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ABSTRACT

Major events often trigger abrupt changes in stock prices and volatility.We
study the implications of jumps in prices and volatility on investment strate-
gies. Using the event-risk framework of Du⁄e, Pan, and Singleton (2000), we
provide analytical solutions to the optimal portfolio problem. Event risk dra-
matically a¡ects the optimal strategy. An investor facing event risk is less
willing to take leveraged or short positions. The investor acts as if some por-
tion of his wealth may become illiquid and the optimal strategy blends both
dynamic and buy-and-hold strategies. Jumps in prices and volatility both have
important e¡ects.

ONEOFTHE INHERENTHAZARDS of investing in ¢nancial markets is the riskof amajor
event precipitating a sudden large shock to security prices and volatilities.There
are many examples of this type of event, including, most recently, the September
11, 2001, terrorist attacks. Other recent examples include the stock market crash
of October 19, 1987, inwhich the Dow index fell by 508 points, the October 27, 1997,
drop in the Dow index by more than 554 points, and the £ight to quality in the
aftermath of the Russian debt default where swap spreads increased on August
27, 1998, by more than 20 times their daily standard deviation, leading to the
downfall of Long Term Capital Management and many other highly leveraged
hedge funds. Each of these events was accompanied by major increases in market
volatility.1

The risk of event-related jumps in security prices and volatility changes the
standard dynamic portfolio choice problem in several important ways. In the
standard problem, security prices are continuous and instantaneous returns
have in¢nitesimal standard deviations; an investor considers only small local
changes in security prices in selecting a portfolio.With event-related jumps, how-
ever, the investor must also consider the e¡ects of large security price and vola-

THE JOURNAL OF FINANCE � VOL. LVIII, NO. 1 � FEB. 2003

nLiu and Longsta¡ are with the Anderson School at UCLA and Pan is with the MIT Sloan
School of Management.We are particularly grateful for helpful discussions with Tony Bernar-
do and Pedro Santa-Clara, for the comments of Jerome Detemple, Harrison Hong, Paul P£ei-
derer, Raman Uppal, and participants at the 2001 Western Finance Association meetings,
and for the many insightful comments and suggestions of the editor Richard Green and the
referee. All errors are our responsibility.

1For example, the VIX index of S&P 500 stock index option implied volatilities increased
313 percent on October 19, 1987, 53 percent on October 27, 1997, and 28 percent on August 27,
1998.

231



tility changes when selecting a dynamic portfolio strategy. Since the portfolio
that is optimal for large returns need not be the same as that for small returns,
this creates a strong con£ict that must be resolved by the investor in selecting a
portfolio strategy.
This paper studies the implications of event-related jumps in security prices

and volatility on optimal dynamic portfolio strategies. In modeling event-related
jumps, we use the double-jump framework of Du⁄e, Pan, and Singleton (2000).
This framework is motivated by evidence by Bates (2000) and others of the exis-
tence of volatility jumps, and has received strong empirical support from the
data.2 In this model, both the security price and the volatility of its returns follow
jump-di¡usion processes. Jumps are triggered by a Poisson event which has an
intensity proportional to the level of volatility. This intuitive framework closely
parallels the behavior of actual ¢nancial markets and allows us to study directly
the e¡ects of event risk on portfolio choice.
To make the intuition behind the results as clear as possible, we focus on the

simplest case where an investor with power utility over end-of-period wealth al-
locates his portfolio between a riskless asset and a risky asset that follows the
double-jump process. Because of the tractability provided by the a⁄ne structure
of the model, we are able to reduce the Hamilton^Jacobi^Bellman partial di¡er-
ential equation for the indirect utility function to a set of ordinary di¡erential
equations. This allows us to obtain an analytical solution for the optimal port-
folio weight. In the general case, the optimal portfolio weight is given by solving
a simple pair of nonlinear equations. In a number of special cases, however,
closed-form solutions for the optimal portfolio weight are readily obtained.
The optimal portfolio strategy in the presence of event risk has many interest-

ing features. One immediate e¡ect of introducing jumps into the portfolio pro-
blem is that return distributions may display more skewness and kurtosis.
While this has an important in£uence on the portfolio chosen, the full implica-
tions of event risk for dynamic asset allocation run much deeper.We show that
the threat of event-related jumps makes an investor behave as if he faced short-
selling and borrowing constraints even though none are imposed.This result par-
allels Longsta¡ (2001) where investors facing illiquid or nonmarketable assets
restrict their portfolio leverage. Interestingly, we ¢nd that the optimal portfolio
is a blend of the optimal portfolio for a continuous-time problem and the optimal
portfolio for a static buy-and-hold problem. Intuitively, this is because when an
event-related jump occurs, the portfolio return is on the same order of magnitude
as the return that would be obtained from a buy-and-hold portfolio over some ¢-
nite horizon. Since these two returns have the same e¡ect on terminal wealth,
their implications for portfolio choice are indistinguishable, and event risk can
be interpreted or viewed as a form of liquidity risk.This perspective provides new
insights into the e¡ects of event risk on ¢nancial markets.
To illustrate our results, we provide two examples. In the ¢rst, we consider a

model where the risky asset follows a jump-di¡usion process with deterministic

2 For example, see the extensive recent study by Eraker, Johannes, and Polson (2000) of the
double-jump model.
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jump sizes, but where return volatility is constant. This special case parallels
Merton (1971), who solves for the optimal portfolio weight when the riskless rate
follows a jump-di¡usion process. We ¢nd that an investor facing jumps may
choose a portfolio very di¡erent from the portfolio that would be optimal if jumps
did not occur. In general, the investor holds less of the risky asset when event-
related price jumps can occur. This is true even when only upward price jumps
can occur. Intuitively, this is because the e¡ect of jumps on returnvolatility dom-
inates the e¡ect of the resulting positive skewness. Because event risk is con-
stant over time in this example, the optimal portfolio does not depend on the
investor’s horizon.
In the second example, we consider a model where both the risky asset and its

return volatility follow jump-di¡usion processes with deterministic jump sizes.
The stochastic volatility model studied by Liu (1999) can be viewed as a special
case of this model. As in Liu, the optimal portfolio weight does not depend on the
level of volatility. The optimal portfolio weight, however, does depend on the in-
vestor’s horizon, since the probability of an event is time varying through its de-
pendence on the level of volatility. We ¢nd that volatility jumps can have a
signi¢cant e¡ect on the optimal portfolio above and beyond the e¡ect of price
jumps. Surprisingly, investors may even choose to hold more of the risky asset
when there are volatility jumps than otherwise. Intuitively, this means that the
investor can partially hedge the e¡ects of volatility jumps on his indirect utility
through the o¡setting e¡ects of price jumps. Note that this hedging behavior
arises because of the static buy-and-hold component of the investor’s portfolio
problem; this static jump-hedging behavior di¡ers fundamentally from the usual
dynamic hedging of state variables that occurs in the standard pure-di¡usion
portfolio choice problem.
We provide an application of the model by calibrating it to historical U.S.

