractive feature
is the stability property — that is, stable distributions are stable with re-
spect to the summation of i.i.d. random stable variables. Finally, the stable
distribution includes the normal as a special case. Thus, it does not rule
out the normal assumption, but rather represents a generalization of the
normal model.?

This paper illustrates some of the consequences when replacing the nor-
mal assumption by the more general stable Paretian assumption. Specifi-
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! Detailed accounts of the properties of stable distributed variables can be found in
Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994). Overviews of the use
of stable distributions in finance are given in McCulloch (1996) and Rachev and Mittnik
(2000).



cally, we survey some recent empirical evidence comparing implications of
distributional assumptions on risk assessment — in terms of value-at-risk
(VaR) measures — and asset allocation.? The paper is organized as follows.
Section 2 summarizes some of the relevant properties of stable random vari-
ables. Section 3 considers implications on risk assessment. The influence
of distributional assumptions on asset allocation is addressed in Section 4.
Section 5 concludes.

2. PROPERTIES OF STABLE RANDOM VARIABLES

A random variable R is said to be stable® if for any a > 0 and b > 0 there
exist constants ¢ > 0 and d € R such that

aR1+bR2~cR+d,

where R; and R are independent copies of R and “~” denotes equality
in distribution. There are no general closed-form expressions for the den-
sity and distribution functions of stable distributions. Instead, they can be
described by their characteristic function

B (6) = exp {ip — o®|0]* (1 — if sign(6) tan Ylifa#1,

f exp {ipf — o)d)| (1+ib’%sign(€) Ind)ipd} ifa=1,
where o € (0, 2] is the index of stability, 8 € [—1,1] is the skewness parame-
ter, o > 0 is the scale parameter, and u € R is the location parameter. If R
is a stable random variable, we write R ~ S, (8,0,u). If a = 2, the stable
distribution specializes to the normal distribution. In financial applications,
one typically finds that 1 < o < 2, implying that the mean E(R) = p
Is finite but the variance Var(R) is not (see below). Stable distributions
are unimodal; and the smaller « is, the more peaked they are around the
center and the heavier are the tails. Thus, the index of stability can be
interpreted as a measure of kurtosis. If the skewness parameter S is zero,
the distribution is symmetric. If 8 > 0 (8 < 0), the distribution is skewed
to the right (left), with larger magnitudes of 8 indicating more pronounced
skewness. The scale parameter, o, implies that any stable random variable
R ~ 54(0,0,0) can be written as R = oR;, where R, ~ 54(0,1,0). The
scale parameter generalizes the definition of standard deviation; and the
analogue of the variance is the variation of R, defined by 0.

VaR calculations involve the tails of the return distribution. The tails of
(non-Gaussian) stable distributions have a power decay characterized by

1+5

lim A*Prob(R > A) =k, o

A— 400
2 The survey draws heavily on Khindanova et al. (2001), Ortobelli et al. (2001), and
Doganoglu and Mittnik (2001).
3 The terms stable Paretian, a-stable, and Pareto-Lévy-stable are also being used in
the literature.
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a-nd 1 - /3
lim A%Prob(R < —)) = k, o%,
A= +00
. where 9
— fa=1,
)T
ko = l—-a

I'(2 — @) cos (22) fa#l.
For a = 2 the p-th absolute moment, EIRPP = [[“P(|R[P > z)dz, is always
finite, while for a < 2 we require p < a. Thus, the second moment of any
non-Gaussian stable distribution is infinite.

Stable distributions are closed under summation. More specifically, linear
combinations of independent stable random variables with stability index «
are again stable with the same index a. Only stable random variables pos-
sess this property, which is an important advantage in portfolio analysis. If
Ri,Ry,..., Ry are independent stable random variables with stability in-
dex «, that is, R; ~ Sa(ﬁi, i, ,U,i), then Rp = Zi\;l wi Ry ~ Sa(ﬁp, Up,,LLP)
with

{((lwl!m)" toF (luylon)®)s  if a#1,

op =
fw1|01+---+[wN|0N if a=1,
sign(w1)B1 ([wi]o1)* + - - + sign(wy) B (jwy|ow)® |
if a#1,
(lwifo)® + - + (Juyloy)®
Bp =< _
sign(wi)f1|wi|oy + -+ + sign(wy) By wi oy oo
[wiloy + -+ luy|ox ’
and
p = Wil + Wy if a#l1,
—%(wl Injwilor 81 + -+ +wy In lwnlonBy) if a=1.

