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Abstract. This paper analyzes and discusses the stable distributional approach
in portfolio choice theory. We consider different hypotheses of portfolio se-
lection with stable distributed returns and, more generally, with heavy-tailed
distributed returns. In particular, we examine empirical differences among the
optimal allocations obtained with the Gaussian and the stable non-Gaussian
distributional assumption for the financial returns. Finally, we compare per-
formances among stable multivariate models.

1 Introduction

The purpose of this paper is to describe and compare stable portfolio selection
models. We first consider portfolio choice models coherent with the asymp-
totic behavior of the return data and consistent with the maximization of the
expected utility. Secondly, we examine empirical optimal allocation differ-
ences among Gaussian and heavy tailed models. Finally, we analyze and com-
pare the performance among some of the proposed portfolio choice models.
It is well-known that asset returns are not normally distributed, but many
of the concepts in theoretical and empirical finance developed over the past
decades rest upon the assumption that asset returns follow a normal distri-
bution. The fundamental work of Mandelbrot (1963a-b, 1967a-b) and Fama
(1963, 1965a—b) has sparked considerable interest in studying the empirical
distribution of financial assets. The excess kurtosis found in Mandelbrot’s and
Fama’s investigations led them to reject the normal assumption and to pro-
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lozar Rachev for his guidance and many helpful comments and suggestions in improving the
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pose the stable Paretian distribution as a statistical model for asset returns.
The Fama and Mandelbrot’s conjecture was supported by numerous empiri-
cal investigations in the subsequent years, (see Mittnik, Rachev and Paolella
(1997) and Rachev and Mittnik (2000)).

In this work, we first study models which consider the asymptotic dis-
tributional behavior of data. The behavior, generally stationary over time of
returns, the Central Limit Theorem and Central Pre-limit Theorem (see Kle-
banov, Rachev, Szekely (2000) and Klebanov, Rachev, Safarian (2001)) for
normalized sums of i.i.d. random variables (see Zolatorev (1986)) theoretically
justify the stable Paretian approach proposed by Mandelbrot and Fama. The
practical and theoretical appeal of the stable non-Gaussian approach is given
by its attractive properties that are almost the same as the normal one. A rel-
evant desirable property of a stable distributional assumption is that stable
distributions have domain of attraction. Therefore, any distribution in the
domain of attraction of a specified stable distribution will have properties
close to those of the stable distribution. Another attractive aspect of the stable
Paretian assumption is the stability property, i.e. stable distributions are stable
with respect to summation of i.i.d. random stable variables. Hence, the sta-
bility governs the main properties of the underlying distribution (detailed ac-
counts for theoretical aspects of stable distributed random variables can be
found in Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994)).
Here, we find an equivalent parameterization of the stable laws (in terms of
some moments) that characterizes the stable laws used in portfolio choice
theory. Using this parametrization and stochastic dominance properties of
stable laws we can characterize the efficient frontiers of non-satiable and risk
averse investors. Moreover, we recall three admissible fund separation models
where the asset returns are in the domain of attraction of stable laws (see Or-
tobelli, Rachev and Schwartz (2000), Ortobelli, Huber, Rachev and Schwartz
(2001), Ortobelli and Rachev (2001)). We first consider the portfolio alloca-
tion among n o-stable sub-Gaussian distributed risky assets (with 1 < o < 2)
and the riskless one. The joint stable sub-Gaussian family is an elliptical
family. Hence, as argued by Owen and Rabinovitch (1984), in this case, we
can use a mean-dispersion analysis. The resulting efficient frontier is formally
the same as Markowitz-Tobin’s mean-variance analysis, but, instead of con-
sidering the variance as a risk parameter, we have to consider the scale pa-
rameter of the stable distributions. All the stable parameters can be estimated
(see Rachev and Mittnik (2000) and the references therein). In order to con-
sider the possible asymmetry of asset returns, we describe a three-fund sepa-
ration model for returns in the domain of attraction of a stable law. In case
of asymmetry, the model results from a new stable version of the Simaan’s
model, see Simaan (1993). In case of symmetry of returns, we obtain a version
of a model recently studied by Gotzenberger, Rachev and Schwartz (1999),
that can also be viewed as a particular version of the two-fund separation of
Fama’s (1965b) model. In this case too, it is possible to estimate all param-
eters with a maximum likelihood method (see Rachev and Mittnik (2000) and
the references therein). Finally, the last model proposed deals with the case of
optimal allocation among stable distributed portfolios with different indexes
of stability. To overcome the difficulties of the most general case of the stable
law, we introduce a k + 1 fund separation model. Then, we show how to ex-
press the model’s multi-parameter admissible frontier.

Secondly, we analyze empirical optimal allocation differences among
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Gaussian and stable non-Gaussian models. The investment allocation prob-
lem consists of the maximization of the mean minus a measure of portfolio
risk. We propose a mean risk analysis that facilitates the interpretation of the
results. In the allocation problem, we consider as the risk measure the ex-
pected value of a power absolute deviation. When the power is equal to two,
we obtain the classic quadratic utility functional. We first examine the optimal
allocation between a riskless return and a risky stable distributed return, then
we compare the allocation obtained with the Gaussian and the stable non-
Gaussian distributional assumption for the risky return. We choose the 6%
annual rate as riskless return. As a possible risky asset, we consider the stock
indexes S&P500, DAX30 and CAC40. The models” parameters are estimated
in Khindanova, Rachev and Schwartz (1999). This first comparison shows
that there are significant differences in the allocation when the data fit the
stable non-Gaussian or the normal distributions. Secondly, we analyze the
optimal allocation among a riskless return and 23 risky stable distributed re-
turns, then we compare the allocation obtained with the Gaussian and the
stable sub-Gaussian distributional assumption for the risky returns. The
model parameters are estimated using the methodology based on the moment
method. We show that there are significant differences in the allocation when
the data fit the stable sub-Gaussian or the normal distributions. By comparing
the joint normal distribution with the joint stable sub-Guassian law one, it has
occurred that the results performed under the examined optimal allocation
problems are substantially different. In particular, the stable market portfolio
is generally less risky than the Gaussian market portfolio. This intuitive result
is confirmed by the comparison of the optimal allocations when different dis-
tributional hypotheses are assumed. Therefore, the investors who fit the data
with the stable distributions are generally more risk preserving than the in-
vestors who fit the data with the normal laws because they consider the com-
ponent of risk due to the heavy tails.

Finally, we propose a performance comparison among the mean-variance
approach and some stable sub-Gaussian models considering the same data set
of previous empirical analysis. For this purpose we analyze two allocation
problems for investors with different risk aversion coefficients. We determine
the efficient frontiers given by the minimization of the dispersion measures for
different levels of expected value. Each investor, characterized by his/her util-
ity function, will prefer the mean-dispersion model which maximizes his/her
expected utility on the efficient frontier. The portfolios obtained with this
methodology represent the optimal investors’ choices in the different ap-
proaches.

Section 2 analyzes and introduces the asymptotic distributional assump-
tion. In Section 3 we compare the stable non-Gaussian approach with the
Gaussian one. Section 4 proposes a performance comparison among stable
sub-Gaussian and mean-variance models. In the last section, we briefly sum-
marize the results.

2 Portfolio choice models in the domain of attraction of stable laws

In this section we study the portfolio choice problem analyzing the asymptotic
behavior of data. In particular, we consider portfolio choice problem among
n+1 assets: n of those assets are risky with returns (continuously com-
pounded) r = [ri,....7,)’, and the (n + 1)th asset has risk-free return zo.



The recent crashes observed in the stock market showed that the stock re-
turns are more volatile than those predicted by the models with finite variance
of the asset returns. In the empirical financial literature, it is well documented
that the asset returns have a distribution whose tail is heavier than that of the
distributions with finite variance, 1.e.,

P(lr] > x) ~x"%Li(x) asx — o, (N
where 0 < % < 2 and L;(x) is a slowly varying function at infinity. i.e.,

Ll‘<CX>

Lim 7.0 — 1 forallc>0,

see Rachev and Mittnik (2000) and the references therein. In particular, in the
data observed until now 1 < o < 2. The constrain | < « < 2 and the relation
(1) imply that returns r; admit finite mean and infinite variance. The tail con-
dition in (1) also implies that the vector of returns r = [ry,....r,] is in the

domain of attraction of (a1,...,2,)-stable law. That is, given T iid (inde-
pendent and identically distributed) observations on r, namely

A0 = [,,(t)’_“_/,,(ﬂy r=12...,T,

then, there exist normalizing constants

a” =@, .. ayeR and b7 = B, by e R,
such that
T @ T 0 J
Z—(lﬁﬂ"bi 7-~-‘Z—<lﬁ+b,(f) = Slay,. .., 0) asT — oo,  (2)
i=1 ) i=1 dn
where S(ay,...,0,) is (o,...,0,)-stable random vector. This convergence

result is a consequence of the stationary behavior of returns and of the Central
Limit Theorem for normalized sums of i.i.d. random variables which deter-
mines the domain of attraction of each stable law (see Zolatorev (1986)).
Therefore, any distribution in the domain of attraction of a specified stable
distribution will have properties close to those of the stable distribution. The
constants a}T/ in (2) have the form

a"! = TVHL(T),
where L;(T) are slowly varying functions as 7' — <.

Each component of S(2,...,2,) = (s1,....5,) has a Pareto-Lévy stable
distribution, i.e., its characteristic function is given by

&,(0) {exp{—gﬁ]z;m — ifysgn(t) an() + it if o # 1 )

expi—aj|t|(1 + if; 2 sgn (1) log|t]) + ip1] if oy =1
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where 7 € (0,2) is the so-called stable (tail) index of s;, ; > 0 1s the scale (or
dispersion) parameter, f; € \—1. 1] is a skewness parameter and u; is a location
parameter. When %; > 1 the location parameter /; is the mean. However, there
is a considerable debate in literature concerning the applicability of z-stable
distributions as they appear in Lévy’s central limit theorems. A serious draw-
back of Lévy’s approach is that in practice one can never know whether the
underlying distribution is heavy tailed, or just has a long but truncated tail.
Limit theorems for stable laws are not robust with respect to truncation of the
tail or with respect to any change from light to heavy tail, or conversely.
Based on finite samples, one can never justify the specification of a particular
tail behavior. Hence, one cannot justify the applicability of classical limit
theorems in probability theory. Therefore, instead of relying on himit theo-
rems, we can use the so-called pre-limit theorem which provides an approxi-
mation for distribution functions in case the number of observation T is
“large” but not too “large” (see Klebanov, Rachev, Szekely (2000) and Kle-
banov, Rachev, Safarian (2001)). In particular the “pre-limiting” approach
helps to overcome the drawback of Lévy-type central limit theorems. As a
matter of fact, we can assume that returns are bounded ““far away”, say daily
returns cannot be outside the interval [—0.5,0.5]. Thus, considering the em-
pirical observation on asset returns, we can assume that the asset returns r; are
truncated «;-stable distributed with support, [—0.5,0.5]. Even if the returns
will be attracted by the CLT to the Gaussian law, pre-limit theorems show
that for any reasonable T the truncated stable laws will be attracted to the
stable laws. Therefore, it is plausible assuming that the vector of returns
F=1[r,... .r,,}/ is in the domain of attraction of a n-dimensional (), ..., %)-
stable law.

