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The pricing of options on futures has generated much recent interest from bothan academic as well as a trading perspective. These contingent claims provide
new avenues for the allocation of price risk among investors and have been well
received by the financial markets. For example, options on Treasury bond futures
began trading at the Chicago Board of Trade in 1982 and have been a very successful
innovation. This success has assured the commodity exchanges of the value of

options trading, and the development of options on other types of futures is being
accelerated. Currently, options on certain agricultural futures are being traded in
the United States under a three-year pilot program administered by the Commodity
Futures Trading Commission.

Many recent academic studies have made significant contributions to option
pricing theory using varying asset price behavior assumptions. Among these are the
Black-Scholes formula (1973), Roll's American call option formula (1977), Cox's
constant elasticity of variance (CEV) formula (1975), Merton's jump-diffusion for­
mula (1976), Binomial pricing method (Cox, Ross, and Rubinstein, ) 979), and
various numerical methods for option pricing.

Each of the above formulas and methods is based on the continuous-time (or

limiting case)! no-arbitrage pricing framework of Black and Scholes. Within this

'The binomial pricing methodology suggested by Sharpe and presented by Cox and Ross (1979) is essentially
a discretization of the continuous time sample patb of asset prices. As the number of intervals utilized by tbe

binomial method approaches infinity. the pricing results obtained are indistinguishable from those obtain •.d by
continuous time methods.
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framework, however, each model makes different assumptions about the explicit

stochastic behavior of the underlying asset's price. Consequently, it is the stochastic
behavior of the underlying asset's price which determines the proper model to use
in option pricing.

Options on futures have drawn special attention because of their unique char­
acteristics. For example, several studies have specifically approached the pricing
of options on futures by utilizing a modified form of the Black-Scholes (B-S) formula
(e.g., Asay, 1982; Black, 1976). However, this approach may not be appropriate
for options on agricultural futures since the dynamic behavior of agricultural futures
prices violates the underlying B-S assumptions. Consequently, this article addresses
the issue of an appropriate pricing model for options on agricultural futures. Spe­
cifically, the objectives of the article are:

(1) To discuss the stochastic behavior of agricultural futures prices and to identify
how these prices violate the underlying B-S assumptions.

(2) To identify alternatives to the B'-S formula which are more consistent with
the stochastic behavior of agricultural futures prices.

The remainder of the article is organized in four sections. Section I discusses
the stochastic behavior of agricultural futures prices and its ramifications for option
pricing. The empirical results focus specifically on soybean futures. Section II
presents empirical evidence that the stochastic behavior of soybean futures prices
is well represented by Cox's CEV model (1975). Section III applies Cox's CEV
closed form solution to options on soybean futures and discusses the implications
of differences between the B-S and CEV models. Section IV summarizes the results

of the study.

I. STOCHASTIC BEHAVIOR OF AGRICULTURAL FUTURES PRICES

It is of critical importance in pnCIng contingent claims such as options that the
model of stochastic price behavior used conform closely to price behavior actually
observed. Empirical evidence suggests there are at least two major differences
between the behavior of agricultural and nonagricultural futures prices such as for
Treasury bond, GNMA, or stock index contracts, or prices for financial assets such
as stocks or Treasury bills.2 Both of these differences and their respective impli­
cations for option pricing are discussed in this section.

The first major difference between agricultural and nonagricultural prices arises
because nonagricultural prices tend to follow a random walk, whereas a number of
academic studies have demonstrated that agricultural futures prices follow a seasonal

pattern reflecting the annual production-consumption cycle (e.g., Tomek and Robin­
son, 1981; Working, 1958, 1960; Vaughn, Kelly, and Hochheimer, 1981). This
pattern of seasonality would also be present in the first difference of the logarithm
of futures prices if seasonality were present in the original price series. Note that
the first difference of the logarithm of futures prices,

R, = In (F.) - In (F,-d (1)

'See rama (1976), Tomek and Robinson (1981). Working (1958. 1960), and Vaughn, Kelly. and Hochheimer

(1981) for discussions of the empirical evidence.
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where Ft and Ft-1 represent the futures price at time t and t -1, can be considered
as the analogue of a continuously compounded return. This quantity, K, will thus
be referred to as the quasi-return3 on a futures contract in this article.