For a < 2, the variance of a stable random variable is infinite, so that one
cannot express risk and dependence in terms of variances or correlations.
However, there are analogues for stable laws. The scale parameter can play
the role of a risk measure — as the standard deviation does for the normal.
The dependence between stable random variables depends on the structure
of the underlying multivariate distribution. To elaborate on this, let R be a
random vector of dimension N. R is stable if for any a > 0 and b > 0 there
exist ¢ > 0 and an N-dimensional vector D, such that aR; + bRy ~ cR + D,
where Ry and R, are independent copies of vector R. The characteristic
function of an N-dimensional vector is

exp {i&’u = Js, 16's]* (1 — i sign(8's) tan T2 F(ds)}
if a#1,

exp {i@’u ~ fs, 10's] (1 + i2sign(é's) In(g's)) F(ds)}
if a=1,

Pr(f) =



where the spectral measure I is a bounded nonnegative measure on the unit
sphere Sy, unit vector s € Sy is the integrand, and p is the location vector.
Ifa > 1then u = E(R) is the mean vector. The scale parameter or variation
of a linear combination of the components w'R = u Ry + ... + wy Ry
satisfies

c%(w'R) :/ [w's|*I(ds) . (1)

Sn
It R = (Ry,...,Ry)" represents a vector of the individual returns in a
portfolio with weights w = (wy,... ,wy)', then the variation o*(w'R)

is a measure of the portfolio risk; and the covariation is a measure of
the dependence between two (symmetric) stable random variables with
1 < a < 2. The covariation is defined by

1 o
[Ri;Rj}a — _80‘ (wlRl + 'U)QRQ)

:/5 sisfa_bf(ds),

@ awi w; =0;w; =1
where z<¥> = |2|*sign(z). The covariation matrix ([Ri, Rjla); v 4,5 =
1,...,d, reflects the dependence structure among the individual returns

in the portfolio.

3. VALUE AT RISK

3.1. THE CONCEPT. Financial institutions have to evaluate their exposure
to market risks which arise from variations in asset prices. A commonly
used measure for assessing market risks is the Value at Risk (VaR). The
VaR reflects the loss a financial position is expected not to exceed at a
given probability level. Formally, the VaR is defined as the upper bound of
the one-sided confidence interval

Prob(R;, < ~VaR,) =1 — c, (2)

where Ry ; denotes the return of the portfolio over the period (t,t+7); and
¢ is the confidence level or target probability. Typical values for ¢ are 0.95,
0.975 or 0.99. Thus, empirical VaR calculations involve the estimation of
lower-order quantiles — for example 5%, 2.5%, or 1% — of the portfolio-
return distributions.

Different methods for constructing the portfolio-return distributions have
been suggested. Common methods are the delta method, historical simula-
tion and Monte-Carlo simulation. The delta method is based on the normal
assumption for the return distribution; the historical approach does not im-
pose distributional assumptions, but is rather unreliable in estimating low
quantiles due to the small number of available observations in the tails;
and the performance of the Monte-Carlo method depends on the quality of
distributional assumptions for the underlying risk factors.



From definition (2), VaRs are implied by

—VaR.
1—-c= Fr(=VaR,) = / frz)dz |
-
where Fr(z) = Prob(R < z) is the cumulative distribution function and
fr(z) the probability density function of R. If returns can be modeled by
a parametric distribution, VaRs can be derived from the distributional pa-
rameters. Consider a portfolio that consists of a single asset. Assuming — as
Is common — that the returns of the single-asset portfolio are normal, VaRs
are fully determined by two parameters: the mean, x, and the standard de-
viation, ¢. Then, the VaR derivation reduces to finding the (1 — ¢)-quantile,
- 21—¢, of the standard normal distribution; that is

1-e= [ T e @) = JC

o0 — 00

with —VaR, = 21_.0+pu, where ¢, ,(2) is the normal density function with
mean g and standard deviation o.

If the returns are assumed to follow a stable distribution, the procedure
for calculating VaRs remains unchanged. The only modification is that the
quantile, z;_., has to be derived from the standardized stable distribution
Sx(8,1,0) and that o represents the scale parameter.

For short investment horizons one can ignore the expected return and set
p = 0, because — under either distributional assumption — the magnitude
of p is negligible relative to o, so that VAR, & —z;_.0.