Recall that when unlimited short selling is allowed, every portfolio of re-
turns is a linear combination of the constant riskless return zo. and the risky
returns r;, (i.e. (xozp + Y1y xi7i) where (xg, x) € R™1 x e R™). Therefore, the
distribution functions of all admissible portfolios (of returns) belong to a
translation and scalar invariant family! determined by a finite number of pa-
rameters. Most distributional approaches in portfolio selection theory assume
that the distribution functions of portfolios belong to a translation and scalar
invariant family, denoted ot (a), with the following characteristics:

A) Every distribution Fy belonging to ¢7(a) is identified by k parameters
(my.ox.a1x. .. axx) € A = RX where my is the mean of X, gy is the

positive scale parameter of X. We assume that the class atp(a) is weakly
determined by its parameterization. That is the equality

. . d . .
implies that Fy = Fy but the converse 1s not necessarily true.

B) For every admissible real 7, the distribution function Fy € oti(@) has the
same parameters, except the mean, as Fy-, € o7 (@) (the translated of Fy).

! Recall that a parametric family 3 of distribution functions is translation invariant if whenever
the distribution Fy(x) = P(X < x) belongs to J, then for every f € R, Fy; € T as well. Similarly,
we say that a family 3 is scalar invariant if whenever the distribution Fy belongs to 3, then for
every x > 0, F,x belongs to J as well.



C) For every admissible positive o, the distribution function Fy € ot¢(a) has
the same parameters of the distribution F,x € o74(a) except for the mean
that is amy and the scale parameter that is xoy (where my and oy are
respectively the mean and the scale parameter of the random variable X').

When the distribution functions of portfolios belong to a o7, (a) class, we
can identify the following stochastic dominance relations® among portfolios
(see Ortobelli (2001) and Ortobelli, Huber, Rachev, Schwartz (2001)).

Theorem 1. Suppose the distribution functions of all random portfolios belong to
the same class at;(@). Let w'r and y'r be a couple of random portfolios un-
bounded from below respectively determined by the parameters

(Myiry Ouirs A1 py oo oo Ai=2,p)  and — (Myrp, Gy, @1 s - - - g2, p)-
Then, the following properties are equivalent

1. E(w'r) = E(3'r), Tyr < Oyir with at least one inequality strict.
2. w'r SSD y'r and y'r = w'r — (E(w'r) — E(y'r)) + e and E(e/w'r) = 0.

The tail behavior of returns implies that the vector of returns r = [y, . .., 7]’
is in the domain of attraction of a n-dimensional (¢, ..., x,)-stable law. In
order to express a multi-parameter choice in portfolio selection theory coher-
ent with the empirical evidence and consistent with the expected utility max-
imization, we need the asymprotic distributional assumption consisting in:

1. (Heavy tailedness assumption) Portfolios x'r are random variables belong-
ing to L? with 1 < p <2 and the return vector = [ry,..., rn}/ is in the
domain of attraction of (&g, ..., ,)-stable law. The assumption 1 < o; < 2
is supported by increasing empirical results as shown by Mandelbrot
(1963a-b, 1967a-b), Fama (1963, 1965a-b), Mittnik, Rachev and Paolella
(1997), Rachev and Mittnik (2000).

2. (Consistency with the expected utility maximization) The distributions of
the portfolio returns x'r belong to the same o7, (@) class of distribution

functions.

Under these assumptions, as for Theorem 1, we obtain an admissible
frontier for non-satiable and non-satiable risk averse investors®.

2 Recall that the portfolio x’Z first order stochastically dominates (FSD) »'Z if and only if for
every increasing utility functions u, E(u(x'Z)) > E(u(y’Z)) and the inequality is strict for some u.
Equivalently x'Z FSD y'Z if and only if P(x'Z < 1) < P(y'Z < 1) for every real 7 and strictly for
some 7. Analogously, we say that x'Z second order stochastically dominates (SSD) »'Z, if and
only if for every increasing, concave utility functions u, E(u(x'Z)) = E(u(y'Z)) and the inequality
is strict for some u. Equivalently, x’Z SSD »'Z, if and only if sz Foz{v)de < L’y Fz(v)dv for
every real ¢ and strictly for some 7 (see, among others, Fishburn (1964), Hanoch and Levy (1969),
Levy (1992)).

We also say that x'Z Rothschild Stiglitz stochastically dominates (R-S) y'Z if and only if for
every concave utility functions u, E(u(x'Z}) > E(u(y'Z)) and the inequality is strict for some u.
Equivalently x'Z R-S 3/ Z if and only if E(x'Z) = E(y'Z) and x'Z SSD y'Z (see Rothschild and
Stiglitz (1970)). However, there exist many other stochastic orders used in Economics and Fi-
nance, see, among others, Shaked and Shanthikumar (1994).

3 Recall that non-satiable agents are investors with increasing utility function. Instead, risk averse
decision makers are investors with concave utility functions.
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A simpler way to express the asymptotic behavior of data consists in con-
sidering every portfolio in the domain of attraction of a Pareto-Lévy « stable
distribution with % > 1. Given that, we implicitly assume that all optimal
‘choices are identified by four parameters of the underlined stable law. There-
fore, every portfolio x'r can be well approximated by a stable distribution, Le.
we can assume:

W (L= xe)zg £ Sy (alx). fx). w(x)), (4)

where zo is the riskless return, «(x) € (rm'n ;cl-.2> is the index of stability,
. . . . 1<i<n .

%; > 1 is the index of stability of the jth asset return, o(x) Is the scale param-

eter, u(x) = x'E(r) + (1 — x'e)zg is the mean and B(x) is the skewness pa-

rameter. Properties of o74(a) class are verified with this parameterization, so

according to Theorem 2 every risk averse investor will choose a portfolio

weight, solution of the following constrained problem

min o(x) subject to
x'E(r)+ (1 = x'e)zg=m

Blx)=p"
al(x) = a"

for some m, ¥, «*. In this case, we are not able to find a closed form of the
efficient frontier because we do not know a priori the joint distribution of the
asset returns. In order to overcome this problem, we could consider another
admissible parameterization of the stable distribution for problem (4). For
example, we can prove that the mean p(x) = X'E(r) + (1 = x'e)zo, the scale
parameter s(x) = E(|x'r — x'E(r)]) and the fundamental ratios p(x) =
(xr=x' E(r)| 9! e Y2 .
5’—‘(’5(%5,% and p,(x) :ﬂ”@k—‘ji’)—)—’ where g1,z € (1,11<1§1<1n % ); repre-
sent a parameterization which verifies the properties of o74(@) class*. In
fact, first observe that p;(x) and p,(x) do not depend on portfolio mean

4(x) and scale parameter o(x) because
x'r = X E()|® £ ()" S (1, (), 01
and also
7 — X E] 7 L o(x) %[ Sy (1 Bx), 0]
Thus, as a consequence of Property 1.2.17 in Samorodnisky and Taqqu (1994)
_E(]x'r = X E(T)
pl(x) - (S<x>)q1
e F< - %) cos <arctan (ﬁ(x) tan (”%”)) x—q‘v—))
(F(l - y—&—) cos (arctan (ﬁ(x) tan (”“éx)>

* The symbology x* stands for sgn(x)|x]".




where K is a constant that depends only on ¢;. Hence, for every
q) € (1, ]min 12») and for every fixed 8, p;(x) is a decreasing function of x(x)

<i<n .
on the existence interval. Moreover, p;(x) is an even function of f(x) and it

decreases in |f(x)| for fixed a(x) € (lmm i ) Instead, p,(x) is an increas-
<i<n
ing odd function of f(x) for every ¢ € (1 1mm 71> and for every fixed
<I<H
a{x) e ( 1m_in 1,-,2). These relations imply that p;(x) and p,(x) uniquely de-
<I<<n
terminate o(x) and B(x). Then, under the assumption (4), every risk averse
investor will choose a portfolio weight, solution of the following constrained
probiem

min E(|x'r — x"E(r)|) subject to

XE(r)+ (1 —x'e)zg =m

E(|x'r = x"E(r)|*) , (6)
™ 0

E((x/l’ _ X/E(’,>)<‘ZZ>) 3
(G &
for some m, p;, p,. Differently from problem (5), problem (6) does not require

the knowledge of the joint distribution of asset returns but it is still computa-
tionally too complex. Generally, in order to identify the efficient frontier and

reduce the number of parameters, we assume that oy = o forall j=1,...,n
Observe that stable distributions are stable with respect to summauon of 1.1.d.
random stable variables and the vector of returns r = [ry,....r,] is u-stable

distributed with « > 1 if and only if all linear combinations are stable (see
Samordinsky and Taqqu (1994) Theorems 2.1.2 and 2.1.5). In this case the
joint characteristic function of returns is given by

D,.(1) = exp< J |t's "( — isgn(t's) tan( 3 ))y(ds) + it y)

where o is the index of stability, y(ds) is the spectral measure concentrated on
So = {se R*/lls] = 1}.

Thus, when the vector of returns is « stable distributed (with o > 1), every
portfoho x'r (1 — x'e)zy (except the riskless return i.e. x = 0) is distributed
as

Xr+ (1= ¥'e)zo £ S, (a(x). flx). u(x)),
where

ulx) = x"E(r) + (1 — x'e)z:

(i e 1/ fs |x’ sl sgn(x’s)y(ds)
o(x) = <Js,¢ [x's] ,(ds)) and B{x) = CEIk

are respectively the mean, the scale parameter and the skewness parameter
of the portfolio x'r — (1 — x’e)zy. Under this distributional assumption, every
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risk averse investor will choose a portfolio weight, solution of the following
constrained problem

min ¢{x) subject to
YE(r) + (1 —-x'e)zg=m: (7)

plx) =p"

for some m and B*. In order to determine estimates of the scale parameter and
of the skewness parameter, we can consider the tail estimator for the index of
stability « and the estimator for the spectral measure »(ds) proposed by Ra-
chev and Xin (1993) and Cheng and Rachev (1995). However, even if the es-
timates of the scale parameter and the skewness parameter are computation-
ally feasible, they require numerical calculations. Thus, model (7) does not
present an easy applicability from an empirical point of view. Similarly to
problem (6), we can fix ¢ < « and propose a different representation based on
the moments type constrains. Therefore, instead of model (7), we obtain the
following constrained problem

min E(|x'r — x'E(r)|) subject to
X'E(r)+ (1 —x'e)zg =m . (8)

E((x'r — XE(r)**)
(E(|x'r = XE(r)[))*

for some m and p,. Optimization problems (8) and (6) can be used in a more
general setting than optimization problems (5), (7). 1In fact, a priori other
classes of distribution functions (not only stable distributions) for returns
uniquely determined by the parameters m(x), s(x), p; (x) and p,(x) could exist.
Next, in order to overcome the intrinsic difficulties of the problems (5), (6). (7)
and (8), we analyze different fund separation models that consider the asymp-
totic distributional assumption.

