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InLongstaff and Schwartz 11992] we develop a two­

factor general equilibrium model of the term struc­

ture of interest rates using the framework pioneered

by Cox. IngersolL and Ross [1985a. 1985bJ. In it

we derive closed form expressions for the prices of dis­
count bonds and other interest rate-sensitive contin­

gent claims. The ~wo factors are the instantaneous
riskless (short-term) interest rate and the instantaneous

variance of changes in this short-term interest rate.
The model is attractive not only because it pro­

vides for closed form expressions in a two-factor world.
but also because it explicitly allows for a stochastic

volatility f.lctOr. As the parameters of the model can be

estimated using both time series and cross sections of

prices (or yields), the framework provides reasonable
dynamics of the factors or state variables.

[n this article we extend the Longstaff-Schwartz
model to allow it to fit the initial discount function

exactly. We do this by simply deriving a partial differ­

entia] equation for forward prices and using the actual
discount factors to obtain the present value of the for­

ward prices. This method can then be used for valuing
all European interest rate-contingent claims. This

extension of the model cannot be used to price dis­
count bonds because by construction all discount
bonds used exactly fit the model, I but it has the advan­
tage of using all the information in the current term

structure to price interest rate-contingent claims with­
in the framework of the two-f.1Ctor model.

We also show that this version of the Longstaff­

Schwartz model can be fitted into the Heath, Jarrow.
and Morton f] 992J framework and thus their numeri­

ca] procedures can be used to value American claims.
We brietly summarize the results of the
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These last two equations provide the empirical link of
the model. As both r and V are linear functions of the

state variables x and y, it is easy to perform a change of
variables and express all the results of the model in

terms of r and V as state variables. This is the approach
taken in Longstaff and Schwartz [1992]. For computa­
tional convenience here, we opt for expressing all our

results in terms of the original state variables x and y,
although at any point in the analysis a change of vari­
ables is possible to express the results in terms of the
"observable" state variables r and V

The solution to Equation (1) subject to the
appropriate boundary conditions determines the value

of any interest rate-contingent claim. In the case of a
discount bond in which the appropriate boundary

condition at maturity is given by:

Longstaff-Schwartz model needed for deriving the
interest rate-contingent claims valuation model,

then derive the fundamental partial differential

equation and the risk-adjusted processes for forward
prices, and the forward density for the state vari­

ables. We show applications of the model in valua­

tion of interest rate caps, floating-rate swaptions,
and volatility caps. We also show the relation

between the model and the framework recently

developed by Heath, Jarrow, and Morton [1992]; in

particular we derive the implicit assumptions made
in our model with respect to the volatilities of the

forward rate process.

THE LONGSTAFF-SCHWARTZ MODEL

Starting from assumptions about the ,tochastic
evolution of two exogenous state variables that affect

the returns on physical investment and the preferences
of a representative investor, Longstaff and Schwartz

[1992] follow the general equilibrium framework of
Cox, Ingersoll, and Ross [1985a] to derive the funda­

mental partial differential equation for all default-free
interest rate-contingent claims, H(x,y, ):

F(x,y,O) = 1.0

the equation has a simple closed form solution:

where

(6)

x Y
-Hxx +-HVY +(-y-ox)Hx +
22·

(1] - vy)Hy - (ax + r3y)H = HT (1 )

Et(T) = AZ"Y(T)• BZT](T)exp(KT)

Ez(T) = (8 - 4»(1 - A(T))
E3(T) = (u - 41)(1 - B(T»

where "{, 8 , 1], and u are the parameters of the risk­

adjusted process for the unspecified, uncorrelated
(modified) state variables x and y:

A(T) = 2<1>
(8 + <1»(exp(<1>T)- 1) + 2<1>

dx = (y - 8x)dt +.r;; dZ,

dy = (TJ- vy)dt +.J; dZ2

(2)

(3)

B(T) = 2\jf
(v + \jf)(exp(\jfT) -1) + 2\jf (7)

and a and f3 are parameters of the return process for

physical investment.
In this framework the equilibrium instantaneous

interest rate and the variance of the changes in this rate

are given respectively by:

K = y(8+ <1»+TJ(v + \jf)

PRICING FORWARD CONTRACTS

DECEMBER 1~'J2

r = ax + f3y (4) The value of any European interest rate-contin-
gent claim with no intermediate payout is equal to its

(5) forward price multiplied by the value of a unit dis-
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count bond with the same maturity as the contingent

claim. We can obtain the present value of the contin­

gent claim by discounting its forward price using the
current discount function. This method assures that

model prices wiJl exactly fit the term structure used in
the computations.