To consider the multi-asset case, let Rp denote the portfolio return and
Ri, i =1,... N, the return on asset i over the investment horizon. More-
over, let w;, 1 = 1,...,N, with Zf\;l w; = 1, represent the i-th asset’s
weight in the portfolio. If the NV asset returns are jointly normal the portfo-
lio return, a linear combination of normal random variables, is also normally
distributed with portfolio return, Rp, and portfolio variance, 0%, given by

N
RP = Z wiRi
i=1

and

N N
02 = wlo? + Wi D T O s
P — WYy Wi Pi0:05 ,

=
respectively. Here, o; denotes the standard deviation of returns on the i-
th asset; and p;; is the correlation between the returns on assets i and 7.
Then, the portfolio VaR is computed by VaR, a —z;_.cp. In this setting,
portfolio risk is represented by a combination of linear exposures to normally



distributed factors; and it suffices to evaluate the covariance matrix of the
risk factors.

Again, the necessary modifications are — in principle — straightforward,
when assuming that the returns follow a multivariate stable rather than
a multivariate normal distribution. The portfolio scale op is obtained by
evaluating (1); and, as in the single-asset case, zj_, is the quantile of the
underlying standardized (univariate) stable distribution.

3.2. UNIVARIATE EMPIRICAL COMPARISONS. In this section we illustrate
the empirical validity of the normal and stable assumptions for VaR calcu-
lations in a single-asset setting. To do so, we consider three stock indices,
namely the S&P500, the DAX30, and the CAC40 (see Table 1 for sample
information). To obtain the VaR estimates, we fit normal and stable dis-
tributions to the entire samples and calculate the VaR as (the negative of)
the (1 — ¢)-th quantile of a fitted distribution. The maximum likelihood es-
timates (see Mittnik et al. (1999)) of the distributional parameters are also
reported in Table 1. The VaR, estimates (upper entries) for probability

S&P500 DAX30 CAC40

Sample Size 7327 8630 2756
Time Period | 1/1/70-1/30/98 1/4/65-1/30/98 7/10/87-1/30/98
Normal:

W 0.032 0.026 0.028

o 0.930 1.002 1.198
Stable:

a 1.71 1.82 1.78

Ié} 0.004 -0.084 -0.153

I 0.036 0.027 0.027

o 0.512 0.392 0.698

TABLE 1. Sample information and parameter estimates.

levels ¢ = 0.99 and ¢ = 0.95, implied by the fitted distributions, and their
deviations from the empirical quantiles (lower entries) are reported in Table
2. The results indicate that the stable models provide, in general, a better fit
for both the empirical VaR gg and VaR g5 values. In fact, the stable model
yields a better fit in five of the six cases. The sole exception is the VaR g9
estimate for the S&P500. The overall fit, measured in terms of 100 times
the mean squared deviation (MSD), drops from 6.256 to 3.230 for VaR g9,
and from 1.379 to 0.436 for VaR g5, when the a parameter is freely esti-
mated and not — as under the normal assumption — restricted to a = 2.
Similarly, the mean deviations (MD) are improved, namely from -0.243 to
0.098 (VaR g9) and from 0.117 to -0.026 (VaR g5). One of the patterns that
emerge 1s that the normal model underestimates the 99% and overestimates
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VaR g9 VaR g5 ]
Emp. Normal Stable | Emp. Normal Stable
S&P500:
Estimate 2.293 2.131 2.539 1.384 1.497 1.309
Deviation -0.162 0.266 0.113 -0.075
DAX30:
Estimate 2.564 2.306 2.464 1.508 1.623 1.449
Deviation -0.258  -0.100 0.115 0.059
CAC40:
Estimate 3.068 2760  3.195 1.819 1.943 1.756
Deviation -0.308 0.127 0.124 -0.063
MSDx100 6.256 3.230 1.379 0.436
| MD -0.243  0.098 0.117  -0.026

TABLE 2. Empirical and estimated VaRs.

the 95% VaR levels. The stable model has a systematic (negative) bias for
the 95% level, but to lesser extent than the normal; and it is, on average,
more on the conservative side for the 99% level. Overall, for the series con-
sidered, the stable assumption leads to a considerable improvement of the
VaR estimates.

4. OPTIMAL ASSET ALLOCATION

We now turn to the problem of determining the optimal asset allocation.
First, we consider the most trivial case where an investor is faced with the
situation of allocating funds between one risky and one risk-free asset. Sub-
sequently, we consider the problem of choosing an optimal portfolio subject
to specified VaR constraints. Here, we focus on two types of portfolios. First,
the two-asset case with one risky and one risk-free asset is presented. Then,
the problem of selecting from a set of several risky assets is illustrated.