data and examining its implications for optimal portfolio weights. The results
show that even when large jumps are very infrequent, an investor still ¢nds it
optimal to reduce his exposure to the stock market signi¢cantly. These results
suggest a possible reasonwhyhistorical levels of stock market participationhave
tended to be lower thanwould be optimal in many classical portfolio choice mod-
els. While volatility jumps are qualitatively important for optimal portfolio
choice, the calibrated exercise shows that they generally have less impact than
price jumps.
Since the original work byMerton (1971), the problem of portfolio choice in the

presence of richer stochastic environments has become a topic of increasing in-
terest. Recent examples of this literature include Brennan, Schwartz, and Lagna-
do (1997) on asset allocation with stochastic interest rates and predictability in
stock returns, Kim and Omberg (1996), Campbell and V|ceira (1999), Barberis
(2000), and Xia (2001) on predictability in stock returns (with or without learn-
ing), Lynch (2001) on portfolio choice and equity characteristics, Schroder and
Skiadas (1999) on a class of a⁄ne di¡usion models with stochastic di¡erential
utility, Balduzzi and Lynch (1999) on transaction costs and stock return predict-
ability, and Brennan and Xia (1998), Liu (1999), Wachter (1999), Campbell and
V|ceira (2001) on stochastic interest rates, and Ang and Bekaert (2000) on
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time-varying correlations. Aase (1986), and Aase and Kksendal (1988) study the
properties of admissible portfolio strategies in jump di¡usion contexts. Aase
(1984), Jeanblanc-Picque¤ and Pontier (1990), and Bardhan and Chao (1995)
provide more general analyses of portfolio choice when asset price dynamics
are discontinuous. Although Merton (1971), Common (2000), and Das and Uppal
(2001) study the e¡ects of price jumps and Liu (1999), Chacko andV|ceira (2000),
and Longsta¡ (2001) study the e¡ects of stochastic volatility, this paper
contributes to the literature by being the ¢rst to study the e¡ects of event-related
jumps in both stock prices and volatility.3

The remainder of this paper is organized as follows. Section I presents the
event-risk model. Section II provides analytical solutions to the optimal portfolio
allocation problem. Section III presents the examples and provides numerical re-
sults. Section IVcalibrates the model and examines the implications for optimal
portfolio choice. Section V summarizes the results and makes concluding re-
marks.

I. The Event-Risk Model

We assume that there are two assets in the economy.The ¢rst is a riskless asset
paying a constant rate of interest r. The second is a risky asset whose price St is
subject to event-related jumps. Speci¢cally, the price of the riskyasset follows the
process

dSt ¼ ðrþ ZVt � mlVtÞStdtþ
ffiffiffiffiffiffi
Vt

p
StdZ1t þXtSt� dNt; ð1Þ

dVt ¼ ða� bVt � klVtÞdtþ s
ffiffiffiffiffiffi
Vt

p
dZ2t þ YtdNt ð2Þ

where Z1 and Z2 are standard Brownian motions with correlation r,V is the in-
stantaneous variance of di¡usive returns, and N is a Poisson process with sto-
chastic arrival intensity lV. The parameters a, b, k, l, and s are all assumed to
be nonnegative. The variable X is a random price-jump size with mean m, and is
assumed to have support on (�1, N) which guarantees the positivity (limited
liability) of S. Similarly,Y is a random volatility-jump size with mean k, and is
assumed to have support on [0,N) to guarantee thatV remains positive. In gen-
eral, the jump sizes X andYcan be jointly distributed with nonzero correlation.
The jump sizes X andY are also assumed to be independent across jump times
and independent of Z1, Z2, andN.
Given these dynamics, the price of the riskyasset follows a stochastic-volatility

jump-di¡usion process and is driven by three sources of uncertainty: (1) di¡usive
price shocks from Z1, (2) di¡usive volatility shocks from Z2, and (3) realizations of
the Poisson process N. Since a realization of N triggers jumps in both S andV, a
realization ofN has the natural interpretation of a ¢nancial event a¡ecting both
prices and market volatilities. In this sense, this model is ideal for studying the

3Wu (2000) studies the portfolio choice problem in a model where there are jumps in stock
prices but not volatility, but does not provide a veri¢able analytical solution for the optimal
portfolio strategy.
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e¡ects of event risk on portfolio choice. Because the jump sizes X andYare ran-
dom, however, it is possible for the arrival of an event to result in a large jump in
S and only a small jump inV, or a small jump in S and a large jump inV. This
feature is consistent with observed market behavior; although ¢nancial market
events are generally associated with large movements in both prices and volati-
lity, jumps in only prices or only volatility can occur. Since m is the mean of the
price-jump size X, the term mlVS in equation (1) compensates for the instanta-
neous expected return introduced by the jump component of the price dynamics.
As a result, the instantaneous expected rate of return equals the riskless rate r
plus a risk premium ZV. This form of the risk premium follows fromMerton (1980)
and is also used by Liu (1999), Pan (2002), and many others. Note that the risk
premium compensates the investor for both the risk of di¡usive shocks and the
risk of jumps.4

These dynamics also imply that the instantaneous varianceV follows a mean-
reverting square-root jump-di¡usion process. The Heston (1993) stochastic-vola-
tility model can be obtained as a special case of this model by imposing the con-
dition that l5 0, which implies that jumps do not occur. Liu (1999) provides
closed-form solutions to the portfolio problem for this special case.5 Also nested
as special cases are the stochastic-volatility jump-di¡usion models of Bates
(2000) and Bakshi, Cao, and Chen (1997). Again, since k is the mean of the volati-
lity jump sizeY, klV in the drift of the process forV compensates for the jump
component in volatility.
This bivariate jump-di¡usion model is an extended version of the double-jump

model introduced by Du⁄e et al. (2000). Note that this model falls within the af-
¢ne class because of the linearity of the drift vector, di¡usion matrix, and inten-
sity process in the state variableV. The double-jump framework has received a
signi¢cant amount of empirical support because of the tendency for both stock
prices andvolatility to exhibit jumps. For example, a recent paper by Eraker et al.
(2000) ¢nds strong evidence of jumps involatility even after accounting for jumps
in stock returns.6 Du⁄e et al. also show that the double-jump model implies vo-
latility ‘‘smiles’’or skews for stock options that closely match the volatility skews
observed in options markets.7

II. Optimal Dynamic Asset Allocation

In this section, we focus on the asset allocation problem of an investor with
power utility

4Although the risk premium could be separated into the two types of risk premia, the port-
folio allocation between the riskless asset and the risky asset in our model is independent of
this breakdown. If options were introduced into the market as a second risky asset, however,
this would no longer be true (see Pan (2002)).

5 See Chacko and V|ceira (2000) and Longsta¡ (2001) for solutions to the dynamic portfolio
problem for alternative stochastic volatility models.