2.1 The sub-Gaussian stable model

o . .
Assume the vector of returns r = [ry,...,r,) is sub-Gaussian o-stable dis-

tributed with 1 < « < 2. Then, the characteristic function of r has the follow-
ing form

®,(1) = Elexplir'r)) = exp(— (' 0t)** + it ). (9)
where O = [RT is a positive definite (n x n)-matrix, u = E(r) is the mean

vector, and y(ds) is the spectral measure with support concentrated on S, =
{se R"/||s|| = 1}. The term R, ; is defined by

R;; SO
7’:[rz~-,rﬂallerZ : (10)



where 7; = r; — y; are the centralized return, the covariation [17,771, between
two jointly symmetric stable random variables 7; and 7; is given by

Fi. 77, = J silsj "™ sgn(s;)y(ds).
Sa

in particular. |||, = (Js, \sj\“y(ds))m = ([r}. 17]-]1)1/7'. Here the spectral mea-

sure y(ds) has support on the unit circle Ss.

This model can be considered as a special case of Owen-Rabinovitch’s
elliptical model (see Owen and Rabinovitch (1984)). However, no estimate
procedure of the model parameters is given in the elliptical models with infi-
nite variance. In our approach we use (9) and (10) to provide a statistical es-
timator of the stable efficient frontier. To estimate the efficient frontier for re-
turns given by (9), we need to consider an estimator for the mean vector and
an estimator for the dispersion matrix Q. The estimator of x4 is given by the
vector j of sample averages. Using lemma 2.7.16 in Samorodnitsky, Taqqu
(1994) we can write for every p such that 1 < p <o

o), EGED)

FIE - EGRT (1)

where the scale parameter ¢; can be written |7/, = ;. It can be approximated
by the moment method suggested by Samorodnitsky, Taqqu (1994) Property
1.2.17 in the case f =0

E(jry = |")yp J; 7 w7 sin® udu

P — 7P =
a; = 7]l = ZF“IF(I __,E) (12)
It follows
Ry _ LEFY)
— =g
2 7 E(R)

. . o (R .
The above suggests the following estimator Q = [T} for the entries of the
unknown covariation matrix ¢

Ry _ oS ey .
=G (
k=1 177

where the 01_2 is estimated as follows

S}

o Ry
=7

N ~(\ P =L p- 22 2’//‘1)
%’ka:l ’j/(/)}]p ‘fO u?’ ! sin” u du <14>
2710 (14 '

.. oA Ri;
The rate of convergence of the empirical matrix ¢ = {TW' to the unknown
matrix O (to be estimated), will be faster, if p is as large as possible, see Ra-

chev (1991).
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Now, let us recall that our portfolio satisfies the relation

!
X' = S0 By M)

and furthermore, W =z; when x = 0, otherwise W =x'r+ (1 — x'e)zg 4
SulGyr. By mw), Where « is the index of stability, gy, = /X' Ox 18 the scale
(dispersion) parameter. f,, = 0 is the skewness parameter and my = xX'E{r)+
(1 — x'e)zp is the mean of W. In particular, every sub-Gaussian x-stable fam-
ily is a particular ot2(m, o) class.

In view of what stated before, when the returns v = lry... ,rn}/ are jointly
sub-Gaussian z-stable distributed, every risk averse investor will choose an
optimal portfolio among all portfolio solutions of the following optimization
problem:

min x'Qx subject to
' (15)

X'+ (1= x'e)zo = mw

for some given mean my where W = x'r + (1 — x’e)zy. Thus, every optimal
portfolio that maximizes a given concave utility function u,

max E(u(x'r + (1 = x'e)z0)).

X

belongs to the mean-dispersion frontier

et i m = 2o

(u—ez} O~ u—ezo) .

o= ) ) , (16)
M fm <

(p—ez0) O (p—ezo)

where y = E(r); m=x'u+ (1 —x'e)zp; e = [1,. .,1)"; and % = x'Qx. Be-

sides. the optimal portfolio weights x satisfy the following relation:

Al . m—Zp -
= O ) o (a —em) "

Note that (16) and (17) have the same forms as the mean-variance frontier.
However, even if O is a symmetric matrix (it is definite positive), the estimator
proposed in the sub-Gaussian cases (see formulas (13) and (14)) generally is
not symmetric. Therefore, in some extreme cases we could obtain the in-
consistent situation of stable distributions associated to portfolios x'r whose
square scale parameter estimator is lower than zero>. This is the first reason

5 Observe that for every x € R*, we get x’ Jx > 0 if and only if 21‘;(2# is a definite positive ma-
Y , We g ) 5 p

trix. Thus, we can verify that iq—Q‘— is definite positive in order to avoid stable portfolios x'r with
s

- (O+!

negative scale parameter estimators. Moreover, we observe that the symmetric matrix =—
an alternative estimator of dispersion matrix Q whose statistical properties have to be proved.
Therefore, further studies on this and other alternative estimators will be object of future research.




for considering and studying the convergence properties of the estimator (see
Rachev (1991)) and the suitability of the model. Moreover, (17) exhibits the
two fund separation property for both the stable and the normal case, but
the matrix Q and the parameter ¢ have different meaning. In the normal case,
O is the variance-covariance matrix and ¢ is the standard deviation, while in
the stable case Q is a dispersion matrix and o is the scale (dispersion) param-
eter, ¢ = /x'Qx. According to the two-fund separation property of the sub-
Gaussian 2-stable approach, we can assume that the market portfolio is equal
to the risky tangent portfolio under the equilibrium conditions (as in the
classical mean-variance Capital Asset Pricing Model (CAPM)). Therefore,
every optimal portfolio can be seen as the linear combination between the
market portfolio

’ r/Q_l(/u';Oe) (18)

Xr= ,
G/Q‘],u _ e’Q'lezo

and the riskless asset return zo. Following the same arguments as in Sharpe,
Lintner, Mossin’s mean-variance equilibrium model, the return of asset 7 is
given by:

E(r;) = zo + f; m(E(X'r) = z0), (19)

where f, ,, = ;Q‘; with e the vector with 1 in the /-zh component and zero in
all the other components. As a consequence of Ross’ necessary and sufficient
conditions of two-fund separation (see Ross (1978a)), the above model admits

the form
=+ bY +e, i=1,0..n0

where y1, = E(r;), E(e/Y) = 0, &= [e1,....e] . b = [b1,....bs] and the vector
bY + ¢ is sub-Gaussian z-stable distributed with zero mean.

Hence, our sub-Gaussian «-stable version of CAPM is not much different
from Gamrowski-Rachev’s (1999) version of the two-fund separation «-stable
model. As a matter of fact, Gamrowski and Rachev (1999) propose a gencr-
alization of Fama’s o-stable model (1965b) assuming r; = x; + b; Y + ¢, for
every i = 1,...,n, where ¢ and Y are x-stable distributed and E(¢/Y) = 0. In
view of their assumptions,

E("i) = Z0 +ﬁ~i.m(E(xlr) - ZO)’

GFFE (R EF . FLEE
! [ H = Furthermore, the coefficient [H?’f\’jj can be

where f = 5z T T IR
estimated using the above formula (11).

Now, we see that in the above sub-Gaussian symmetric z-stable model
_ 2 _ . ‘::\_./'.\3 .
5'0% = ||x'F|; and X' Qe’ =1 “g—\f‘l Thus, we get the equivalence between the

coefficient 3, ,, of model (19) and f3, ,, of Gamrowski-Rachev’s model i.e.:

0t 1 b0y, [nXF, s
P - = = :ﬁi.mﬂ

X'

where ¢, 1s the scale parameter of market portfolio.
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2.2 A three fund separation model in the domain of attraction of a stable law

r

Let us assume that the vector r = [r,..., r,] describes the following three-

fund separating stable model of Security returns:
= b Y 4e =1 .n, (20)

where the random vector ¢ = (e1,60....,8,) is independent from ¥ and fol-
lows a joint sub-Gaussian x,-stable distribution (I <=2 < 2), with zero mean
and characteristic function

D,(1) = exp(—|r' Qe 72,

where Q is the definite positive dispersion matrix. On the other hand,

Y £35S, (oy,fy.0)

is ay-stable distributed random variable. independent from ¢, with 1 < A < 2
and zero mean. Under these assumptions, the portfolios are in the domain of
attraction of an « stable law with x = min(«;, %,) and belong to a o13(a)
family. A testable case in which Y is a»-stable symmetric distributed (i.e.
By =0), was recently studied by Gotzenberger, Rachev and Schwartz ( 1999).
When fy =0 and 2 = %, our model can lead to the two-fund separation
Fama’s model. The characteristic function of the vector of returns r =
[ri,r2, ... r,)" is given by:

D,(1) = D, (1) Dy (r'b)e" ™ = exp <ﬁ!t’Qz£""/2 +

—|t'bay|* <1 — ifysgn(t'b) tan(n;2)> + l'[//,t>7 (21)

where b = [by,....b,]" is the coefficient vector and u = ... um,] is the
mean vector.

Next we shall estimate the parameter in model (20), (21). First, the esti-
mator of y is given by the vector 4 of sample average. Then, we consider as
factor Y a centralized index return (for example the market portfolio (18)
given by the above sub-Gaussian model). Therefore, given the sequence of
observations Y'*/| we can estimate its stable parameters. Observe that the ran-
dom vector ¢ admits a representation as a product of random variable ¥ and

Gaussian vector G-
&= VG,

V = V4, where 4 is an “-stable subordinator, that is
35

AL, ( (cos (%) )1 1, 0) :

Gisa (n x 1) Gaussian vector with null mean and variance covariance matrix



Q and it is independent from 4. We can generate values Ay, k=1,....Nof
A independent from G. We address to Paulauskas and Rachev’s work (1999)
the problem of generating such values A;. Using the centralizing returns

7; =1, — w; on Y we write the following OLS estimators® for b = by, .... b,
and Q:
o ytkEk)
N i
. Zk:l 7—
b, = —#?—Z‘)—q i=1... n
e
Zk:l Ak
and

N (7K py ) (R~ py Ry
k=

.
Q:NZ AL

(=1

The selection of 2 is a separate problem. A possible way to estimate 2; is to

Yooy
consider the OLS estimator b; = Z—;‘—:YT:); and then to evaluate the sample
residuals 3% = 78 — p¥®_If thése residuals are heavy tailed, one can take
the tail exponent as an estimator for «;. The asymptotic properties of the above
estimator can be derived arguing similarly with Paulauskas and Rachev (1999)
and Goétzenberger, Rachev and Schwartz (1999).