4.1. OPTIMAL ALLOCATION BETWEEN ONE RISKY AND ONE RISK-FREE
ASSET.

4.1.1. THE OPTIMIZATION PROBLEM. Consider the problem of determin-
ing the optimal allocation between a risk-free asset, guaranteeing a return
of 74, and a risky asset. Let the (uncertain) return of the risky asset be
denoted by R and the expected return by pg, so that

Rp =dr;+(1-AR



is the return of an investment of one unit with \ denoting the share invested
in the risk-free asset. We assume that the investor’s ob jective is to maximize

U(Rp) = E(Rp) ~ cE(|[Rp — E(Rp)|?) | (3)

where ¢ and p are positive constants.
If the risky asset follows a stable distribution, that is, R ~ S, (8, o, UR)
with a > 1, then

Rp ~ Sa(sign(l - )\)ﬂR, Il — /\‘UR, )\Tf + (1 - )\)/,LR), A#1;
and, if there is no short selling, that is, A € [0,1), then
Rp NSa(,BR,(l—/\)CTR,/\Tf+(1—A)/LR), Ae[0,1); (4)

and Rp = 14, for A = 1. Relationship (4) implies that the portfolio mean
is given by up = Aus + (1 ~ Npug, the portfolio scale parameter by op =
(1 = A)or, and that the portfolio skewness remains unchanged.

The solutions to the maximization of (3) can be represented as the half-
line in the mean-dispersion plane defined by

- T
H“R fa_
OR

“p =Ts + P, op2>0.

The investor should choose a portfolio 1p = A+ (1= X)ug that maximizes
(3) for some p € [1,a) and A € [0,1]. To solve the asset allocation problem

maxE(Rr) - B (Rp ~ E(Rp))?) | (5)
note first that, for all p € [1,a) and 1 < a < 2, we have
UlRp) = Ars + (1= Nug — c(H(a, 8,p))?(1 — Aoy,

where

p—1 _P
s = T T e e

X COS (g arctan (ﬁ tan (%T)))

(see Samorodnitsky and Tagqu (1994), Hardin (1984)). When R is normally
distributed (i.e., a = 2), then for all 0 >0,

U(Rp) = Ary + (1 — Mg - c\/izr <%1> 1 - NFa?, .

Assuming p € (1,a) and ug > 7y, the first-order condition of (5) yields

1

. HR — Ty e-1
AP=1 - — 7
<p ¢ U%V(a,ﬁ,p)> ’ (©)
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where

(H(a. 8,p))? ifl <a< 2,
V(a: »B: p) = e
1y —
In the empirical application presented next, we will use (6) to derive the
optimal allocation when investing in a portfolio consisting of one risky and
one risk-free asset.

4.1.2. AN EMPIRICAL COMPARISON. To illustrate the consequences of dis-
tributional assumptions for asset allocation, we consider the same three
daily stock-index series used above (S&P500, DAX30, and CAC40) and
make use of the parameter estimates reported in the previous section. We
set the annual risk-free rate to 6% or, on a daily basis, r; = 0.06/360.
Moreover, we set p = 1.5 and specify several values for the risk-aversion
coefficient, ¢, in the objective function E(Rp) - cE(|Rp — E(Rp)|?). The
optimal A*-values under both the normal and stable assumptions are re-
ported in Table 3.

LSeries ' c ‘Normal Staﬁ

S&P500 | 0.03 0.159 0.505
0.04 0.527 0.721
0.05 0.697 0.822
0.10 0.924 0.955
DAX30 | 0.03 0.557 0.605
0.04 0.751 0.778
0.05 0.841 0.858
0.10 0.960 0.964
CAC40 | 0.02 0.323 0.567
0.04 0.831 0.892
0.10 0.973 0.983

TaBLE 3. Optimal allocations under normal and stable assumptions.

The results show that the optimal allocations can differ considerably under
the two distributional assumptions. This holds especially for low values of
the risk-aversion parameter, c, in which case the normal assumption leads
to less conservative portfolios by putting less funds into the risky asset (i.e.,
A* is smaller). By taking the heavy tails of the empirical distributions into
account, the stable assumption causes the investor to allocate more funds
to the risk-free asset. To see this, recall that the tail behavior of a (non-
Gaussian) stable random variable, X ~ S, (8,0, 1), is determined by

+
1 ﬂao‘, l<a<x?2,

lim z*Prob(xX > z) = ¢,

z—+oo 2



1—
where C, = TZ—a) co(:(m-a/Q)' Because, for a € (1,2], C, increases as
a | 1, the risk measure E(|Rp — E(Rp)|?), with p € [1,a), increases the

more one moves away from normality.