6 Similar evidence is also presented in Bates (2000), Pan (2002), and others.
7 See also Bakshi et al. (1997) and Bates (2000) for empirical evidence about the importance

of jumps in option pricing.
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UðxÞ ¼
1

1�g x
1�g; if x40;

�1; if x � 0;

�
ð3Þ

where g40, and the second part of the utility speci¢cation e¡ectively imposes a
nonnegative wealth constraint. This constraint is consistent with Dybvig and
Huang (1988), who show that requiring wealth to be nonnegative rules out arbi-
trages of the type described by Harrison and Kreps (1979). As demonstrated by
Kraus and Litzenberger (1976), an investor with this utility function has a prefer-
ence for positive skewness.
Given the opportunity to invest in the riskless and risky assets, the investor

starts with a positive initial wealthW0 and chooses, at each time t, 0rtrT, to
invest a fractionft of his wealth in the riskyasset so as to maximize the expected
utility of his terminal wealthWT,

max
fft; 0�t�Tg

E0½UðWTÞ�; ð4Þ

where the wealth process satis¢es the self-¢nancing condition

dWt ¼ ðrþ ftðZ� mlÞVtÞ Wtdtþ ft
ffiffiffiffiffiffi
Vt

p
WtdZ1t þXtft�Wt� dNt: ð5Þ

Although themodel couldbe extended to allow for intermediate consumption, we
use this simpler speci¢cation to focus more directly on the intuition behind the
results.
Before solving for the optimal portfolio strategy, let us ¢rst consider

how jumps a¡ect the nature of the returns available to an investor who invests
in the risky asset. When a risky asset follows a pure di¡usion process
without jumps, the variance of returns over an in¢nitesimal time period
Dt is proportional to Dt. This implies that as Dt goes to zero, the uncertainty
associated with the investor’s change in wealth DW also goes to zero. Thus, the
investor can rebalance his portfolio after every in¢nitesimal change in his
wealth. Because of this, the investor retains complete control over his portfolio
composition; his actual portfolio weight is continuously equal to the optimal
portfolio weight. An important implication of this is that an investor with lever-
aged or short positions in a market with continuous prices can always rebalance
his portfolio quickly enough to avoid negative wealth if the market turns against
him.
The situation is very di¡erent, however, when asset price paths are discontin-

uous because of event-related jumps. For example, given the arrival of a jump
event at time t, the uncertainty associated with the investor’s change in wealth
DWt5Wt�Wt� does not go to zero. Thus, when a jump occurs, the investor’s
wealth can change signi¢cantly from its current value before the investor has a
chance to rebalance his portfolio. An immediate implication of this is that the
investor’s portfolio weight is not completely under his control at all times. For
example, the actual portfolio weight will typically di¡er from the optimal port-
folio weight immediately after a jump occurs. This implies that signi¢cant
amounts of portfolio rebalancing may be observed in markets after an event-re-
lated jump occurs.Without complete control over his portfolio weight, however,
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an investor with large leveraged or short positions may not be able to rebalance
his portfolio quickly enough to avoid negative wealth.
Because of this, the investor not only faces the usual local-return risk that

appears in the standard pure di¡usion portfolio selection problem, but also
the risk that large changes in his wealth mayoccur before he has the opportunity
to adjust his portfolio. This latter risk is essentially the same risk faced by an
investor who holds illiquid assets in his portfolio; an investor holding illiquid as-
sets may also experience large changes before he has the opportunity to reba-
lance his portfolio. Because of this event-related ‘‘illiquidity’’ risk, the only way
that the investor can guarantee that his wealth remains positive is by avoiding
portfolio positions that are one jump away from ruin.This intuition is summar-
ized in the following proposition which places bounds on admissible portfolio
weights.

PROPOSITION 1. Bounds on PortfolioWeights. Suppose that for any t, 0otrT, we have

0oEt exp �
Z T

t
lVs ds

� �� �
o1; ð6Þ

where lVt is the jump arrival intensity.Then, at any time t, the optimal portfolioweight
f n
t for the asset allocation problemmust satisfy

1þ f n
t XInf40 and 1þ f n

t XSup40; ð7Þ

where XInf and XSup are the lower and upper bounds of the support of Xt (the random
price jump size). In particular, if XInfo0 and XSup40,

� 1
XSup

of n
t o� 1

XInf
: ð8Þ

Proof: SeeAppendix.
Thus, the investor restricts the amount of leverage or short selling in his port-

folio as a hedge against his inability to continuously control his portfolio weight.
If the random price jump sizeX can take any value on (�1,N), then this proposi-
tion implies that the investor will never take a leveraged or short position in the
risky asset.
These results parallel Longsta¡ (2001), who studies dynamic asset allocation in

a market where the investor is restricted to trading strategies that are of
bounded variation. In his model, the investor protects himself against the risk
of not being able to trade his way out of a leveraged position quickly enough to
avoid negative wealth by restricting his portfolio weight to be between zero and
one. Intuitively, the reason for this is the same as in our model. Having to hold a
portfolio over a jump event has essentially the same e¡ect on terminal wealth as
having abuy-and-hold portfolio over some discrete horizon. In this sense, the pro-
blem of illiquidity parallels that of event-related jumps. Interestingly, discussions
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of major ¢nancial market events in the ¢nancial press often link the two pro-
blems together.
One issue that is not formally investigated in this paper is the role of options in

alleviating the cost associated with the jump risk. Intuitively, put options could
be used to hedge against the negative jump risk, allowing investors to break the
jump-induced constraint and hold leveraged positions in the underlying risky
asset.8 In practice, the bene¢t of such option strategies depends largely on the
cost of such insurance against the jump risk.Moreover, in a dynamic settingwith
jump risk, it might be hard to perfectly hedge the jump risk with ¢nitely many
options. Putting these complications aside, it is potentially fruitful to introduce
options to the portfolio problem, particularly in light of our results on the jump-
induced constraints.9 A formal treatment, however, is beyond the scope of this
paper.
We now turn to the asset allocation problem in equations (4) and (5). In solving

for the optimal portfolio strategy, we adopt the standard stochastic control ap-
proach. Following Merton (1971), we de¢ne the indirect utility function by

JðW;V; tÞ ¼ max
ffs; t�s�Tg

Et½UðWTÞ�: ð9Þ

The principle of optimal stochastic control leads to the following Hamilton^
Jacobi^Bellman (HJB) equation for the indirect utility function J:

max
f

 
f2W2V

2
JWW þ frsWVJWV þ s2V

2
JVV

þ ðrþ fðZ� mlÞVÞWJW þ ða� bV � klVÞJV

þlVðE½JðWð1þ fXÞ; V þ Y ; tÞ� � JÞ þ Jt

!
¼ 0; ð10Þ

whereJW, JV, andJt denote the derivatives ofJ(W,V, t) with respect toW,V, and t,
and similarly for the higher derivatives, and the expectation is takenwith respect
to the joint distribution ofX andY.
We solve for the optimal portfolio strategy f n by ¢rst conjecturing (which we

later verify) that the indirect utility function is of the form

JðW;V; tÞ ¼ 1
1� g

W1�gexpðAðtÞ þBðtÞVÞ; ð11Þ

whereA(t) and B(t) are functions of time but not of the state variablesWandV.
Given this functional form, we take derivatives of J(W,V, t) with respect to its
arguments, substitute into the HJB equation in equation (10), and di¡erentiate
with respect to the portfolio weight f to obtain the following ¢rst-order

8 Imposing buy-and-hold constraints on an otherwise dynamic trading strategy parallels
our jump-induced constraint. Haugh and Lo (2001) show that options can alleviate some of
the cost associated with the buy-and-hold constraint. See also Liu and Pan (2003).