Surprisingly, this seasonal pattern would not be a violation of the fundamental
stochastic process assumptions of continuous time option pricing models such as
the B-S. This can be seen by briefly reviewing the roles that the expected and

unexpected (measured by volatility) components of instantaneous return play in the
pricing of contingent claims in continuous time frameworks, which are described
below.

In deriving closed form option pricing formulas, Black and Scholes (1973), Merton
(1977), and others (Smith, 1976) assume that the dynamic behavior of the under­
lying asset's price can be described by the following diffusion process in continuous
time:4

where

d4

A
= ~(A ,t)dt + CT(A, t)dz (2)

A

d4

A

~(A, t)

CT(A,t)

dz

=: Price of underlying asset.

=: Time.

- Instantaneous return of underlying asset.

_ Deterministic (or expected) component of instantaneous return as a func­
tion of both A and tj often referred to as the mean of return.

=: Stochastic (or unexpected) component of realized instantaneous return
as a function of both A and t; often referred to as the standard deviation
of return.

- Standard Wiener process.

Stating the price dynamics as an Ito process allows the use of an arbitrage approach
in pricing options since the instantaneous change in the option price is perfectly
correlated with the instantaneous change in the underlying asset price (d4) by Ito's
Lemma. By choosing an appropriate ratio of options to the underlying asset, a
hedged portfolio that is instantaneously risk-free can be constructed. As a result,
the constructed hedge portfolio earns the risk-free rate irrespective of the expected
return on the underlying asset. Consequently, the expected return of the underlying
asset ~(A, t) does not appear in the solution for option prices.5 As a result, any
pattern of seasonality in quasi-returns would have no explicit implications for pricing
options. However, the unexpected component of return, CT(A ,t), does enter the

'Since futures contracts are marked-to-markd at the end of each Iradin~ day~ their value j~ zero at the end of

each day (see Black, 1976). Consequently, there is no meaninliful sense in which we can discuss the return on a

futures contract. However, if an asset or portfolio had a value equal to the futures price ,.ach day, th,.n the quasi­

return would be the asset or portfolio's return.

'For a discussion of stochastic calculus and Ito's Lemma, se" Ito and McKean (1961) and M"rton (1971).

'-'Smith (1976) pres"nts a simple derivation of the Black-Schol"s formula illustratinl!; how th" I,;(A ,I) term is

diminated from th" partial differ"ntial equation hy th,. no-arbitral!;e requir,.ment that risk-fre,. port!i)lios must earn

the risk·free rate in capital market equilihrium.
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solution. For example, Black and Scholes assume a(A,t) to be constant in their
derivation, with the result that volatility figures prominently in their closed form
solution.6

The behavior of agricultural and nonagricultural futures prices differs in a second
fundamental way. Since the resolution of uncertainty in future commodity prices
occurs seasonally, the standard deviation of the quasi-return [or a(F, t)] is strongly
seasonal. By contrast, nonagricultural and financial asset returns are realistically
described as homoskedastic over short periods. 7

This seasonal trend is documented in Table I which presents the results of a test
for seasonality in the monthly volatility of March, July, and November soybean
futures prices from 1979 to 1983. The seasonal model tested for each of the three
senes was:

where

II
130 + L l3iD" + E,

i=1

(3)

DII

v ==, Estimated standard deviation of the quasi-return for month t based on daily
data.

- Seasonal dummy variables for month t: i = I. June; i = 11, April.

E, == Error term assumed to follow AR(l) process.

As illustrated, each of the seasonal models was estimated by the Cochrane­
OrcuttH procedure and was statistically significant at the 95% level based upon an
F test. In addition, several of the t statistics for individual coefficients were sig­
nificant.