In order to determine portfolios that are R-S non-dominated when un-

limited short selling is allowed, we have to minimize the scale parameter
ow = +/x'Ox for some fixed mean mp = x'u+ (1 — x'e)zg and b = Xb

x'0x
Alternatively, as shown by Ortobelli, Rachev and Schwartz (2000), we can
obtain these portfolios from the solution of the following quadratic program-

ming problem:

min x'Ox subject to
X

X+ (1 —x'e)zg = my> (22)

x'b=>b"

for some my and b*. Thus, under our assumptions, every portfolio that
maximizes the expected value of a given concave utility function u,

max E(u(x'r))
X
belongs to the following frontier

.. O N u—ze) . O
1 =20 —r23)z0+ 70—+ N g >
(1= /2= 7s5)% /’e’Q’l(y—Zo€)+/3€’Q’lb

spanned by the riskless return zo, and the two risky portfolios

¢ For a discussion see Tokat, Rachev and Schwartz (2001).
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L,i1j>~r/Q‘1(/l—50€> ) o o7
QY — zge)

Observe in (21) that when 2% = % = «» > 1, every portfolio x'r is an «-
stable distribution and satisfies the relation

W= (1-xe)zo+xr L S (00 for (1 = X'e)zg + m)

and W = z; when x = 0, where

x'boy| sgn(x'b)fy

7
- My = X E(r).
O-.;f/r

ok, = (x'0x)** + [X'boyl", B, =

Hence, this jointly z-stable model is a fund separation model whose solutions
are given by the optimization problem (7) and these solutions satisfy the qua-
dratic programming problem (22).

2.3 Ak +1 fund separation model in the domain of attraction of a stable law

As empirical studies show in the stable case one of the most severe restrictions
of performance measurement and asset pricing is the assumption of a com-
mon index of stability for all assets — individual securities and portfolio alike.
It is well understood that asset returns are not normally distributed. We also
know that the return distributions do not have the same index of stability.
However, under the assumption that returns have different indexes of stabil-
ity, it is not generally possible to find a closed form to the efficient frontier.
Generalizing the above model instead, we get the following k£ + 1 fund sepa-
ration model, (for details on k fund separation models see Ross (1978a)):

= bia Y1+ b Y e, =100 (24)
Here, n>k =2, the vector &= (&.¢,... .&;,) is independent from
Y),..., Y, and follows a joint sub-Gaussian symmetric x-stable distri-

bution with 1 <oy <2, zero mean and characteristic function @.(t) =
exp(ﬁlt’Qt[“"”z), and the random variables Y; 2 Sy(oy,By,0), j=1,....
k — 1 are mutually independent” 2;-stable distributed with 1 < &; < 2 and zero
mean. If we need to insure the separation obtained in situations where the
above model degenerates into a p-fund separation model with p < &+ 1, we

7 In order to estimate the parameters, we need to know the joint law of the vector (¥7,.... Yio1).
Therefore, we assume independent random variables ¥, j = 1,...,k — 1. Then the characteristic
function of the vector of returns r = [r1,. ... 7, is given by

k—1
@) = 0. (0) [ [ @5, (b j)e" .
Jj=1

Under this additional assumption, we can approximate all parameters of any optimal portfolio
using a similar procedure of the previous three fund separation model. However, 1f we assume a
given joint (2. ...,%_1) stable law for the vector (¥1,..., Y:.1), we can generally determine es-

timators of the parameters studying the characteristics of the multivariate stable law.



require the rank condition (see Ross (1978a)). However, under these assump-
tions, the portfolios belong to a o14_;(a) class. In order to determine portfo-
lios that are R-S non-dominated, when unlimited short selling 1s allowed, we
have to minimize the scale parameter o = /x'Ox for some fixed mean
my =x"pu+ (1 - x'e)zp and by = =L, j

X—,O’, J=1.....k—1. Alternatively, as
x'QOx
shown by Ortobelli, Rachev and Schwartz (2000), we can obtain these port-

folios from the solution of the following quadratic programming problem:
min x'Qx subject to
X

Xp+(1—=x'e)zg = my (25)

By solving the optimization problem (25), we obtain that the riskless
portfolio and other & risky portfolios span the efficient frontier for the risk
averse investors given by

k -1 k-1 ' -1
PO u— zpe) , FQ7h;
1 - Jilzo+ A ———— ] —m
< ; ./) o+ e/Q—l('u — zge) ;//H e/Qﬁlb-.j

The above multivariate models are motivated by arbitrage considerations
as in the Arbitrage Pricing Theory (APT) (see Ross (1976)). Without going
mnto details, it should be noted that there are two versions of the APT for o-
stable distributed returns, a so-called equilibrium (see Chen and Ingersoll
(1983), Dybvig (1983), Grinblatt and Titman (1983)) and an asymptotic ver-
sion (see Huberman (1982)). Connor (1984) and Milne (1988) introduced a
general theory which encompassed the equilibrium APT as well as the mutual
fund separation theory for returns belonging to any normed vector space
(hence also symmetric a-stable distributed returns). While Gamrowski and
Rachev (1999) provide the proof for the asymptotic version of g-stable dis-
tributed returns. Hence, it follows from Connor and Milne’s theory that the
above random law in the domain of attraction of a stable law of the return is
coherent with the classic arbitrage pricing theory and the mean returns can be
approximated by the linear pricing relation

Wi ~Zo+bi101 + -+ b k1041,

where J,, for p=1,....k — 1, are the risk premiums relative to the different
factors. The above k + 1 fund separation model concludes the examples of
models in the domain of attraction of stable laws. In the next section we com-

pare the Gaussian multivariate approach with the sub-Gaussian stable one.
3 A first comparison between the Gaussian distributional assumption and the
stable non-Gaussian one

In this section we examine and compare the stable non-Gaussian assumption
with the normal distributional one. First we consider the problem of finding



Portfolio selection with stable distributed returns 281

the optimal allocation / in an investment consisting of two positions: a risky
asset with stable distributed return and a riskless asset. We assume the in-
vestors wish to maximize the following utility functional:

U(W) = E(W) - cE(|W - E(W)|), (26)

where ¢ and g are positive real numbers, W = jizg + (1 — 2)z is the return on
the portfolio, zp is the risk-free asset return, and = is the risky asset return. We
observe:

1. Problem (26) is equivalent to the following maximization of the utility
functional

GE(W) — bE(|W — E(W)|"). (27)

assuming ¢ =2 in (26) for every a,b > 0. Thus, E(|W — E(W)}?) rep-
resents a particular risk measure of portfolio loss, which satisfies the
main characteristics of the dispersion measures. Solving the optimal al-
location problem (26), the investor implicitly maximizes the expected
mean of the increment wealth ¥ as well as minimizes the individual risk
DE(IW — E(W)|").

Furthermore, when g = 2, the maximization of utility functional (26) mo-
tivates the mean variance approach in terms of preference relations.

[N}

Suppose X dominates Y in the sense of R-S. Since E(X) = E(Y) and
f(x) = ¢c|lx — E(X)]? is a concave utility function, for every ¢ € [, ), it fol-
lows that:

UX)=EX)—cE(|X - E(XO|")y = U(Y); Yqe(l,z).

The above inequality implies that every risk averse investor with utility func-
tional (27) should choose a portfolio W = Azp + (1 — 4)z that maximizes the
utility functional (26) for some real 4 and some ¢ € [1, ).

We know that for 4 # 1, all the portfolio returns W = Azp + (1 — A)z ad-
mits stable distribution

S|l — Ao-, sign(l — D)B.. izo + (1 — A)m.);

and W = zy when 4 = 1. Now, in order to solve the asset allocation problem
max E(W) = cE(|W — E(W)[%)
note that, for all g € [1.%) and 1 <« < 2, we get
U(W) = E(W) — cE(|W — E(W)")
— Jzo+ (1= A = c(H (2, B q) |1 — %"

where



o -3 NRYZ /(22)
it = (e ()

X COS (g arctan < f-tan (?) > ) .

(see Samorodnitsky and Taqqu (1994), Hardin (1984)). The above relation
holds only in the stable non-Gaussian case. When the vector r admits a joint
normal distribution (i.e. « = 2), then for all g > 0,

UW)=E(W)—cE(|W - EW)|?)
NG

Hence, the real optimal solution of the problem in the important case
ge(l,a2),1s given by

= N
J=1—sgn(l-7) <SQI:](CIG‘]_V/()7(}Z’ ?;)'°)> . (28)

=Jzp+ (1= 2)m.—c 11— /]%1.

where

(H(2,B.,g))? in the stable case (1 < o < 2)

Vi, S.,q) =
(o f:.9) in the normal case (x = 2)

We would expect that the optimal allocation is different because the con-
stant ¥(a, S, q) and the dispersion o are different in the stable non-Gaussian
and in the normal case.

Recall that the tail behavior of every stable non-Gaussian distribution

x4 Sy(o, B, 1), with 1 < o < 2, is given by
1+p

lim AP+ X >4 =0C, 5 ”, (29)
where C, = ——=%— Therefore, several indexes of stability imply deep dif-

T T(2-a)cosZ ’ ) )
ferences in relation to the tail behavior. As a consequence of relation (29) it
follows that every stable non-Gaussian distribution X = S,(0.f, #), with

] < o <2, admits
E(JX —EX)|Y< o forg<u (30)
and E(|X -~ EX)|Y) =n forg=>u. (31)
Hence, the weight of the risk measure E(|X — E(X)}7) in optimization prob- ’
lem (26) is generally greater for the investors who use the stable laws for asset

returns when ¢ is quite close to the index of stability 2.
In a recent work Ortobelli, Rachev and Schwartz (2000) compare the sta-
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Table I. Maximum likelihood estimators of stable and normal daily index returns

Series Normal Stable
Mean Standard b B “ o
Deviation
S&P 500 0.032 0.930 1.708 0.004 0.036 0.512
DAX30 0.026 1.002 1.823 —0.084 0.027 0.392
CAC40 0.028 1.198 1.784 ~0.133 0.027 0.698

The above table by Khindanova, Rachev and Schwartz (1999) summarizes the estimated param-
eters of the normal and the stable distributions for daily index S\&P500 or DAX30 or CAC40.
The DAX30 series includes 8630 observations from 1.04.65 to 1.30.98, the S\&P 300 series — 7327
observations from .01.70 to 1.30.98, the CAC40 series — 2756 observations from 7.10.87 to 1.30.98.

ble non-Gaussian assumption and the normal one by analyzing the optimal
allocations between a riskless return and a benchmark index. Three different
indexes have been taken into consideration: CAC40, DAX30 and S&P500 (see
Table I reporting the same data used by Khindanova, Rachev and Schwartz

(1999)). The riskless return is 6% p.a.