9We thank the referee for pointing out the role that options might play in mitigating the
e¡ects of event risk.
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condition:

ðZ� mlÞV þ rsBV � gf nV þ lVE½ð1þ fnXÞ�gXeBY � ¼ 0: ð12Þ

Before solving this ¢rst-order condition for f n, it is useful to ¢rst make several
observations about its structure. In particular, note that if l is set equal to zero,
the risky asset follows a pure di¡usion process. In this case, the investor faces a
standard dynamic portfolio choice problem in which the ¢rst-order condition for
f n becomes

ZV þ rsBV � gf nV ¼ 0: ð13Þ

Alternatively, consider the case where the investor faces a static single-period
portfolio problem where the return on his portfolio during this period equals
(11fX). In this case, the investor maximizes his expected utility over terminal
wealth by selecting a portfolio to satisfy the ¢rst-order condition,

E½ð1þ fnXÞ�gX� ¼ 0: ð14Þ

Now compare the ¢rst-order conditions for the standard dynamic problem and
the static buy-and-hold problem to the ¢rst-order condition for the event-risk
portfolio problem given in equation (12). It is easily seen that the left-hand side
of equation (12) essentially incorporates the ¢rst-order conditions in equations
(13) and (14). In the special case where m and Yequal zero, the left-hand side of
equation (12) is actually a simple linear combination of the ¢rst-order conditions
in equations (13) and (14) inwhich the coe⁄cients for the dynamic and static ¢rst-
order conditions are one and lV, respectively.This provides some economic intui-
tion for how the investor views his portfolio choice problem in the event-riskmod-
el. At each instant, the investor faces a small continuous return, and with
probability lV, may also face a large return similar to that earned on a buy-and-
hold portfolio over some discrete period. Thus, the ¢rst-order condition for the
event-risk problem can be viewed as a blend of the ¢rst-order conditions for a
standard dynamic portfolio problem and a static buy-and-hold portfolio problem.
So far, we have placed little structure of the joint distribution of the jump sizes

X andY. To guarantee the existence of an optimal policy, however, we require that
the following mild regularity conditions hold for all f that satisfy the conditions
of Proposition 1:

M1 
 E½ð1þ f nXÞ�gXeBY �o1; ð15Þ

M2 
 E½ð1þ f nXÞ1�geBY �o1: ð16Þ

The following proposition provides an analytical solution for the optimal port-
folio strategy.

PROPOSITION 2: Optimal PortfolioWeights. Assume that the regularity conditions in
equations (15) and (16) are satis¢ed. Then the asset allocation problem in equations
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(4) and (5) has a solution f n. The optimal portfolio weight is given by solving the
following nonlinear equation for f n,

f n ¼ Z� ml
g

þ rsB
g

þ lM1

g
; ð17Þ

subject to the constraints in (7), and where B is de¢ned by the ordinary di¡erential
equation

B0 þ s2B2=2þ f nrsð1� gÞ � b� klð ÞB

þ gðg� 1Þf n2

2
þ ðZ� mlÞð1� gÞf n þ lM2 � l

� �
¼ 0: ð18Þ

Proof: SeeAppendix.
From this proposition, f n can be determined under very general assumptions

about the joint distribution of the jump sizes X andY by solving a simple pair of
equations. Given a speci¢cation for the joint distribution ofX andY, equation (17)
is just a nonlinear expression in f n and B. Equation (18) is an ordinary di¡eren-
tial equation for B with coe⁄cients that depend on f n. These two equations are
easily solved numerically using standard ¢nite di¡erence techniques. Starting
with the terminal condition B(T)5 0, the values of f n and B at all earlier dates
are obtained by solving pairs of nonlinear equations recursively back to time
zero. Given the simple forms of equations (17) and (18), the recursive solution tech-
nique is virtually instantaneous. Observe that solving this pair of equations for
f n and B is far easier than solving the two-dimensional HJB equation in (10)
directly. For many special cases, the optimal portfolio weight can actually be
solved in closed form, or can be obtained directly by solving a single nonlinear
equation in f n. Several examples are presented in the next section.
We ¢rst note that the optimal portfolio weight is independent of the state vari-

ablesW andV. In other words, there is no ‘‘market timing’’ in either wealth or
stochastic volatility. The reason why the portfolio weight is independent of
wealth stems from the homogeneity of the portfolio problem inW. The reason
the optimal portfolio does not depend onV is formally due to the fact that wehave
assumed that the risk premium is proportional toV. Intuitively, however, this risk
premium seems sensible, since both the instantaneous variance of returns and
the instantaneous risk of a jump are proportional toV; by requiring the risk pre-
mium to be proportional toV, we guarantee that all of the key instantaneous mo-
ments of the investment opportunity set are of the same order of magnitude.
Recall from the earlier discussion that the event-risk portfolio problem blends

a standard dynamic problem with a static buy-and-hold problem. Intuitively, this
can be seen from the expression for the optimal portfolio weight given in equa-
tion (17). As shown, the right-hand side of this expression has three components.
The ¢rst consists of the instantaneous risk premium Z� ml divided by the risk
aversion parameter g. It is easily shown that when l5 0 andV is not stochastic,
the instantaneous risk premiumbecomes Z and the optimal portfolio policy is Z/g.
Thus, the ¢rst term in (17) is just the generalization of the usual myopic compo-
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nent of the portfolio demand. The second component is directly related to the
correlation coe⁄cient r between instantaneous returns on the risky asset and
changes in the volatilityV. When this correlation is nonzero, the investor can
hedge his expected utility against shifts inV by taking a position in the risky
asset.Thus, this second term can be interpreted as the volatility hedging demand
for the risky asset. A similar volatility hedging demand for the risky asset also
appears in stochastic-volatility models such as Liu (1999). Note that in this model,
the hedging demand arises not only because the state variableV impacts the vo-
latility of returns, but also because it drives the variation in the probability of an
event occurring. Thus, investors have a double incentive to hedge against varia-
tion inV through their portfolio holdings of the risky asset. Finally, the third
term in equation (17) is directly related to the ¢rst-order condition for the static
buy-and-hold problem from equation (14). Thus, this term can be interpreted as
the event-riskor ‘‘illiquidity’’ hedging term; this term does not appear in portfolio
problems where prices follow continuous sample paths.