This pattern of seasonal volatility violates the constant variance assumption
explicit in the B-S formula. Consequently, the use of the B-S formula for pricing
options on agricultural futures is inappropriate. In order to correctly price these
options using the continuous time framework, the time series pattern of volatility
would need to be modeled. By a process similar to that outlined above for the B­
S formula, q a risk-free hedge portfolio could be formed resulting in another partial
differential equation. In this differential equation, however, the instantaneous stan­
dard deviation of the quasi-return a(F,t) would be a time series model rather than
a constant. This complexity would in general make it impossible to find a closed
form solution for option prices; the differential equation would need to be solved
numerically, making this approach of limited practical use.

Fortunately, a closed form solution is available when the seasonality in volatility
is of a specific type. Cox's CEV model (1975) assumes that volatility is a function
of the price level; that when the price level is high, volatility is also high (or low
depending upon the elasticity coefficient) and vice versa. To the extent that the
CEV relationship between agricultural futures prices and quasi-return volatility is

(jNolt" that the boundary c()ndi,ion~ of the partial difft"n"nlial t"fluation art' al~o unafft:"clt-d hy the ~ea~onal quasi-

returll.

'See Fama (1976).

"Ordinary leasl squares generally displayed autocorrelated residuals. Consequently. Ihe Cochrane-Orcult pro­
('edure was employed to yield consistent parameter estimates improving the power of the test.

''See the generalize,! model for pricing conlingent claims presented by ~lel1on (19771.
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Table I
COCHRANE-ORCUTT ESTIMATES OF SEASONALITY COEFFICIENTS,

MARCH, JULY, AND NOVEMBER SOYBEAN FUTURES,
1979-1983

NOH'mber

Adj. R' : O. ]52
S.E. : 6.07

D.W.": 2.09

F II. 7() : 2.19"

March July--Coefficient
I Stati8ti(:CoefficientI Statistic

13()

13.764.9"1;3.865.4"

131

7.042.5"6.332.3"

132

12.703.7"12.984.4"

13:1

10.742.9"10.592.9"

I3l

9.382.5"9.192.5"

13,>

6.241.65.061.3

136

6.331.65.52'1.5

137

4.41l.l4.641.2

I3R

2.880.86.251.7

13~

3.241.04.901.3

1310

5.681.83.691.0

1311

4.691.74.841.7

Adj. R2 : 0.081

Adj. R2 : 0.132
S.E. : 5.95

S.L : 6.29
D.W.": 2.]2

D.W.l.: 2.31

F", ,,~: 1..57
F", 7() : 1.99"

Coefficient

]2.62
9.74

15.41
13.28
10.;39

6.34
6.;)9
5.69
5.92

2.88
2.67
3.48

I Statisti.:

4.4"
;3.4"

4.4"
3.6"
2.8"

1.7
1.8
1.5
1.5
0.8

0.8

1.2

'Significant at 95% level.
"For residuals after Cochrane-Orcull estimation.

present, the stochastic process assumptions of Cox's model will be satisfied and
will encompass the seasonal behavior of the volatility. Consequently, although the
seasonality in volatility violates the B-S Model assumptions, it may be completely
consistent with those of the CEV model. The strength of the price volatility rela­
tionship and the explanatory power of the CEV model for seasonal volatility is
empirically evaluated in the following section.

II. EMPIRICAL TESTS OF THE CONSTANT ELASTICITY OF
VARIANCE RELATIONSHIP

The CEV model described by Cox (1976) assumes that price changes in the under­
lying asset can be described by the following diffusion process;

d4
- = £(A,e) de + OA",-I dz (4)A
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where:

A

d4

A

l;(A ,t)

a

== Price of underlying asset.

== Time.

== Instantaneous return of underlying asset.

~ Deterministic (or expected) component of instantaneous return; a func-
tion of both A and t.

- Annualized expected standard deviation of quasi-return when A, = 1.

== Coefficient of elasticity.

== Standard Wiener Process.