Consider an interest rate-contingent claim with

the general payoff function at maturity:

two-factor model we can obtain the forward price of any

European interest rate-contingent claim by solving Equa­

tion (10), subject to the appropriate terminal condition.
The present value of the claim can then be obtained by

discounting this forward price using the current unit risk­
less discount bond to the maturity of the claim.

Another interpretation of Equation (10) is that

the forward price of the claim is given by:

H(x,y,O) = G(x,y) (8) M(X,y,T) = E[G(x,y)] (14)

Note that this type of payoff function wiJl accommo­

date any function of r, V, yield, etc. At any time before

maturity this claim satisfies Equation (1).
We try the separation of variables:

H(X,y,T) = F(X,y,T) X M(X,y,T) (9)

where F(X,y,T) is the unit discount bond.

Taking the appropriate partial derivatives in (9),

substituting in (1), collecting terms and recalling that
the value of a unit discount bond, F(X,y,T), also satisfies

(1), it can be shown that forward prices satisfy the par­
tial differential equation:

x y '" F-M + -M +()'-ux + -2..x)M +
2"2~· F'

where the expectation is taken with respect to the
joint density for x and y implied by the dynamics:

dx = (y - Ox + E2(T)x)dt +E dZ1 (15)

dy = (11- vy + E3(T)y)dt + {; dZ2 (16)

This density is a bivariate non-central chi-square den­

sity with closed form, given the current values of the
state variables Xo and YO:2

( )Y-1I2( )~-1I2

4 x Y
q(x. y I xo' Yo)= -- -- --

a('t)c(T) b(T)Xo d("t)Yo

(10)

with the same terminal boundary condition as the

contingent claim, because at maturity the value of the
discount bond is one: (17)

M(x,y,O) = G(x,y) (11)
where

The value of the two terms in (10) that depend
on the value of the unit discount bond can be

obtained from Equation (7):

a(T)

b(T)

A(T)(exp(q,T) - 1)/q"

(12) C(T) B(T)( exp(ljIT) - 1)!IjJ,

(13)

This analysis shows that in the &amework of the

and lp(.) is the modified Bessel function of order p.
The value of the forward price for the claim

can then be obtained directly from (14) by integration,

or by using Monte Carlo simulation with the risk-
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EXHIBIT 1 • Density Function in Terms of x and y

20 0

Parameter Values: ex = 0.0050, f3 = 0.0814, 1\ = 0.3299,

u = 14.4227, "y = 4.0224,1] = 3.2033

Time to Maturity = One Year
Current Value.of r = 0.06717

Current Value of V = 0.00081

EXHIBIT 2 • Contour of Density Function in Terms
of x and y

0.5

adjusted processes for the uncorrelated state variables
(15) and (16).

Exhibits 1 and 2 illustrate the density function
and its contour as a function of the state variables x

and y. Exhibits 3 and 4 illustrate the same density and
its contour as a function of the transformed state vari­

ables r and V These figures show that r and V are cor­
related and that the value of V is bounded by en and
Br, i.e., en < V < Br.

CAP PRICING

Consider a simple cap that at time T from now

pays the maximum between the difference of the short
rate and the cap rate, c, and zero. From (4) and (14),

the forward price of this cap is given by:

M(X,y,T) = E[Max(o:x + By - c, 0)] (18)

where the expectation is taken with respect to the

density function (17).
Rewriting this expectation in terms of the

transformed state variables r and V, the forward price

of the cap can be expressed as:
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EXHIBIT 3 • Density Function in Terms of r and V

Parameter Values: ex= 0.0050, B = 0.0814, 1\= 0.3299,

u = 14.4227, "y = 4.0224, 1] = 3.2033

Time to Maturity = One Year
Current Value of r = 0.06717

Current Value of V = 0.00081

DECEMBER 1992

Parameter Values: ex = 0.0050, f3 = 0.0814, 1\ = 0.3299,

u = 14.4227, "y = 4.0224, 1] = 3.2033

Time to Maturity = One Year
Current Value of r = 0.06717

Current Value of V = 0.00081
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EXHIBIT 4 • Contour of Density Function in Terms EXHIBIT 5 • Cap Value as a Function of the Cap Rate
ofr and V
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Currcnt Valuc of V = 0.00081

EXHIBIT 6 • Cap Value as a Function of the Time
to Expiration

The present value of the cap is obtained by multiply­
ing the forward price by the 'T-maturity discount factor
from the current discount function.