III. Examples and Numerical Results

In this section, we illustrate the implications of event-related jumps for portfo-
lio choice through several simple examples.

A. ConstantVolatility and Deterministic Jump Size

In the ¢rst example,V is assumed to be constant over time. This implies that
a5 b5 k5 s5Y5 0. In addition, we assume that price jumps are deterministic
in size, implying X5 m. In this case, the risky asset follows a simple jump-di¡u-
sion process.This complements Merton (1971), who studies asset allocationwhen
the riskless asset follows a jump-to-ruin process.
In this example, the model dynamics reduce to

dSt ¼ ðrþ ZV0 � mlV0ÞSt dtþ
ffiffiffiffiffiffi
V0

p
St dZ1t þ mSt� dNt; ð19Þ

dVt ¼ 0: ð20Þ

Substituting in the parameter restrictions and solving gives the following sim-
ple expression for the optimal portfolio weight:

f n ¼ Z� ml
g

þ ml
g
ð1þ mf nÞ�g; ð21Þ

which is easily solved for f n. Assuming that Z40, it is readily shown that f n40.
Note that the optimal portfolio strategy does not depend on time or the investor’s
horizon. This occurs since the instantaneous distribution of returns does not
vary over time; the instantaneous expected return, return variance, and prob-
ability of a jump are constant through time.
There are several interesting subcases for this example which are worth

examining. For example, consider the subcase where l5 0, implying that the
price follows a pure di¡usion. In this situation, the optimal portfolio weight is
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simply

f n ¼ Z
g
: ð22Þ

Alternatively, consider the related (but nonnested) case where the price of the
risky asset follows a pure jump process; where the di¡usion component of the
price dynamics is set equal to zero. In this situation, the optimal portfolio weight
becomes

f n ¼ 1
m

1� Z
ml

� ��1
g

�1
" #

: ð23Þ

These cases make clear that the portfolio that is optimal when the price pro-
cess follows a pure di¡usion is very di¡erent from the optimal portfolio when the
price process follows a pure jump process.When the price process follows a jump
di¡usion, the investor has to choose a portfolio that captures aspects of both of
these special cases. Because of the nonlinearity inherent in the expression for
the portfolio weight in equation (21), however, the optimal portfolio cannot be ex-
pressed as a simple linear combination or portfolio of the optimal portfolios for
the two special cases given in equations (22) and (23).
Di¡erentiating f n with respect to the parameters implies the following com-

parative static results:

@f n

@Z
40;

@f n

@l
o0;

@f n

@g
o0; ð24Þ

provided Z40. Interestingly,

@f n

@m
40; if mo0;

@f n

@m
� 0; if m � 0: ð25Þ

To illustrate this result, the top graph in Figure 1 plots the optimal portfolio
weight as a function of the value of the jump size m. As shown, the optimal port-
folio weight is highly sensitive to the size of the jump m.When the jump is in the
downward direction, the investor takes a smaller position in the risky asset than
he would if jumps did not occur. Surprisingly, however, the investor also takes a
smaller position when the jump is in the upward direction.The rationale for this
is related to the e¡ects of jumps on the variance and skewness of the distribution
of terminal wealth. Holding ¢xed the risk premium, jumps in either direction in-
crease the variance of the distribution. On the other hand, jumps also a¡ect the
skewness (and other higher moments) of the return distribution and the investor
bene¢ts from positive skewness. Despite this, the variance e¡ect dominates and
the investor takes a smaller position in the riskyasset for nonzero values of m.The
skewness e¡ect, however, explains why the graph of f n against m is asymmetric.
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To illustrate just how di¡erent portfolio choice can be in the presence of event
risk, the second graph in Figure 1plots the optimal portfolio as a function of the
risk aversion parameter g for various jump sizes m.When m5 0 and no jumps oc-
cur, the investor takes anunboundedlylarge position in the riskyasset as g-0. In
contrast, when there is any riskof a downward jump, the optimal portfolioweight
is bounded above as g-0.This feature is a simple implicationof Proposition1, but
serves to illustrate that the optimal portfolio in the presence of event risk is qua-
litatively di¡erent from the optimal portfolio when event risk is not present.
This also makes clear that the optimal strategy is not driven purely by the

e¡ects of jumps on return skewness and kurtosis. For example, skewness and

Figure1. Optimal portfolio weights for the constant-volatility case. The top panel
graphs the optimal portfolio weight as a function of the size of the price jump for three
di¡erent values of the jump frequency. The bottom panel graphs the optimal portfolio
weight as a function of the risk aversion coe⁄cient for three di¡erent values of the size
of the price jump.
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kurtosis e¡ects are also present in models where volatility is stochastic and cor-
related with risky asset returns, but jumps do not occur. In these models, how-
ever, investors do not place bounds on their portfolio weights of the type
described in Proposition 1. Furthermore, the optimal portfolio in these models
does not involve any static buy-and-hold component. This underscores the point
that many of the features of the optimal portfolio strategy in our framework are
uniquely related to the event risk faced by the investor.
To provide some speci¢c numerical examples,Table I reports the value of f n for

di¡erent values of the parameters. In this table, the risk premium for the risky
asset is held ¢xed at 7 percent and the standard deviation of the di¡usive portion
of risky asset returns is held ¢xed at 15 percent. As shown, relative to the bench-
mark where m5 0, the optimal portfolio weight can be signi¢cantly less even
when the probability of an event occurring is extremely low. For example, even
when a � 90 percent jump occurs at a 100-year frequency, the portfolio weight is

Table I
PortfolioWeights with ConstantVolatility and Deterministic PriceJump

Sizes
This table reports the portfolio weights for the risky asset in the case where the volatility of the
asset’s returns is constant and the percentage size of the jump in the asset’s price is also con-
stant. The risk premium for the risky asset is held ¢xed at seven percent and the volatility of
di¡usive returns is held ¢xed at 15 percent throughout the table. The frequency of jumps is
expressed in years and equals the reciprocal of the jump intensity.