In order to determine the extent to which agricultural futures prices satisfy the

assumptions of the CEV model, historical relationships between price and volatility
were examined. The strength of the CEV relationship between price level and
volatility can be estimated by linearizing the model's parameterization:1O

a, = aF,w-1

by a logarithmic transformation yielding:

lna, = lna + (1jJ -1)lnF,

where:

(5)

(6)

a, == Estimated standard deviation of quasi-return for month t.

F I == Average futures price for month t.

Note that if IjJ = 1, then the CEV model reduces to the constant volatility B-S
Model.

The linearized relationship was then estimated by the Cochrane-Orcutt meth­
odology given appropriate assumptions about the regression model's error structure.

Table II presents the results of this estimation technique for the March, July,
and November soybean futures contracts expiring in 1979 through 1983. As shown,
each of the three regressions was statistically significant at the 99% level. This
provides strong support for the hypothesis that the assumptions of the CEV model
are well satisfied by soybean futures prices. Estimates of elasticity obtained by the
Cochrane-Orcutt procedure ranged from 2.19 to 2.51.11

Figures 1 through 3 show graphically the positive relationship between soybean
futures price level and the volatility of the quasi-return. In summary, the seasonal
volatility in soybean futures quasi-returns appears to be well adapted to the CEV
diffusion process assumption of Cox's model.

'''See Jarrow and Rudd (1983) for a discussion of this linearization.

"Since the error terms of the regression models could be correlated across contracts, the equations were

reestimated simultaneously by Zellner's seemingly unrelated regression model (1962). This reestimation resulted

in essentially identical parameter estimates as the univariate regressions. Although this technique has the potential
to increase the efficiency of the parameter estimates, nonoverlapping data (in event time) had to be eliminated for
the three contracts. Consequently, there was little gain in efficiency for this specific application.
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Table II
COCHRANE-ORCUTT ESTIMATES OF CEV PARAMETERS

1979-1983

(30

t~o

(31

t~1
R2

D.W.

P

March

Soybeans

-4.91
( -2.0)"

1.19
(3.1)"
0.108
1.94
0.319"

July
Soybeans

-6.98
(-3.4)"

1.51

(4.8)"
0.220
2.04
0.117

November

Soybeans

-6.32
( -2.1)"

1.40

(3.1)"
0.114
2.05
0.420"

"Significant at 95% level.

III, CONSTANT ELASTICITY OF VARIANCE VERSUS BLACK-SCHOLES
OPTION PRICES

In the previous section, evidence was presented demonstrating that the CEV model
has statistical significance in describing the behavior of soybean futures quasi­
returns. In order to explore the implications of the CEV model for pricing options
on agricultural futures, both CEV and B-S option prices are calculated for the same
set of hypothetical data. This then allows the CEV prices to be contrasted with the
more familiar B-S prices.

The well-known B-S European call option pricing formula for futures (1973) is:

C = Fe-n N(dd - Ke-n N(d2) (7)
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Plot of March soybean prices and quasi-return volatility. 1979-198:{.
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d, = (In (F / K) + a2t/2)/a-vt

d2 = d1 - a-vt

N(') == Standard cumulative normal distribution function.

F == Current futures price.

- Time to expiration.

- Risk-free rate for maturity t.
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Plot of November soybean prices and quasi-return volatility. 1979-19S:J,
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K == Exercise price.

C == Call price.

CT == Annualized expected standard deviation of quasi-return.

The CEV formula is more complicated in appearance, but can easily be pro­
grammed on a small computer. Cox and Rubinstein (1978) give the CEV formula
for European calls as:

x . I
C(F*,t,r,CT,T,K,~) = F* L g(AF*-d>, n + I )G(A (Ke-n)-d>, n + I +-)

11=0 <f>

x I
Ke-n L g(AF*-d>,n+1 +-)G(A(Ke-'T$.n+]) (8)

.-0 ~

~ == 2~ - 2

A == 2 r / CT~~ (ed>n - I J

f( n J == L" e - 'v· - I dv

g(z,n) == e-'z·-I/f(n)

G(w,n) == fXg(z.nJdzo

where:

~ == Elasticity coefficient < I.

f == Risk-free rate for maturity t.