In table II, we listed the optimal allocation for the normal and the stable fit
when no short sales are allowed. Recall that 4 is the optimal proportion of
funds invested in the risk free asset chosen and ¢ = 1.35 so that ¢ is strictly less
than all'indexes of stability in the data set. On the other hand, we want g to be
large, far away from 1, because for g = 1, we obtain the trivial allocation (see

Ortobelli, Rachev and Schwartz (2000)).

The analysis of table IT shows that the optimal allocation in the normal
and in the stable case is more sensitive to smaller risk aversion coefficient ¢. In
particular, the stable optimal allocation can be up to 40%, from the normal
allocation (see Table II). These results also show that in the stable non-
Gaussian case the riskless asset allocation is greater than the normal one (ex-
cept for DAX30 when ¢ = 1.35). This is indeed due to the fat tails of the
stable distribution. Thus, when investors fit normal distributions for return
assets, they miss an important component of portfolio risk. On the contrary,
the investor who fits stable distributions for return assets, she/he implicitly
tries to approximate the additional component of risk related to the heavy fat
tailedness as return distributions. Let observe another consequence of the
above relation, (see for example the DAX30 index). When ¢ is more distant
from the stability parameter, we have to expect that the greatest difference in
the allocation is lower {about 10% in DAX30) and more influenced by the
differences in the trivial allocation (g = 1). This can easily be confirmed in all
the above indexes considering the lower ¢ = 1.35, in the allocation problem.
In this sense, the stability index plays a strategic role in the optimal portfolio
selection and for this reason, it becomes very significant as an accurate esti-
mate of this parameter. Conversely, the importance given to ¢ is intuitively
linked to the conditions of the market in which the investor operates. Hence,
this empirical analysis shows that the component of risk due to heavy-tail
distributions and the stability property can be extremely important in the
choice of the optimal portfolio. We cannot be excessively surprised about
these differences in the optimal allocations. As a matter of fact, also Mehra
and Prescott’s empirical analysis (1985) underlines that asset pricing puzzles



Table II. Optimal allocation for the optimization problem
max E(W) — cE(IW — E(W)|")

when Gaussian and stable non-Gaussian distributional assumption are considered

SERIES Coeflicient Normal optimal a-stable optimal
“c” of the allocation % when allocation / when
optimization
problem g=1.35 g=15 g=1235 g=15
S&P500 ¢ =0.0276 0.000 0.006 0.000 0.415
c=0.03 0.000 0.159 (.000 0.505
¢ =0.032 0.069 0.261 0.096 0.565
c=0.033 0.148 0.305 0.172 0.591
c=0.034 0.217 0.345 0.240 0.615
¢ =0.036 0.335 0.416 0.356 0.656
c=0.038 0.430 0.476 0.447 0.691
¢=0.04 0.508 0.527 0.522 0.721
c=0.045 0.649 0.626 0.659 0.780
¢=0.05 0.740 0.697 0.748 0.822
¢ =0.055 0.802 0.750 0.808 0.853
¢ =0.065 0.877 0.821 0.881 0.895
c=0.1 0.964 0.924 0.965 0.955
DAX30 ¢ =0.021 0.000 0.096 0.000 0.193
¢ =0.022 0.000 0.176 0.000 0.265
c=10.023 0.012 0.247 0.000 0.327
¢ =0.024 0.126 0.308 0.021 0.382
¢ =0.025 0.222 0.362 0.129 0.431
c=0.027 0.375 0.453 0.301 0.512
c=0.0285 0.465 0.509 0.401 0.562
c=0.03 0.538 0.557 0.482 0.605
¢ =0.033 0.648 0.634 0.606 0.673
c=0.035 0.702 0.675 0.667 0.709
c=0.04 0.797 0.751 0.772 0.778
c=10.05 0.893 0.841 0.880 0.858
c=10.1 0.985 0.960 0.983 0.964
CAC40 ¢=0.017 0.000 0.063 0.000 0.401
c=0.018 0.000 0.164 0.029 0.466
¢ =0.019 0.000 0.250 0.168 0.520
c=0.02 0.085 0.323 0.281 0.567
¢ =0.0205 0.148 0.356 0.330 0.588
c=0.0215 0.256 0.414 0.416 0.625
c=0.023 0.387 0.488 0.518 0.673
c=0.024 0.457 0.530 0.573 0.699
c=0.025 0.517 0.567 0.620 0.723
c=0.028 0.650 0.655 0.725 0.779
¢ =10.033 0.781 0.751 0.828 0.841
c=0.04 0.874 0.831 0.901 0.892
c=01 0.991 0.973 0.993 0.983

ghis tabl\e computes the optimal allocation 7 in the riskless return 6% annual rate (daily zp =
-000166) for different rigk aversion coeflicient ¢ of the optimization problem max E(W) -
é]i(‘clfo‘ WEﬁW)V) where W = jz; + (1 - 4)- and = is either the index S&P 500 or DAX30 or
- Ve analyze the normal and the stable cases when no shortsales are allowed and ¢ = 1.35

S;ai T;/.S. In the table we marked the differences between stable and Gaussian allocation greater
0.

»
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can be justified thinking of people much more risk averse. Clearly, we do not
believe that the equity premium puzzle can be explained only considering the
stable distribution instead of the Gaussian one. However, we believe that the
distributional differences between the data and the classic model used in fi-
nance can help to understand asset pricing puzzles. This conjecture is partly
confirmed by assuming the stable distributions in place of the Gaussian one
(see for example Kocherlakota's test on CCAPM with heavy-tailed pricing
errors {1997)).

Next, we consider a comparison between Gaussian and sub-Gaussian
multivariate optimal allocation. This comparison is formally and theoretically
different from the previous one because the benchmark index is given by the
market portfolio which generally will change, if the distributional assumptions
change too. Thus, as a consequence of Roll (1977, 1978, 1979a-b), Dybvig and
Ross’ (1985a-b) analysis, we observe that:

a) an investor, who fits the return distributions with a joint x;-stable sub-
Gaussian distribution, will consider as inefficient the choice of another in-
vestor who fits the return distributions with a joint «,-stable sub-Gaussian
distribution with o # «; and

b) the stable CAPM is still subject of some of the criticism already addressed
to the classical one.

Nevertheless, it seems that the stable case explains better the empirical
data. This is the main reason why here we interpret and analyze the different
behavior between the investor who fits the data with joint stable sub-Gaussian
distribution and the investor who fits the data with the joint normal distribu-
tion.

3.1 A comparison between Gaussian and sub-Gaussian multivariate optimal
allocation

First, we consider the optimal allocation among 24 assets: 23 of those assets
are risky assets with returns r = [ri,72,.. ., ;'23]/ and the 24th is riskfree with
annual rate 6%. Second, we draw our attention on 13 risky asset returns with
non negative mean. We analyze the portfolio choice problems when short
sales are allowed and when short sales are not allowed. In view of this com-
parison, we discuss and study the differences in portfolio choice problems
without examining them so as to choose one of the two assumptions (Gaus-
sian or sub-Gaussian).

In our comparison we use daily data taken from 23 international risky in-
dexes valued in USD and quoted from January 1995 to January 1998. In the
analysis proposed we first consider the maximum likelihood estimation of the
stable parameters and of the Gaussian ones for every risky asset. Thus, Table
111 assembles the approximating parameters obtained from using the program
STABLE?®.

In order to compare the different stable sub-Gaussian joint distributions
and the joint normal distributions for the asset returns, we assume that the

8 See Nolan (1997) and the web site www.ca.american.edu/~ jpnolan.



Table ITI. Maximum likelihood estimators of stable and normal asset return parameters consid-
ering daily data from 1/3/95 to 1/30/98

Assets Normal Stable

Mean Standard Index of Stable Stable Stable

Deviation stability skewness mean scale
o b u o

DAX 30 0.0011 0.0137 1.6541 —0.3085 0.001 0.0076
DAX 100 0.0011 0.0129 1.6311  -0.287 0.001  0.007
Performance CAC 40 0.0008 0.0138 1.8107  —0.4292 0.0006 0.0087
FTSE all share 0.0006 0.0088 1.7453  -0.114 0.0005 0.0053
FTSE 100 0.0007 0.0099 1.8066  —0.0429 0.0006 0.0062
FTSE actuaries 350 0.0006 0.0091 1.7599  —-0.1052 0.0006 0.0056
Reuters Commodities —0.0004 0.0073 1.7721 0.0128 —0.0004 0.0045
Nikkei 225 simple average 0.0001 0.016 1.6728  —0.0916 —0.0002 0.009
Nikkei 300 weighted stock average  0.0002 0.0139 1.7244 0.0293 0.0001 0.008
Nikkei 300 simple stock average 0.0004 0.013 1.7167  —0.0036 0.0003 0.0074
Nikkei 500 0.0002 0.013 1.719 ~0.0944 0 0.0075
Nikkei 225 stock average 0.0001 0.0159 1.6912  —0.0355 —0.0001 0.009
Nikkei 300 0.0001 0.014 1.7072 0.0309 0.0001 0.008
Brent Crude Physical 0 0.0185 1.7398  —0.2379 -0.0004 0.0112
Brent current month 0 0.0186 1.7432  —-0.2026 0 0.0112
Corn No 2 Yellow cents 0.0002 0.0152 1.6833  —0.1907 0 0.0083
Coffee Brazilian 0.0002 0.027 1.5763  —0.0587 0 0.0143
Dow Jones Futures 1 —0.0001 0.0055 1.8058  —0.4484 —0.0001 0.0034
Dow Jones Commodities —0.0001 0.0078 1.6847  —0.1141 —0.0001 0.0038
Dow Jones Industrials 0.0009 0.0086 1.7355  —0.2471 0.0009 0.0049
Fuel Oit No 2 —0.0001 0.0201 1.735 —0.1685 0 0.0116
Goldman Sachs Commodity 0 0.0092 1.8033 -0.259  —0.0002 " 0.0058
S&P 500 0.0009 0.0083 1.6976  —0.0677 0.001 0.0046

vector r is sub-Gaussian «-stable distributed, with o = o, k = 1,2, 3, where
o1 = 1.5763 represents the minimum of the index of stability of the given
returns, %> = 1.7223 represents the average of the indexes of stability and
o3 = 1.8107 represents the maximum of the indexes of stability (see Table
I11)°. Moreover, when in the following tables we consider the index of stabil-
ity « = 2, we implicitly assume that the returns are jointly normal distributed.
Thus, every portfolio of risky assets is stable distributed in the following way:

X/I‘ i So(/\ (UX/I", ﬁx’r? 7’”'\‘/")7

where 2 is one of the considered index of stability k = 1,2,3, ¢, = (x'QxX) 12

is the respective scale parameter, Qr = {RT is the dispersion matrix, with
k=1,2,3,f., = 0is the skewness parameter, and m,, represents the mean of
x'r. Observe that the matrix Qy is estimated with the method defined in the
previous section and thus it depends on the index of stability oy for k = 1,2, 3.