Risk Aversion
Parameter

Frequency of
Jumps

Percentage Jump Size

� 90 � 20 0 20 90

0.50 1 0.151 1.795 6.222 2.736 0.189
2 0.269 2.511 6.222 3.970 0.411
5 0.508 3.431 6.222 5.161 1.234
10 0.721 4.008 6.222 5.662 2.600
100 1.091 4.927 6.222 6.163 5.744

1.00 1 0.078 0.970 3.111 1.289 0.091
2 0.144 1.394 3.111 1.891 0.190
5 0.290 1.963 3.111 2.516 0.529
10 0.444 2.333 3.111 2.793 1.111
100 0.938 2.980 3.111 3.077 2.824

2.00 1 0.040 0.504 1.556 0.624 0.045
2 0.074 0.730 1.556 0.919 0.092
5 0.155 1.033 1.556 1.238 0.244
10 0.247 1.222 1.556 1.384 0.503
100 0.641 1.509 1.556 1.537 1.395

5.00 1 0.016 0.206 0.622 0.245 0.018
2 0.030 0.300 0.622 0.361 0.036
5 0.065 0.424 0.622 0.490 0.093
10 0.105 0.499 0.622 0.550 0.188
100 0.305 0.606 0.622 0.614 0.553
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typically much less than 50 percent of what it would be without jumps. Note that
this e¡ect is not symmetric; a 190 percent jump at a 100-year frequency has a
much smaller e¡ect on the portfolioweight. Also observe that the e¡ects of jumps
on portfolio weights are much more pronounced for investors with lower levels of
risk aversion. This counterintuitive e¡ect occurs because less risk-averse inves-
tors would prefer to hold more leveraged positions, but cannot because they do
not have full control over their portfolio.Thus, the e¡ects of event risk fall much
more heavily on investors with low levels of risk aversionwhowould otherwise be
more aggressive.

B. StochasticVolatility and Deterministic Jump Sizes

In the second example,V is also allowed to follow a jump-di¡usion process.The
two jump sizesX andY, however, are assumed to be constants withvalues m and k,
respectively.The jump size m can be positive or negative.The jump size k can only
be positive.
In this example, the model dynamics become

dSt ¼ ðrþ ZVt � mlVtÞStdtþ
ffiffiffiffiffiffi
Vt

p
StdZ1t þ mSt�dNt; ð26Þ

dVt ¼ ða� bVt � klVtÞdtþ s
ffiffiffiffiffiffi
Vt

p
dZ2t þ kdNt: ð27Þ

Applying the results in Proposition 2 to this model gives the following expres-
sion for the optimal portfolio weight:

f n ¼ Z� ml
g

þ rsB
g

þ lm
g
ð1þ mf nÞ�gekB; ð28Þ

which can be solved for f n jointly with the equation for B given in equation (18).
Because of the dependence onB, the optimal portfolio weight is now explicitly

a function of the investor’s investment horizon. Examining equation (28) indi-
cates that there are several ways in which the investment horizon a¡ects the
optimal portfolio weight. Speci¢cally, B appears in conjunction with the correla-
tion coe⁄cient r, re£ecting that there is a dynamic hedging component to the
investor’s demand for the risky asset. SinceV is mean reverting, the horizon over
which investment decisions are made is important. However, dynamically hed-
ging shifts inV is not the only reasonwhy there is time dependence in the optimal
portfolioweight. For example, when r5 0, the riskyasset cannot be used to hedge
against shifts in the investment opportunity set arising from variation inV. De-
spite this, the optimal portfolio weight still depends on the investor’s horizon
through the ekB term in equation (28).Thus, time dependence enters the problem
both through the dynamic hedging component and through the static hedging
component.
The top graph in Figure 2 plots the optimal portfolioweight as a function of the

investor’s horizon for various values of the dynamic hedging parameter r. In this
case,f n is an increasing functionof thehorizon for eachof thevalues of r plotted.
We note, however, that f n can be a decreasing function of the investor’s horizon
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when go1.This graph also illustrates that the optimal portfolioweight converges
to a constant as T-N. Furthermore, the dependence of the optimal portfolio
weight on r indicates that an important part of the demand for the risky asset
comes from its ability to dynamically hedge the continuous portion of changes
inV.
An important feature of this event-risk model is that both prices and volatility

are allowed to jump. The previous section illustrated that the presence of price
jumps in either direction induces investors to take smaller positions in the risky
asset. Intuitively, one might suspect that introducing jumps in volatility would
have a similar e¡ect on the optimal portfolioweight. Surprisingly, this is not true

Figure 2. Optimal portfolio weights for the stochastic-volatility case.The top panel
graphs the optimal portfolio weight as a function of the investor’s horizon measured in
years for three di¡erent values of the correlation coe⁄cient. The bottom panel graphs
the optimal portfolio weight as a function of the size of the volatility jumps for three dif-
ferent values of the size of the price jump.
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in general. This can be seen from the second graph in Figure 2, which plots the
optimal portfolio weight as a function of the size of the volatility jump k for dif-
ferent values of m. As shown, the optimal portfolio weight can be an increasing
function of k for some values of m.
This result illustrates the important point that in addition to its ability to dy-

namically hedge against continuous changes inV, the riskyasset can also be used
as a static hedge against the e¡ects of jumps inV.This second hedging role is one
that does not occur in traditional portfolio choice models where state variables
have continuous sample paths.The fact that the risky asset can be used to hedge
in two di¡erent ways, however, makes it evident that the investor faces a dilemma
in choosing a portfolio strategy. In particular, the portfolio that hedges against
small local di¡usion-induced changes in the state variables is not the same as the
portfolio that hedges against large jumps in the state variables. This problem is
inherent in the fact that when there is event risk, the portfolio problem has fea-
tures of both a dynamic portfolio problem and an illiquid buy-and-hold problem.
Finally, if we impose the parameter restrictions r5 0 and k5 0, volatility is

still stochastic, but the optimal portfolio weight becomes the same as in Section
III.Awhere volatility is not stochastic.Thus, continuous stochastic variation inV
only a¡ects the optimal portfolio weight if it is hedgable through a nonzero value
of r.

IV. Implications for Optimal Portfolio Choice

Moving beyond the numerical examples presented in Section III, it is useful to
explore how event risk might a¡ect the optimal portfolio of an investor in a spe-
ci¢c market. To this end, we calibrate the model to be roughly consistent with
historical stock index returns and stock index return volatility in the United
States.To make this process as straightforward as possible, we focus on the sim-
ple stochastic volatility modelwith deterministic jump sizes described in Section
III. Once calibrated to U.S. data, we explore the key implications of the model for
investors.
In parameterizing this model of event risk, it is important to recognize that the

major ¢nancial events addressed by our model are infrequent by their nature. Ide-
ally, we would like to use a calibration approach that minimizes the e¡ects of the
inherent ‘‘Peso problem’’on the results. Although there are many ways to do this,
we use the following informal (but, we hope, intuitive) approach to allow us to
estimate the size and frequency of events from the longest time series available.10

We ¢rst obtain the monthly return series for U.S. stocks during the 1802 to 1925
period created and described in Schwert (1990). We then append the CRSP
monthly value-weighted index returns for the 1926 to 2000 period to give a time
series of returns spanning nearly 200 years. A reviewof the data shows that there

10We note that although it is beyond the scope of this paper, the general double-jump model
could be formally estimated using either the e⁄cient method of moments (EMM) approach
applied by Andersen, Benzoni, and Lund (2002) or the Monte Carlo Markov chain (MCMC)
technique used by Eraker et al. (2000).
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are eight observations where the stock index dropped by 20 percent or more.
These observations include the beginning of the CivilWar in May 1861, the black
Friday crash of October 1929, and the October 1987 stock market crash. Interest-
ingly, four of the eight observations are clustered in the high-volatility decade of
the 1930s, consistent with the double-jump model. Since these observations are
roughly ¢ve standard deviations below the mean, it is not unreasonable to view
these negative returns as being due to a jump event. Aback-of-the-envelope calcu-
lation suggests calibrating themodel to allowa � 25 percent jump (the average of
the eight observations) at an average frequency of about 25 years. To provide a
rough estimate of the size of the volatility jump, we compute the standard devia-
tion of returns for the ¢ve-month window centered at the event month.The aver-
age of these standard deviation estimates is just under 50 percent. Given this, we
make the simplifying assumption that when a jump occurs, the volatility of the
stock return jumps by an amount equal to the di¡erence between 50 percent and
its mean value.
The remaining parameter estimates are obtained from Table 1 of Pan (2002).