4.2. OPTIMAL ASSET ALLOCATION UNDER VAR CONSTRAINTS.

4.2.1. ONE RISKY AND ONE RISK-FREE ASSET. We now consider the opti-
mal allocation problem of a non-satiable investor, who takes VaR constraints
into account by having an objective function of the form

V(Rp) =E(Rp) — cProb(Rp < —VaR) (7)

=Ary+ (1 - Ay, — cFp(=VaR),

where Fp is the cumulative distribution function of Rp; and ¢ is a positive
real number. In the non-Gaussian case with 1 < a < 2 and A € [0,1), we
have

BRp ~ Sa(Br, (1 = AN)og, Ary + (1 = A)ug)
and V(Rp) is given by

v T
V(Bp) =Ars + (1= MNug — cFo <(1—_§)RTR B 5—2 ~ Stan <70‘)) ’
(8)

In expression (8), F, s denotes the cumulative distribution function of the
stable distribution S,(8, 1, - ftan(ra/2)) (see Zolotarev (1986)) and is
defined by

1= H e { - - OFTR®, 0.0} do itz > ¢,

Fopz) =< 1(2 _g,) ife=C(,
1-F, _s(—z) ifz < ¢,
where
(=((a8) = -gtan (T7)
o = o(a ) = 256 (3:%(@—&)) |
and

cosd > 5T cos(afy + (e —1)8)

K(8,a,8) = cos(adg) = <sin(a(9 +6o)) cos

In the normal case (a = 2), we have

—VaR—Ar;—(1-A)up
(I-Xjo g 1 2

V(Rp) =Xy + (1= MNug — C/

- 2m
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Numerical methods can be used for maximizing (8) or (9) in order to obtain
the optimal allocation \*.

Employing again the three index series used above, we compare the op-
timal allocations under normal and stable assumptions. Considering the
empirical 95% VaR levels of the return series (see Table 2) as the VaR con-
straints, and assuming different values for the risk-aversion parameter, c,
we obtain the optimal allocations reported in Table 4.

e
Normal Stable
S&P500 | 0.3 0.325 0.000
1.0 0.483 0.496
2.0 0.530 0.724
15 0.613 0.981
DAX30 | 0.2 0.266

Series c

0.5 0.432
1.0 0.495
15 0.616
CAC40 | 0.2 0.231
0.5 0.419
1.0 0.484
15 0.610

TABLE 4. Optimal allocations under VaR 95%-constraints.

The results illustrate that the optimal allocations derived under the normal
and stable assumptions can be very different. Specifically, we observe that
for lower values of the risk-aversion coefficient, ¢, the “normal investor” in-
vests more in the risk-free asset. This is due to a “kurtosis effect”. Stable
distributions are more peaked around the center than the normal. Conse-
quently, investors who rely on the stable assumption and who are not too
averse to downside risk, give more importance to the mean than “normal in-
vestors”, who having the same c-value are more willing to sacrifice a higher
mean for lower risk.

For higher degrees of risk aversion, it is the “stable investor” who invests
more in the risk-free asset due to the “tail effect”. The tail probability for
normal random variables, Prob(Rp < —~VaR), tends to zero exponentially
fast, so that the “normal investor” assigns lower probabilities to the tail risk
than the “stable investor”.

4.2.2. THE MULTI-ASSET CASE. We now turn to asset-allocation prob-
lems in the multi-asset case and consider a portfolio of stocks belonging to
the DAX30 index. The sample of daily returns consists of 1827 observa-
tions which cover the period from January 1991 to April 1998. There were



N = 26 stocks which belonged to the DAX30 throughout the sample period
considered.

Instead of fitting a full (26-dimensional) multivariate normal or stable
distribution to the return series, it is common practice to model the depen-
dencies among the assets by relating them to a — typically small — set of
common risk factors. The simplest form of doing so is to fit a single-index
model to the return series. Using the broad Composite DAX (CDAX) index
as the single risk factor, the single-index model is specified by

Rig = pi +bify +e5¢, i=1,...,N,

where f; denotes the return on the risk-factor (CDAX) during period ¢; and
coefficient b; reflects the dependence of return R; on the index. The factor
is modeled as a constant plus an error term, i.e., ft = to + €0t- Under the
normal assumption we impose, forallt =1,...,7 and i = 0,1,..., N,