As observed previously, the rate of convergence of the empirical matrix Qk to,

° In order to value the effects of heavy - tailedness on the portfolio selection problems, we first
consider different indexes of stability. Secondly, in the next section we value the performance of
different stable paretian approaches.
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the unknown matrix Qy will be faster, if P is as large as possible. In oyr esti-

mations we use p; = 1.5 (relative to %, —= 1.5763). p» = 1.7 (relative to %) and
p3 = 1.8 (relative to «3).

‘ We analyze the differences in optimal allocations with reference to prob-

lem (26) when the investor chooses:

L. joint normal distribution,
or,

2. joint % stable sub-Gaussian distribution (k=1,2.3), where = 1.5763;
% = 1.7223; a3 = 1.8107.

as a model for the asset returns in his/her portfolio. Under these distinctive
assumptions, the investors with utility functional (26) have different informa-
tion about the distributional behavior of data.

First, considering that unlimited short selling is allowed, we examine opti-
mal allocation among the riskless return and 23 index-daily returns: DAX 30,
DAX 100 Perfomance, CAC 40, FTSE all share, FTSE 100, FTSE actuaries
350, Reuters Commodities, Nikkei 225 Simple average, Nikkei 300 weighted
stock average, Nikkei 300 simple stock average, Nikkei 500, Nikkei 225 stock
average, Nikkei 300, Brent Crude Physical, Brent current month, Corn No2
Yellow cents, Coffee Brazilian, Dow Jones Futuresl, Dow Jones Commod-
ities, Dow Jones Industrials, Fuel Oil No2, Goldman Sachs Commodity, S&P
500. We use the riskless return 6% p.a..

Second, when short sales are allowed and when short sales are not allowed,
we consider optimal allocation among the riskless return and 13 risky returns:
DAX 30, DAX 100 Perfomance, CAC 40, FTSE all share, FTSE 100, FTSE
actuaries 350, Nikkei 300 weighted stock average, Nikkei 300 simple stock
average, Nikkei 500, Corn No2 Yellow cents, Coffee Brazilian, Dow Jones In-
dustrials, S&P 500.

Using the estimated daily index parameters, we can compute the dispersion
matrixes and the approximating “market” portfolios. The dispersion matrix Q
1s given by either the variance-covariance matrix (in the normal case) or the
matrix Oy (in the stable cases) which depends on the index of stability o for
k=123 (2 = 1.5763, ay = 1.7223 and o3 = 1.8107). Therefore, as shown
by Tables IV, V and VI, the market portfolio weights

_ O~ — zpe)
'O~y —e'Q-lez,

change under the different distributional assumptions. In particular, Table IV
presents the market portfolio weights when we consider all 23 asset returns
and short sales are allowed. Table V gives the market portfolio weights when
only 13 returns are examined and short sales are allowed. Finally, when no
short sales are allowed'®, Table VI determines the market portfolio weights of
13 returns and we find that optimal allocation is reduced only among the two
tisky assets DAX 30, S&P 500 and the riskless one. As argued by Roll (1977,
1978), Dybvig and Ross (1985a), different market portfolios imply a com-

A

10 Under this constrain, we value the market portfolio weights as the risky portfolio composi-
tions which maximize the extended Sharpe ratio E&7=50



Table IV. Stable sub-Gaussian and Gaussian market portfolio weights considering 23 assets when

short sales are allowed

ASSETS WEIGHTS WEIGHTS  WEIGHTS GAUSSIAN
FOR FOR FOR WEIGHTS
o =1.5763 o= 17223 o« = 1.8107 =2

DAX 30 —0.2398 —0.3927 ~0.4575 —0.5741
DAX 100 —0.6603 —0.4375 —-0.3333 —0.1333
Performance CAC 40 0.5609 0.5306 0.5106 0.4646
FTSE all share ~9.5133 —11.39 —12.2419 —13.6148
FTSE 100 —0.7286 —1.4042 —1.7348 -2.327
FTSE actuaries 350 8.8303 11.4297 12.6436 14.684
Reuters Commodities 2.2652 2.1787 2.1277 2.0159
Nikkei 225 simple average 2.0343 1.6354 1.4615 1.1694
Nikkei 300 weighted stock average —0.0568 0.032 0.0782 0.1612
Nikkei 300 simple stock average -2.8172 ~2.341 —2.1415 —1.804
Nikkei 500 0.7426 0.5248 0.4409 0.3054
Nikkei 225 stock average —1.5557 ~1.1391 —0.9654 -0.6754
Nikkei 300 1.6791 1.3019 1.1353 0.8512
Brent Crude Physical -0.1122 —0.09%6 —0.0935 —0.082
Brent current month —-0.0685 —0.0507 —0.0415 —0.0249
Corn No 2 Yellow cents —0.2852 —0.2319 —0.2106 —-0.175
Coffee Brazilian —0.1689 —0.1498 -0.142 -0.129
Dow Jones Futures 1 1.2231 1.2673 1.2793 1.2837
Dow Jones Commodities 0.8252 0.6554 0.5814 0.4554
Dow Jones Industrials 0.6048 0.6601 0.6845 0.734
Fue! Oil No 2 0.1573 0.15 0.1423 0.1241
Goldman Sachs Commodity 0.2395 0.1851 0.1674 0.1421
S&P 500 —1.9559 —1.9185 —1.8963 —1.8518

Table V. Stable sub-Gaussian and Gaussian market portfolio w

short sales are allowed

eights considering 13 assets when

ASSETS WEIGHTS WEIGHTS  WEIGHTS GAUSSIAN
FOR FOR FOR WEIGHTS
o= 1.5763 o= 1.7223 o= 1.8107 o=2

DAX 30 0.4832 0.5669 0.6185 0.7358

DAX 100 0.1016 0.0338 —0.0119 —0.1193

Performance CAC 40 —0.2815 —0.2901 —0.2925 —0.2948

FTSE all share 2.633 2.9652 3.0618 3.1266

FTSE 100 3.4361 3.4945 3.4938 3.4623

FTSE actuaries 350 ~6.2115 —6.5916 —6.6849 —6.7201

Nikkei 300 weighted stock average —1.2237 —1.1463 —1.1119 —1.0546

Nikkei 300 simple stock average 1.8869 1.7899 1.7388 1.643

Nikkei 500 —0.6984 -0.6824 -0.6669 —0.6296

Corn No 2 Yellow cents -0.0125 —0.0143 -0.0152 —0.0172

Coffee Brazilian -0.0311 -0.0378 —0.0401 —0.0431

Dow Jones Industrials —-0.4718 ~0.5972 —0.6535 —0.7644

S&P 500 1.3898 1.5093 1.5642 1.6756

pletely different security market line analysis. Thus, the approach which takes

into account more assets (23 instead of 13)
earning because it considers
the other approaches. Beside

additional information. The
s, if the returns are jointly o stable sub-Gaussian

presents more opportunities of
refore, it dominates
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Table VI. Stable sub-Gaussian and Gaussian market portfolio weights considering 13 assets when
no short sales are allowed

ASSETS Weights for Weights for Weights for Gaussian
a=1.5763 2 =1.7223 o= 1.8107 weights
x=2
DAX 30 0.276 0.2742 0.2737 0.2734
S&P 500 0.724 0.7258 0.7263 0.7266
Other assets 0 0 0 0

Table VII. Stable sub-Gaussian and Gaussian market portfolio parameters considering 23 assets
when short sales are allowed

Index of Mean Dispersion
stability parameter
1.5763 —0.0044 0.0054
1.7223 —0.0041 0.0037
1.8107 —0.0039 0.0089
2 —0.0036 0.0208

distributed {for some determined & = 1,2,3), then the Gaussian approach is
inefficient. Since, in general, efficient and inefficient portfolios can plot above
and below the “real” security market line.

The analysis of Tables IV, V and VI points out that the composition of the
market portfolio is strictly linked to the index of stability. In fact, we see that
the allocation of the market portfolio in each asset component is generally
monotone with respect to the stability index. The fat tails of smaller stability
indexes underline the risk of the loss component of every portfolio. In partic-
ular, under the diverse distributional assumption, we distinguish the different
perception of risk in the market portfolio components. This issue can be easily
analyzed in the market portfolio weights with reference to the 13 returns when
no short sales are allowed. In fact, Table III shows that the index of stability
of S&P500 is greater than the index of stability of DAX 30, even if there is
not a consistent difference between the means of the two assets. Precisely it is
of the order 107® not reported in Table III for reasons of space. We also ob-
serve that in Table VI the component of the S&P500 in the market portfolio
increases with the index of stability ax of the sub-Gaussian approach. In-
tuitively, the Gaussian market portfolio (for « = 2) will be riskier than the
o3 = 1.8107 stable sub-Gaussian market portfolio, because the Gaussian
market portfolio has greater component than the asset with fatter tail. Simi-
larly, we can consider the o stable sub-Gaussian market portfolio as riskier
than the «, = 1.7223 stable sub-Gaussian market portfolio in its turn riskier
than the o; = 1.5763 stable sub-Gaussian one. Therefore, intuition suggests
that the stable sub-Gaussian approaches with lower indexes of stability gen-
erally are more risk preserving than those with greater indexes of stability.
This is due to the fact that they take more into consideration the component
of risk because of the fat tails. This analysis is partially confirmed when short
sales are allowed with either 13 or 23 assets. In fact, in Tables VII, VIII, and
IX we listed the parameters of the market portfolios for the normal and the
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Table VIII. Stable sub-Gaussian and Gaussian market portfolio parameters considering 13 assets
when short sales are allowed

Index of Mean Dispersion
stability parameter
1.5763 0.001476 0.0025
1.7223 0.0014451 0.0019
1.8107 0.0014338 0.0017
2 0.0018381 0.0123

Table IX. Stable sub-Gaussian and Gaussian market portfolio parameters considering 13 assets
when no short sales are allowed

Index of Mean x 10~4 Dispersion
stability parameter
1.5763 9.9992 0.0017
1.7223 9.9955 0.0012
1.8107 9.9945 0.0011
2 9.9939 0.0079

stable fit when we consider 23 assets (Table VII) and 13 assets (Table VIII,
which considers when unlimited short selling is allowed and Table IX, which
considers when no short sales are allowed). Therefore, Tables VII and VIII
show that the market portfolios of sub-Gaussian approaches have a lower
mean than the market portfolios of Gaussian approaches. According to the
classic mean-risk interpretation, an optimal portfolio that has a greater mean,
it has also a greater risk'!. Thus, intuitively the sub-Gaussian approaches with
lower indexes of stability are more risk preserving than the approaches with
greater indexes of stability. This intuition is partially confirmed by the exam-
ination of the optimal allocation problem proposed. B