Using S&P 500 stock index returns and stock index option prices, Pan estimates
the parameters of several versions of a jump-di¡usion model. For simplicity, we
use the parameter values Pan estimates for her SV0 model, and adjust them
slightly to be consistent with our estimates of jump sizes and frequencies.11 Spe-
ci¢cally, weuse Pan’s estimates of b5 5.3 and r5 � .57.To obtain estimates of a, Z,
and s, we note that in our model, the expected instantaneous equity premium is
aZ/b, the expected instantaneous variance of returns is a(11m2l)/b, and the ex-
pected instantaneous variance of changes inV is a(s21k2l)/b. Setting these three
moments equal to the corresponding estimates of 0.1065, 0.0242, and 0.3800 from
Table 1of Pan provides us with three equations which can be solved for the values
of a, Z, and s. By doing this, we guarantee that the calibrated model matches the
moments of returns and volatility estimated by Pan. This approach leads to the
following parameter values for the baseline case where jumps occur with an
average frequency of 25 years: a5 0.11512, b5 5.3000, s50.22478, Z54.90224,
r5 � 0.57000, m5 �0.25000, k50.22578, and l51.84156.
To illustrate the e¡ects that event risk has on the optimal portfolio choice for an

investor where the model is calibrated to historical U.S. returns in this manner,
Table II reports the portfolio weights for various levels of investor risk aversion.
To facilitate comparison, we report the portfolio weights for the case where there
are no jumps, where there are only jumps in the stock index, and the baseline case
where there are jumps in both the stock index and volatility. Note that for the non-
benchmark cases, we recalibrate the model so that we match the expected instan-
taneous moments estimated by Pan (2002) using the procedure described in the
previous paragraph. In each case, the investor has a ¢ve-year investment horizon.

11The advantage of using the parameter estimates for Pan’s SV0 model is that they repre-
sent parameter estimates for the stochastic volatility model in the absence of jumps.This then
allows us to calibrate the model for di¡erent jump sizes using a particularly simple algorithm.
As pointed out by Pan, allowing for jumps signi¢cantly enhances the ability of the stochastic
volatility model to capture the properties of the data.

The Journal of Finance248



Table II shows that the possibility of a 25 percent downward jump in stock
prices has an important e¡ect on the investor’s optimal portfolio, even though
this type of event happens only every 25 years on average. For example, the opti-
mal portfolioweight for an investor with a risk aversion parameter of two is 2.305
if no jumps can occur, is 1.929 if only jumps in the stock price can occur, and is
2.010 if both jumps in stock prices and volatility can occur. Observe that from
Proposition 1, the investor never takes a position in the risky asset greater than
four since jumps of � 25 percent can occur.Table II shows that the risk of a down-
ward jump always induces the investor to take a smaller position in the stock
market than he would otherwise.
Table II also makes clear that while jumps in volatility do not have as much of

an e¡ect as jumps in the stock price, they do have an important in£uence on the
optimal portfolio. Interestingly, jumps involatility decrease the optimal portfolio
weight when go1, and increase the optimal portfolio weight when g41. Intui-
tively, the reason for this is related to the e¡ect of a volatility jump on the distri-
bution of the investor’s returns. Recall that in this model, the instantaneous
Sharpe ratio of returns is increasing in the volatilityV because of the form of
the risk premium.Thus, when an event occurs, the investor su¡ers an immediate
loss because of the downward jump in the stock price, but then faces an improved

Table II
PortfolioWeight andWealth Equivalent Loss Comparisons for the Cali-

brated ModelWhereJumps Occur Every 25 Years on Average
This table reports portfolioweights for the stochastic volatility model with deterministic jumps
in prices and volatility. Also reported are the percentage wealth equivalent losses for an inves-
tor who ignores the possibilityof event-related jumps.This loss re£ects the cost (as a percentage
of his wealth) to an investor who assumes that jumps cannot occur, calibrates the model to
match historical moments, and follows the portfolio strategy he believes is optimal, but is actu-
ally suboptimal in cases where jumps can occur.The average frequency of an event is 25 years.
The ¢rst column reports the portfolioweights when the jump sizes are both zero (no jumps).The
second column reports the portfolio weights and wealth equivalent losses when the stock price
jump is � 25 percent and the volatility jump is zero (stock jumps only).The third column reports
the portfolio weights and wealth equivalent losses for the baseline case where the stock price
jump is � 25 percent and the volatility jumps to 50 percent. Each scenario is calibrated tomatch
the parameter estimates inTable 1 of Pan (2002).

No Jumps Stocks Jumps Only
Both Stock andVolatility

Jumps

Risk Aversion
Parameter

Portfolio
Weight

Portfolio
Weight

Wealth
Equivalent

Loss
Portfolio
Weight

Wealth
Equivalent

Loss

0.50 8.106 3.914 100.0 3.865 100.0
1.00 4.396 3.163 100.0 3.163 100.0
2.00 2.305 1.929 3.2 2.010 2.0
3.00 1.564 1.356 1.3 1.432 0.5
4.00 1.183 1.042 0.7 1.107 0.2
5.00 0.952 0.845 0.5 0.901 0.1
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risk-return trade-o¡ because the jump in volatility increases the Sharpe ratio.
This pattern induces a type of negative serial correlation or smoothness into
the time series of the investor’s returns which can be shown to reduce both the
¢rst and second moments of the distribution of the investor’s terminal wealth. As
shown by Samuelson (1991), however, investors who are less risk averse than loga-
rithmic (go1), will reduce their portfolio weight as this smoothing increases,
while the opposite is true for investors who are more risk averse than logarith-
mic.Thus, an increase in the volatility jump size parameter k leads to a decrease
in the portfolioweight for go1, and to an increase in the portfolioweight for g41.
Another way of seeing this is to note that for g41, the investor’s utility is un-
bounded from below as his wealth approaches zero.Thus, the investor is particu-
larly averse to a run of successive negative returns. Since a jump inVreduces the
likelihood of a run of negative returns, the investor with g41 is more con¢dent
and takes a larger stock position. In contrast, for go1, the investor’s utility is
bounded from below but unbounded from above.Thus, the investor bene¢ts less
from the reduction invariance of the distribution of terminalwealth and reduces
his portfolio weight because of the reduction in the ¢rst moment.12