Eit ~ ]V(Oa 02) : (1O>
i

where subscript 0 refers to the index. Moreover, it is assumed that all €4 are
independent over time and with respect to each other. Under the stable as-
sumption, these independence assumptions remain in place but assumption
(10) is generalized to

Eit"\-’Sa(’Bi,Ui,O), 'L:O' 7N' (11>

Imposing a symmetry restriction for all returns, i.e., 3; = 0 (t=0,...,N),
the stable single-index model is specified by 3(N + 1) parameters, namely,
Bos-++ s Ny Toy---, ON, b1,..., by, and a. This is one parameter more
than the normal single-index model, which imposes o = 2. For N = 26, a
total of 80 (81) parameters need to be estimated for the normal (stable)
model, which makes maximum-likelihood estimation practically infeasible.
Assuming 1 < o < 2, the location parameters, i, can be estimated by the
sample means. Under normality, the factor loadings, b;, can be estimated by
ordinary least squares (OLS) regression. Blattberg and Sargent (1971) show
that the OLS estimates of regression parameters are still consistent in the
presence of stable disturbances. The variances of the normal errors, o7, can
be estimated from the OLS residuals. For the stable model, given estimates
f; and Ei, the scale parameters, o;, and the shape parameter, o, can be
estimated via maximum likelihood (see Doganoglu and Mittnik (2001) for
technical details and estimation results).

Portfolio optimization under VaR constrains amounts to maximizing the
portfolio return subject to satisfying a particular VaR target, say VaRZ.
Specifically, that is, :

max,, w'p
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subject to
VaR. < VaR? ,
N
Swi=t,
i=1
and, if there is no short selling, w; > 0, ¢ = 1,...,N. If the allocation

decision relies on estimated quantities, the optimization problem becomes
maxw' i
w
subject to

VAR, < VaR? ,
N

Z’U)i =1 ;

i=1

and, possibly, w; >0,i=1,... ,N.

By defining an appropriate grid of VAR values, one can construct the
efficient frontier in the mean-VAR, plane by deriving the optimal weight
vectors associated with each grid point. To conduct empirical comparisons,
we can construct three estimated frontiers under the assumption that there
is no short selling:

1. The normal frontier, which is derived from the estimated single-index
model based on the normal assumption.

2. The stable frontier assumes a single-index structure with stable errors.

3. The empirical frontier, which is derived by computing the sample quan-
tiles of the historical portfolio distributions associated with the optimal
weight vectors for each of the grid points.

Figure 1 graphs the three frontiers in the mean-VaR g5 plane. The plots
show that the stable frontier (solid line) approximates the empirical frontier
(dotted line) more closely than the normal frontier (dash-dot line). Both
models fit well in the minimum-risk region. But as one approaches higher
VaR" targets, the fit of the normal deteriorates in that it overestimates
the portfolio risk. Summary measures for the goodness of fit confirm the
visual impressions of the superior fit of the stable model. Table 5 reports
the mean-squared deviation (MSD), mean-absolute derivation (MAD) and
mean deviation (MD) of the fitted normal and stable frontiers.

} Model | MSD MAD  MD
Normal | 0.0722 0.1960 -0.1956
Stable | 0.0034 0.0404 -0.0305

TABLE 5. Summary measures of fitted efficient frontiers.
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Figure 1. Empirical, normal, and stable efficient frontiers in the mean-VaR g5
plane.

The application indicates that the stable assumption provides a more re-
alistic description of the risk /return relationships for portfolios constructed
from DAX stocks and, thus, should lead to more efficient allocations of risk.
This is particularly important in risk management, where the “cost” of a
position is assessed in terms of risk.

5. CONCLUSIONS

We have reviewed some recent empirical evidence on the consequences of
the underlying distributional assumption in financial decision making. We
have focused on implications for risk assessment, based on the value-at-
risk concept, and for asset allocation. Specifically, we have considered the
heavy-tailed stable Paretian distribution as an alternative to the commonly
adopted normal assumption. The evidence suggests that the stable model
leads to more reliable decisions because it can capture the heavy tails —
typically encountered in financial data — as well as skewness. The stable
assumption does not rule out the normal model, since the latter is a special
case of the stable model. In addition to the empirical support, the stable
model has attractive theoretical properties, which — in contrast to other
alternatives to the normal model — preserve the analytical tractability of
financial analyses, such as asset allocation and portfolio management.

We have not addressed questions pertaining to dynamic issues, such as
the out-of-sample prediction of risk. Some empirical analyses in this direc-
tion can be found in Mittnik et al, (2000).
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