In Tables X, XTI we listed the optimal allocation /. for the normal and the
stable fit. Recall that 4 is the optimal proportion of funds invested in the risk
free asset which maximizes E(W) — cE(|W — E(W)|%), where W = jzq+
(1 — 4)x'r. We have chosen ¢ = 1.45 in Table X and ¢ = 1.55 in Table XI, so
that g is strictly less than all indexes of stability oz, k = 1,2, 3 in the data set,
where o; = 1.5763; ap = 1.7223; o3 = 1.8107. On the other hand, we want to
evaluate and compare the different effects of ¢ distant or closer to the stability
parameters a;. Both tables show the greater diversity among the optimal al-
locations considering small risk aversion coefficients ¢. Instead, the very risk
averse Investors assume a less risky position with every distributional hy-

' This fact appears clear enough when we consider and compare the dispersj]on measures

%:0;% i every mean-risk plane for every market portfolio weights %, = E/—QQ,‘% for
every k and j. Observe that Gjk = /% 0;% is the dispersion measure of markét portléolio X
considering the %; stable paretian approach. Therefore, for every fixed mean-risk plane (i.e. for
eVery fixed % stable distributional approach) we can compare the market portfolio risk positions
considering their risk position &; ; (varying k). According to a mean-risk interpretation, we could
observe that market portfolio with greater mean admits also a greater dispersion measure Gjx in
any mean-risk plane.
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Table X. Optimal allocation for the optimization problem

max E(W) — cE(W — E{(w)"*)

when different distributional assumption are considered

291

Coefficient Optimal Optimal Optimal Optimal
“¢” of the allocation allocation allocation allocation
optimization 4 when 4 when / when & when
problem %= 1.5763 % =1.7223 x= 18107 =2
Allocation / in the c=13 1.82156 12.5865 2.05907 1.37792
riskless asset c=153 1.59777 9.43040 1.77058 1.27497
considering the c=138 1.39863 6.62200 1.51388 1.18337
market portfolio c=3 1.12811 2.80672 1.16514 1.05893
on 23 assets when c=42 1.06065 1.85539 1.07819 1.02790
unlimited short c=48 1.04508 1.63576 1.05811 1.02074
sales are allowed c=5 1.04117 1.58062 1.05307 1.01894
c=6 1.02745 1.38720 1.03539 1.01263
c=17 1.01949 1.27489 1.02153 1.00897
c=10 1.00882 1.12443 1.01137 1.00406
c=15 1.00358 1.05054 1.00462 1.00165
c=2l 1.00170 1.02393 1.00219 1.00078
Allocation / in the c=13 0.38814 —5.8152 —15.449 0.66239
riskless asset c=1.5 0.55481 —3.9588 —10.968 0.75435
considering the ¢=138 0.70311 —2.3069 —6.9813 0.83619
market portfolio c=3 0.90459 —-0.0627 —1.5649 0.94736
on 13 assets when ¢c=42 0.95483 0.49686 —0.2143 0.97508
unlimited short c=438 0.96643 0.62605 0.09743 0.98147
sales are allowed ¢c=5 0.96934 0.65848 0.17571 0.98308
c=6 0.97955 0.77225 0.45030 0.98872
c=7 0.98548 0.83831 0.60974 0.99199
c=10 0.99343 0.92681 0.82335 0.99637
c=15 0.99733 0.97027 0.92825 0.99853
¢ =21 0.99874 0.98593 0.96603 0.99930
Allocation 4 in the c=13 0.22342 0 0 0.70108
riskless asset c=15 0.43496 0 0 0.78250
considering the c=138 0.62319 0 0 0.85496
market portfolio c=3 0.87891 0 0 0.95338
on 13 assets when c=42 0.94267 0.14648 0 0.97793
short sales are not c=438 0.95739 0.36563 0 0.98360
allowed c=35 0.96108 0.42065 0 0.98502
c=6 0.97405 0.61365 0.12054 0.99001
c=7 0.98157 0.72571 0.37563 0.99291
¢c=10 0.99166 0.87584 0.71737 0.99679
c=15 0.99661 0.94957 0.88521 0.99870
c=21 0.99840 0.97612 0.94565 0.99938

This table computes the optimal allocation 7 in the riskless return 6% annual rate (daily zy =
0.000166) for different risk aversion coefficient ¢ of the optimization problem max E(W)—
CE(|W — E(W)|") where W = iz + {1 — A)%'r and *'r is either the Gaussian MarKet portfolio
{for x = 2} or the sub-Gaussian market portfolio (for % = 1.5763, or « = 1.7223 or 2 = 1.8107).

pothesis and the allocations in the riskless asset do not change very much.
When we consider 23 assets, the market portfolio is an inefficient portfolio in
all the approaches considered. In this case, investors have a long position in
the riskless asset and a short position in the tansent nartfalin Canvercaly



Table XI. Optimal allocation for the optimization problem

max E(W) — cE(|W — E(w)5)

when different distributional assumption are considered

Coeflicient Optimal Optimal Optimal Optimal
“e” of the allocation allocation allocation allocation
optimization 7. when 7. when 7. when 7 when
problem o= 1.5763 o =1.7223 o = 1.8107 o=2
Allocation % in the c=15 1.10838 8.76731 2.20010 1.59704
riskless asset c=17 1.08632 7.18641 1.95584 1.47552
considering the ¢c=21 1.05878 5.21292 1.65092 1.32383
market portfolio c=3 1.03073 3.20264 1.34032 1.16931
on 23 assets when c= 1.01822 2.30552 1.20171 1.10035
unlimited short ¢ = 1.01214 1.87013 1.13444 1.06688
sales are allowed c= 1.00659 1.47195 1.07292 1.03628
¢c=10 1.00344 1.24675 1.03812 1.01897
c=13 1.00214 1.15314 1.02366 1.00897
c=17 1.00131 1.09403 1.01453 1.00723
¢ =21 1.00089 1.06403 1.00989 1.00492
c=25 1.00065 1.04664 1.00721 1.00358
Allocation 7 in the c=15 0.90204 ~4.6798 —14.296 0.40102
riskless asset c=17 0.92198 —3.5337 —11.182 0.52293
considering the c=21 0.94687 —2.0807 —7.2962 0.67512
market portfolio c=3 0.97222 —-0.6107 —3.3375 0.83014
on 13 assets when c=4 0.98353 0.04536 —1.5708 0.89933
unlimited short c=S5 0.98903 0.36373 —0.7135 0.93290
sales are allowed c=7 0.99405 0.65489 0.07063 0.96361
’ c=10 0.99689 0.81957 0.51410 0.98097
c=13 0.99807 0.88802 0.69844 0.98819
c=17 0.99881 0.93124 0.81484 0.99275
c=21 0.99919 0.95318 0.87391 0.99506
¢c=25 0.99941 0.96590 0.90816 0.99640
Allocation / in the c=15 0.87230 0 0 0.41234
riskless asset c=1.7 0.89829 0 0 0.53195
considering the c=21 0.93074 0 0 0.68126
market portfolio c=3 0.96379 0 0 0.83335
on 13 assets when c=4 0.97854 0 0 0.90123
short sales are not c=S5 0.98569 0 0 0.93417
allowed c=17 0.99224 0.42186 0 0.96429
c=10 0.99594 0.69773 0.22749 0.98133
c=13 0.99748 0.81241 0.52056 0.98841
c=17 0.99845 0.88482 0.70562 0.99289
c=21 0.99895 0.92156 0.79952 0.00516
c=25 0.99923 0.94287 0.85399 0.99647

This table computes the optimal allocation 7 in the riskless return 6% annual rate (daily zp =
0.000166) for different risk aversion coefficient ¢ of the optimization problem max E(W)—
cE(|W — E(W)] 135y where W = Jzo + {1 — /)%'r and x'r is either the Gaussian MarKet portfolio
(for o = 2) or the sub-Gaussian market portfolio (for o = 1.5763, or o = 1.7223 or & = 1.8107).

when we consider only 13 assets in the market, the tangent portfolio is an ef-
ficient portfolio. Thus, the investors have a long position in the market port-
folio and a short or long position in the riskless asset.

As we see from these tables, when g = 1.45 the investors who fit the data
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with the Gaussian approach generally assume a less risky position than the
investors who fit the data with the sub-Gaussian approach. This is due to the
fact that the Gaussian market portfolio is intuitively riskier than the sub-
Gaussian ones. Instead, when ¢ = 1.55 in optimization problem (26), the
investors who fit the data with %; = 1.5763 stable sub-Gaussian approach as-
sume a less risky position than the investors who fit the data with the Gaus-
sian approach. In this case, the “stable investor” not only has a very risk
preserving behavior because the stable market portfolio is less risky than the
Gaussian one but also prefers not allocating too much wealth in the risky as-
set. In this sense, the stability index plays a strategic role in the stable optimal
portfolio selection.

4 Performance comparison among stable sub-Gaussian and mean-variance
models

In this section we examine and compare the performances of Gaussian and
sub-Gaussian approaches. As a matter of fact, in the previous sections we
have underlined and discussed the theoretical and empirical differences among
portfolio choice models. Now, we evaluate their real performances.

First, assuming that limited short sales are allowed, we examine the opti-
mal allocation among the riskless return and 23 index-daily returns (the same
of the previous section). In this analysis we approximate optimal solutions to
the utility functional:

max E(y'r+ (1 = y'e)z) = cE(ly'r = EG'r)| ). (32)

where ¢ is an indicator of the aversion to the risk.

Secondly, assuming that limited short sales are allowed, we examine the
optimal allocation among the riskless return and 13 index-daily returns (the
same of the previous section). Thus, we consider the negative exponential
utility function

u(zx) = —exp(—7)

with risk a\,{er\sion coefficient 7 > 0. In this case, the absolute risk aversion
function _u“,/g = is constant. Hence, for every distributional model con-

sidered we are interested in finding optimal solutions to the functional

max —E(exp(—y(y'r + (1 = y'e)z0))). (33)

Observe that in case of « stable distributed returns with 1 < o < 2, the
expected utility of formula (33) is infinite. However, assuming that the re-
turns are truncated far enough, formula (33) is formally justified by pre-limit
theorems (see Klebanov, Rachev, Szekely (2000) and Klebanov, Rachev, Sa-
farian (2001)), which provide the theoretical basis for modeling heavy tailed
bounded random variables with stable distributions. On the other hand, it is
obvious that the incomes are always bounded random variables. Typically,
the investor works with a finite number of data so she/he can always ap-
proximate his/her expected utility. Therefore, we use diverse utility functions



which differ in their absolute risk aversion functions and depend on a risk
aversion coefficient. The presence of a parameter enables us to study the in-
vestor optimal portfolio selection for different degrees of risk aversion. Prac-
tically, we distinguish three separate steps in the decision process:

1. Choose the distributional model.

Calculate the optimal portfolios of the efficient frontier. (Also in this case

we often have to choose among different estimators in order to evaluate the

optimization problem parameters).