== Time to expiration.

K == Exercise price.

C == Call price.

CT == Annualized expected variance of quasi-return when F = ].
F* == Current futures price multiplied by e -n.

Since the estimated elasticities for agricultural futures tend to be greater than I.
the pricing formula representation can be rewritten as: I~

C(F* ,t,f,CT, T,K ,~)
(XI

F* I - L g(AF*-d>,n+ I+-)
.-0 ~

X C(A (Ke-'I)-d>, n + 1)) - Ke-"

X (1- i g(AF*-d>, n + l)G(A (Ke-nJ-dJ,n + I +J.-}n=() <f>

(9)

"See Cox and Rubinstein (1978).
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Note that the value of F* used is the futures price times e -", which, as in the
B-S case, adjusts the underlying price for the continuous "dividend" of the under­
lying asset for the option (Black and Scholes, 1973).

Put prices for both models are given by the put/call parity relationshipl;! holding
for options on futures.

(10)

where:

P = Put price.

C = Call price.

At the money, put and call prices will be equal.
Hypothetical prices of soybean futures options are presented in Table III for both

the B-S and CEV models. As is demonstrated, the CEV mode! tends to give higher
prices than the B-S model for both puts and calls when the futures price is lower
than the exercise price. The opposite is true when the futures price equals or exceeds
the exercise price. The ratio of the CEV price to the B-S price can vary greatly as
parameter values change. At the money, the ratio of the two prices is on the order
of 0.94 for the examples in Table III.

Table III
BLACK-SCHOLES VERSUS CEV OPTION PRICES'

CEV Prices

550 Call

Put700
Call

Put850
Call

Put

Futures Price (¢)

550

700

850

Call

Put

Call

Put

Call

Put

Strike Price (¢)

550

700850

46.4

4.90.:3
46.4

140.7271.8
141.8

59.121.9
6.1

59.1157.7
271.8

149.071.7
0.4.

13.371.7

Black-Scholes Prices 49.4

12.42.6
49.4

148.2274.1
148.2

63.021.8
12.4

6:3.0157.5
274.1

157.576.4
2.6

21.876.4

'Assumes: (I) standard deviation of quasi-return: 25%: (2) one year maturity: (:{) 10% risk-free rate
of interest; (4) ljJ: 2.:3.

I:\The put/call parity relationship for options 011 fulures contracts is discussed by Black (1976).
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IV. SUMMARY AND CONCLUSIONS

This article has examined the stochastic behavior of agricultural futures price and
identified seasonal volatility in soybean futures quasi-returns. This seasonality is
clearly inconsistent with the underlying assumptions of the Black-Scholes option
pricing model, which are based on constant variance of the quasi-return.

Cox's CEV model was identified as a viable approach to pricing options on
agricultural futures in the presence of seasonal volatility, provided the level of
volatility was related to price level. The strength of the CEV relationship between
volatility and prices was tested by both univariate and multivariate regressions,
which were found to be highly significant for soybean futures. Consequently, the
CEV model assumptions appear to be well satisfied by the soybean futures data.
This suggests that the CEV model is theoretically superior to the B-S model for
pricing options on soybean futures.

Since this study's empirical results are based on soybean futures, further research
is clearly needed to determine if the CEV relationship holds for other agricultural
commodities. Preliminary results suggest that the CEV model may also encompass
the stochastic behavior of corn futures prices. Other areas where further research
is required include determining the functional form of the quasi-return seasonality.
In addition, when sufficient agricultural option price data are available, the B-S
and CEV models can be benchmarked against actual market prices to determine
which describes option prices more accurately.

The authors wish to thank Thomas Coleman, Ted Doukas, Rooert Hauser, John Nyhoff, Mark

Ondera, Duane Seppi, Randall Sheldon, and Thomas Thompson for helpful comments. Thanks also

to Jessica Edwards and Carmen Garcia for typing assistance. The views expressed in this article are

those of the authors and are not those of the Chicago Board of Trade.
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