Exhibit 5 shows the value of a one-year cap
for different values of the cap rate c. Note that the
value of the cap drops off rapidly as the cap rate
increases because of the mean reversion of interest

rates in the model. Specifically, mean reversion
implies that the probability of a cap with a high
value of c being in the money at expiration is much
less than it would be in the absence of inean rever­
sIOn.

Exhibit 6 plots the value of a cap as a function
of its time to expiration, where the cap rate is held
fixed at 0.07. The time decay of a cap is very different
from what we would expect in models such as the
Black-Scholes model. For example, the cap value is an
increasing function for values of'T up to 1.3 years, and
then becomes a decreasing function for longer maturi­
ties. This hump-shaped pattern of time decay in the
value of the cap occurs because the variance of future
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Parameter Valucs: a = 0.0050, f3 = 0.0814, 1)= 0.3299,

u = 14.4227, 'Y = 4.0224, " = 3.2033

Cap Rate = 0.07
Current Value ofr = 0.06717

Current Value of V = 0.00081
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0.005

0.0045

values of r does not grow linearly with time as it does
in the Black-Scholes model. Instead, it grows at a

slower-than-linear rate because the model implies that

r has a steady state distribution. This effect, in con­

junction with the higher discount factor as T increases,
results in the hump-shaped pattern.

These two examples show that the implications

of the Longstaff-Schwartz model for valuing and hedg­

ing interest rate caps can differ significantly from those
of the Black-Scholes model, which is often applied to

interest rate options despite its assumption of constant
interest rates.

FLOATING-RATE SWAPTIONS

EXHIBIT 7 • Swaption Value as a Function of the
Time to Expiration for Three Different Swap Yield
Maturities
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VOLATILITY CAPS

H(x,y,O) = Max(O, a2x + f32y - K) (22)

The pncmg of a cap on volatility itself is an

example of a more exotic type of option that can be
valued using our methodology. From (5), the payoff
for this claim would be

where K is the strike volatility. A volatility cap IS a

security that would be useful in hedging fixed-income

portfolios against the price effects of shifts in interest
rate uncertainty. Similar types of options on implied

10983 4 5 6 7
YEARS TO EXPIRATION

2

- T = .25 •...... T = 1.0 - ....- T = 5.0

0.0025

Scholes model. In the examples shown, the swaption

value increases for values of T up to approximately 2.5
years, and then declines as T increases. The reason for
this pattern is again related to the mean reversion of
interest rates in the Longstaff-Schwartz model. For

short horizons, the uncertainty about future payoffs

grows more rapidly than the discount factor. For val­
ues of T greater than 2.5 years, however, an increase in
the time until expiration has less of an effect on the

variance of future swaption payoffs than it does on the
discount factor.

Parameter Values: 0: = 0.0050. f3 = 0.0814, 0 = 0.32')<),

u = 14.4227, '{ = 4.0224, 1'] = 3.2033
Current Value ofr = 0.()6717

Current Value of V = 0.00081

M(x,y,T) = E[Max(O, -(lnE1 (T) + E2(T)x +
E3(T)y)/T - r)] (21)

Floating-rate swaptions are simple options that

at time T from now pay the maximum of the differ­
ence between the floating rate and zero. For example,

a swaption that pays the maximum of the difference
between the T-year yield and the short rate and zero

has a payofffunction given by

where E1, E2' and E3 are defined in (7). From (7) and

(14), the forward price of the swaption is

H(x,y,O) = Max(O, -(lnE](T) + E2(T)x +
E3(T)y)/T - r)] (20)

The present value of the swaption is given by multi­
plying the forward price by the T-maturity discount
factor from the current discount function.

Exhibit 7 shows the value of the swaption for

different values of the time until expiration, T, and the

maturity of the swap yield T. In general, the swaption is

an increasing function of the maturity of the swap

yield. This is because the smaller the value of T, the
more correlated the swap yield and the short-term rate,
and the less valuable the option to swap. This last fol­

lows because an option to swap for like kind is worth

less than an option to swap for something different.
Note that for large T, however, the swaption can
become a decreasing function of T because the conver­

gence of yields to their steady state distribution makes

the swap yield and the short rate more correlated.
Exhibit 7 also shows that the time decay of the

swaption is more complex than implied by the Black-

DECEMBER 1992 THE)OUIlNAL OF FIXED INCOME 21



volatilities have been proposed in some U.S. markets.
The price of a volatility cap can be determined

as in the previous examples. Using (5) and (14), the
forward price of a volatility cap equals

The price of the volatility cap is again given by multi­
plying the forward price by the discount factor from
the current discount function.