3. Express a preference among efficient portfolios. (In particular, we assume
that the investor’s distributional belief is not correlated to his/her expected
utility. Therefore, the investor finds efficient frontiers assuming stable or
Gaussians distributed returns, but his/her utility function can be any in-
creasing concave utility function. This hypothesis is realistic enough be-
cause investors try to approximate their maximum expected utility among
the efficient portfolios previously selected).

[ %]

We assume the vector of risky return, r = [Fi,..s r.)’, is jointly Gaussian
distributed or in the domain of attraction of an a-stable non Gaussian distri-
bution with & = ax, k = 1.2,3, where 2 = 1.5763: o = 1.7223; a3 = 1.8107.
Thus, we compare the performance of Gaussian and sub-Gaussian ap-
proaches for each optimal allocation proposed. In view of these comparisons,
we discuss and study the differences in maximum expected utility for each al-
Jocation problem ((32) and (33)) and for every portfolio choice model (Gaus-
sian or sub-Gaussian) proposed.

Note that every model, Gaussian or sub-Gaussian (15), is based on a dif-
ferent risk perception. In order to compare the different models, we use the
same algorithm proposed by Giacometti and Ortobelli (2001), Ortobell,
Huber, Hochstotter, Rachev (2001). Thus, first we consider the optimal port-
folio compositions obtained solving the optimization problems (15) for dif-
ferent levels of the mean. In this case we have the analytical formulation of the
efficient frontier given by the linear combination of the market portfolio and
the riskless one. The efficient frontiers have been obtained for each model,
discretizing the expected optimal portfolio return between the riskless return
and the expected market portfolio return. Second, we select the portfolios on
the efficient frontiers that maximize some parametric expected utility func-
tions for different risk aversion coefficients.

Thus, we need to select portfolios belonging to the efficient frontiers such

that:

x* = arg< max  E(u(x'r+(1- x/e)zo)))
x e efficient frontier
where « is a given utility function. Finally, in tables XII and XIII we compare
the maximum expected utility obtained with the stable or normal model for
different risk aversion coefficients.
Therefore, considering N i.i.d. observations. ) (i =1,...,N) of the vec-
tor r=1[r1,ra, ..., r»3]', the main steps of our comparison are the following:

Step 1 Fit the four efficient frontiers corresponding to the different distribu-
tional hypothesis: Gaussian and sub Gaussian. Therefore, for every k we
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Table XII. Maximum expected utility
max E((1 - e}z + ') = cE(p'r = EG|)

when different distributional assumption are considered

Coefficient Maximum %-Stable
“c” of the expected
optimization utility in the Maximum Maximum Maximum
problem Gaussian expected expected expected
case utility when utility when utility when
= 1.5763 x=1.7223 2 = 1.8107
c=1.5 0.26069 0.26078 0.26077 0.26075
¢ =225 0.20223 0.20227 0.20227 0.20226
c=3 0.18054 0.18058 0.18058 0.18057
c=3.75 0.16956 0.16961 0.16960 0.16959
c=4.5 0.16269 0.16272 0.16274 0.16273
¢c=35.25 0.15751 0.15778 0.15771 0.15765
c=6 0.15362 0.15295 0.15387 0.15382
¢c=46.75 0.15067 0.15106 0.15097 0.15088
c=175 0.14833 0.14871 0.14858 0.14851
c=2825 0.14651 0.14680 0.14670 0.14664
¢ = 0.14494 0.14524 0.14513 0.14507
c=9.75 0.14362 0.14294 0.14383 0.14376
¢c=10.5 0.14257 0.14285 0.14276 0.14270
c=11.25 0.14159 0.14189 0.14179 0.14172
c=12 0.14060 0.14093 0.14082 0.14075
c=12.75 0.13962 0.13996 0.13985 0.13978
c=13.5 0.13864 0.13900 0.13888 0.13880
c=14.25 0.13765 0.13804 0.13790 0.13783
c=15 0.13667 0.13708 0.13694 0.13685
c=15.75 0.13569 0.13611 0.13597 0.13588

This table consider allocation among 23 risky assets and the riskless one (6% annual rate, daily
zo = 0.000166). For different risk aversion cosfficient ¢ the maximum of utility functional E(W) —
cE(|W — E(W)|}?) is approximated, where W = 3'r+ (1 = y'e)zo is either Gaussian distributed
or w-stable sub-Gaussian distributed (with o = 1.5763, or & = 1.7223 or « = 1.8107). In the table
we marked the greatest expected utility among the different distributional approaches.

estimate 200 optimal portfolio weights varying the daily mean m in the
following constrained problem:

min x' QX
X

subject to
(34)

x'p+ (1 - x'e)zy = m;
a < (l—xe)<ay andVii a<x<a@

where u = E(r) is the mean of the return vector, zo is the riskless return
and Q, is one of the estimated dispersion matrixes: either the variance co-
variance matrix (k = 4) or o stable sub Gaussian dispersion matrix. In-
stead, we assume a; = —0.1 and a; = 1 when we consider the optimal al-



Table XIII. Maximum expected utility
max —E(exp(=b((1 — y'e)z0 + ¥'1)))
s

when different distributional assumption are considered

Coefficient Maximum o-Stable
“¢” of the expected
optimization utility in the Maximum Maximum Maximum
problem Gaussian expected expected expected
case utility when utility when utility when
o= 1.5763 o =1.7223 o = 1.8107
b=12.5 —795.7797 —795.7378 —795.7395 —795.7488
b=14 —795.5488 —795.4924 —795.4979 —795.5105
b=155 —795.3471 —795.2913 —795.2963 -795.3089
b=17 —795.1460 —795.0910 ~795.0953 —795.1077
b=185 —794.9454 —794.8922 —794.8949 —794.9071
=20 —794.7453 —794.6935 —794.6950 —794.7071
b=215 —794.5457 —794.4948 —794.4959 -794.5077
=23 -794.3468 —794.2963 —794.2973 —794.3089
=245 —794.1483 —794.0977 —794.0987 —794.1105
b=26 —793.9497 —793.8992 —793.9003 —793.9118
=275 —793.7513 —793.7007 ~793.7019 —793.7134
=29 —793.5528 —793.5024 —793.5034 —793.5150
b=1305 ~793.3546 —793.3040 ~793.3052 —-793.3167
b=32 —793.1562 —793.1058 —793.1068 —793.1183
b =335 —792.9580 —792.9075 -792.9086 —792.9201
b=235 —792.7597 —792.7092 -792.7103 —792.7221
b =365 —792.5616 —792.5111 —792.5124 —792.5238
b =38 —792.3635 —792.3130 ~792.3143 —792.3257
b =395 —792.1653 —792.1149 —792.1160 —792.1279
b =41 —791.9675 —792.9172 ~791.9180 —791.9295

This table considers allocation among 13 risky assets and the riskless one (6% annual rate, daily
2o = 0.000166). For different risk aversion coefficient b the maximum of utility functional max —
E(exp(—bW)) is approximated, where W =3'r+ (1 - y'e)zo is either Gaussian distributed ‘or o-
stable sub-Gaussian distributed {with « = 1.5763, or & = 1.7223 or « = 1.8107). In the table we
marked the greatest expected utility among the different distributional approaches.

location problem (32), while when we consider the optimal allocation
problem (33), a; = =3 and a» = 3.
Step 2 Choose a utility function u with a given coefficient of aversion to risk
Step 3 Calculate for every efficient frontier (34)

) ,([) . — v ot
mgXZu(y 4 (1 - y'e)zo)
subject to
y belongs to the efficient frontier

Step 4 Repeat steps 2 and 3 for every utility function and for every risk
aversion coefficient.
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Finally, we obtain two tables (XII, XIII) with the approximated maximum
expected utility (at less of the multiplicative factor N). In fact, we implicitly
assume the approximation:

& , (0
S 2 uly'r? + (1= yejzo) = Elulyr + (1= y'e)z0)).
o=l

Moreover in order to obtain significative results, we calibrate the risk aversion
coefficients such that the portfolios which maximize the expected utility are
optimal portfolios in the segment of the efficient frontier considered.

As we can observe from tables XII, XIII it follows that the sub-Gaussian
models present a superior performance with respect to the mean-variance
model. Even if in these tables the stable sub-Gaussian approaches do not seem
diverging significantly from the mean-variance approach, we could ascertain
that optimal portfolio weights which maximize the expected utility in the dif-
ferent distributional frameworks are quite diverging. This issue implicitly
supports that stable distributions fit real data better than Gaussian distribu-
tions. Moreover, this ex-ante comparison confirms that the stable risk mea-
sure, the scale parameter o, capture the data distributional behavior (typically
the component of risk due to heavy tails) better than the Gaussian model.

We also observe that the stable sub-Gaussian approach with the lowest
index of stability, «; = 1.5763, shows better performances than the other sta-
ble approaches. Thus, considering also the previous comparisons, we conclude
that the decision makers with utility functions (32) and (33) are much more
risk preserving than what the mean variance model can forecast.

5 Conclusions

In this paper we first describe and examine the portfolio choices consistent
with the maximization of the expected utility and coherently with the asymp-
totic behavior of returns with heavy tailed distributions. As a matter of fact,
when returns have a stationary behavior they are in the domain of attraction
of a stable law. Therefore, we present some examples of models in the domain
of attraction of stable laws. The first distributional model considered is the
case of the sub-Gaussian stable distributed returns. It permits a mean risk
analysis pretty similar to Markowitz-Tobin’s mean variance one. In fact, this
model admits the same analytical form for the efficient frontier but the pa-
rameters differ in the two models. Thus, the most important difference is given
by the way of estimating the parameters. In order to present heavy tailed
models that consider the asymmetry of returns, we study a three fund separa-
tion model where the portfolios are in the domain of attraction of an (x1, %)
stable law. Next, we analyze the case of k +1 fund separation model with
portfolios in the domain of attraction of an (o, ..., ) stable law. In all
models we analyze the efficient frontier for the risk averse investors.

In second analysis, the comparison made between the stable and the nor-
mal approach in terms of the allocation problems has indicated that the stable
allocation is more risk preserving than the normal one. Precisely, the stable
approach, differently from the normal one, considers the component of risk
due to the fat tails. Therefore. we find that the tail behavior of stable and



Gaussian approaches could imply substantial differences in the asset alloca-
tion. Taken into account that the stable approach is more adherent to the re-
ality of the market, then, as argued by Gotzenberger, Rachev and Schwartz
(1999), we can obtain models that improve the performance measurements
with the stable distributional assumption.

Finally, we propose a performance comparison among the sub-Gaussian
and the mean variance model. The comparison holds from an ex-ante analysis
on the data. We compare the maximum expected utility of an investor on dif-
ferent efficient frontiers considering daily data. The analysis shows signi-
ficative differences in the allocation between the mean-variance model and the
sub-Gaussian approach. In particular, the sub-Gaussian approaches present
better performances than the mean-variance one.
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