Exhibit 8 graphs the value of the volatility cap as
a function of the strike volatility. Interestingly, the con­
vexity of the volatility cap is much less than for an inter­
est rate cap with the same time until expiration. Exhibit
9 shows the value of the volatility cap as a function of
the time until expiration of the cap. As in earlier exam­
ples, the time decay of th~ volatility cap is hump-shaped
because of the mean reversion in volatility.

EXHIBIT 9 • Volatility Cap Value as a Function of
the Time to Expiration for Three Different Strike
Volatilities

31 2
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(23)M(X,y,T)= E[Max(O, a2x + [32y- K)]

FITTING THE TERM STRUCTURE

Heath, Jarrow, and Morton (HJM [1992])
develop an arbitrage methodology for pricing interest
rate-sensitive contingent claims given the prices of all

Parameter Values: ex = 0.0050, f3 = 0.0814, 0 = 0.3299,

\J = 14.4227, 'Y = 4.0224, 1] = 3.2033
Current Value ofr = 0.06717

Current Value of V = 0.00081

EXHIBIT 8. Volatility Cap Value as a Function of
the Strike Volatility

0.0013

(25)

df(t,T) = a(t,T)dt + aj(t,T)dZj + a2(t,T)dZ2 (24)

zero-coupon bonds. They extend the Ho and Lee
[1986] model by imposing a stochastic structure on
evolution of the forward rate curve as opposed to the
discount function. As our methodology 'also prices
contingent claims given the prices of zero-coupon
bonds, it is of interest to compare it with a two-factor
HJM framework.

In HJM the assumed stochastic process for
changes in the entire forward rate curve is given by3

where f(t,T) is the forward rate at time t for date T >
t. The a and the as could also be a function of the
stochastic factors.

This process for forward rates implies a process
for rates of return on discount bonds:4

0.0015

0.0011

ill
0.001::J -'«> 0.00090.. «u 0.0008~ :J 0.0007f=

:'S0
0.0006>
0.0005

0.00040.0003
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STRIKEVOLATILITY

Parameter Values: ex = 0.0050, f3 = 0.0814, 0 = 0.3299,

\J = 14.4227, 'Y = 4.0224, 1] = 3.2033

Time to Maturity = 0.25 Year
Current Value ofr = 0.06717

Current Value of V = 0.00081

with

aj(t, T) == - rO'j(t, v)dv, i= 1,2 (26)

HJM show that in the "absence of arbitrage the
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drift term in (24) for the corresponding risk-adjusted

process is a particular function of the volatility terms
a.s For the model to have empirical content, it is nec­

essary to specity the functional form of the as in (24).
To see how the model presented in this article

fits into the H]M framework, it is necessary to estab­

lish the particular assumptions of the model with

respect to the volatilities of forward rates. This can be

accomplished by computing the volatilities of bond
returns from (7) and comparing them with (25):

(27)

factor model is linear in the original factors and there­
fore also in the transformed factors r and V.

SUMMARY AND CONCLUSIONS

Our extension of the Longstaff-Schwartz two­
factor general equilibrium model of the term structure

to price forward contracts of interest rate-sensitive

contingent claims can be used to determine the pre­

sent value of any European claim. The procedure uses
all the information contained in the current term

structure, in addition to the dynamics of the state vari­
ables.

From (29) and (30) it can be seen that the vari­

ance of changes in forward rates implied by the two-

Note that T = T - t.

FinalJy, from (26), the forward rate volatilities

implied by the model are:

We show that the model implies specific
assumptions with respect to the stochastic movement

of alJ forward rates and thus can be integrated into the
Heath, larrow, and Morton [1992] framework.

The approach presented here loses the general

equilibrium properties of the Longstaff and Schwartz
[1992] model because it does not endogenously deter­

mine the price of all discount bonds, but takes them as
given. Its merit is that the approach can be cast in an

arbitrage framework. The advantage of this is that it

applies to nominal interest rates as opposed to real rates
and that it can incorporate information embodied in
the current term structure.

For the pricing of American option-like con­

tingent claims, numerical procedures involving the
stochastic evolution of the discount function or the

forward rate curve would be required.

(28)

(30)

(29)

ENDNOTES REFERENCES

IThis property is not unique to our model, but it is
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