Another interesting issue to consider is the loss su¡ered by an investor who
does not consider the e¡ects of price and volatility jumps in making portfolio
decisions.13 To examine this, we do the following. Assume that there is an investor
who believes that there are no jumps, implying that l5 m5 k5 0. This investor
calibrates his model to match the moments using the procedure described ear-
lier. Given this calibration, the investor then follows the portfolio strategy that
would be optimal if l5 m5 k5 0. Let us denote this strategy f̂f. Now assume that
there are actually jumps in prices and volatility. In this situation, the optimal
portfolioweightf n di¡ers from f̂f, and the investor su¡ers a loss by following this
strategy. Following a procedure similar to that used to solve forJ(W,V, t), we can
solve for the investor’s utility of wealth function when he follows strategy f̂f. De-
note this utility of wealth functionK(W,V, t). Because f̂f is suboptimal, it is clear
that K(W,V, t)oJ(W,V, t). To quantify the loss, we assume that this investor
following the suboptimal strategy starts withW51, and solve for the ŴW such that
an investor with W ¼ ŴW who followed the optimal strategy would attain the
same level of utility. Speci¢cally, this utility equivalent wealth ŴW is obtained by
solving numerically the equation JðŴW;V; tÞ ¼ Kð1;V; tÞ. Note that the utility
equivalent wealth ŴW is less than or equal to one since following the suboptimal
strategy f̂f reduces the utility of the investor’s wealth. Finally, we calculate the
loss using this wealth-based metric by taking the di¡erence 1� ŴW and convert-
ing it into percentage terms by multiplying by 100.We designate this metric the
wealth equivalent loss.
Table II reports the wealth equivalent losses for an investor who does not con-

sider the e¡ects of jumps.There are several key features shown inTable II. First,

12Consistent with this intuition, when both stock price and volatility jumps are positive,
the e¡ect of an increase in the volatility jump size parameter k is reversed. In particular,
the portfolio weight is then an increasing function of k for go1, and vice versa.

13We are grateful to the referee for raising this issue.
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when the suboptimal strategy f̂f exceeds the bound in Proposition 1, then a jump
to ruin is possible and clearly,K(W,V, t)5 �N. In these cases, it is clear that the
wealth equivalent loss of following the suboptimal strategy is 100 percent; the
investor obtains the same expected utility that he would if he had no wealth at
all. Second, Table II shows that the wealth equivalent loss can be nontrivial for
other ranges of the risk aversion parameter. Speci¢cally, when g5 2.00, the
wealth equivalent loss is 3.2 percent when only price jumps can occur, and is 2.0
percent when both price and volatility jumps can occur.Table II also shows that
the wealth equivalent loss is a decreasing function of g.
Although we have calibrated the model to historical U.S. returns, it is impor-

tant to recognize that U.S. returns may not fully re£ect the size of potential jump
events. The reason for this is the possibility of a survivorship bias, since the
United States has experienced historically high returns.This point is also consis-
tent with Jorion and Goetzmann (1999) who show that many countries have ex-
perienced huge market declines during relatively short periods of time during
the past century. In manycases, major events such as wars or political crises have
actually led to stock markets being closed for years (or even decades). These
closures have often resulted in catastrophic losses for investors. To re£ect this
downside risk to ¢nancial markets, we also consider a scenario where stock mar-
ket jumps of � 50 percent and volatility jumps to 70 percent occur at an average
frequencyof 100 years. Following the same calibration approach as before implies
parameter values for this scenario of a5 0.11512, b55.3000, s50.21099,
Z5 4.90224, r5 �0.57000, m5 �0.50000, k50.46578, and l5 0.46039.
Table III reports the optimal portfolio weights for this alternative scenario.

Even though the frequency of an event is much less, it has an even larger e¡ect
on the optimal portfolio weight than inTable II. For example, the optimal portfo-
lio weight for an investor with a risk aversion parameter of two is still 2.305 if no
jumps can occur. If only jumps in the stock price can occur, then the portfolio
weight is now 1.395 rather than 1.929. If both jumps in the stock price and volati-
lity can occur, the optimal portfolio weight is now 1.481 rather than the value of
2.010 given inTable II. As before, jumps in volatility decrease the optimal portfo-
lio weight for go1, and vice versa.
Table III also reports the corresponding wealth equivalent losses. As in Table

II, the wealth equivalent loss can be 100.0 percent when the bound given in Pro-
position 1 is violated. It is interesting to note, however, that there is a case shown
in Table III where an investor following the suboptimal strategy attains K(W,V,
t)5 �N even when f̂f does not violate the bound given Proposition 1. Speci¢-
cally, when g5 3.00, an investor who does not consider the e¡ects of volatility
jumps has a portfolio weight of 1.564 (which does not violate the bound) but still
has awealth equivalent loss of 100.0 percent when both price and volatility jumps
can occur. Intuitively, this occurs because the ¢niteness of the expected utility
function can only be guaranteedwhen the optimal strategy f n is followed.14 Spe-
ci¢cally, when the suboptimal portfolio weight f̂f is su⁄ciently high (but still less
than the bound given in Proposition 1), the return distribution for the investor’s

14Note that in this case, g53, which means that utility is unbounded from below.
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wealth may be such that the expectation of his terminal utility equals �N. For
example, consider the case where g5 2, and expected utility equals �E[1/WT].
Even though all positive moments of the distribution ofWT are ¢nite when f̂f is
followed, the expectation E[1/WT}] may fail to exist, implying K(W,V, t) 5 �N.
Thus, evenwhen a jump to complete ruin cannot occur, a strategy may be so sub-
optimal that the investor has a wealth equivalent loss of 100 percent.15 Another
way of seeing this is by considering the case where the stock price jump is � 50
percent. By following a strategy where f is less than two, ruin can be avoided.
However, imagine that f̂f is close to two, say 1.99. If a jump occurs, the investor
will clearly lose virtually all of his wealth. After the jump, however, the investor
would rebalance his portfolio to attain f̂f ¼ 1:99 again.Thus, if another jump oc-
curs, the investor’s remaining wealth will again be virtually eliminated.The key
point is that even though total ruin does not occur, the resulting distribution of
WT has enough mass in the neighborhood of zero that the expected utility func-
tion need not be ¢nite.Whenf is more distant from the bound in Proposition 1, as
is the case for f n, this situation does not arise and expected utility is ¢nite.

Table III
PortfolioWeight andWealth Equivalent Loss Comparisions for the Cali-

brated ModelWhereJumps Occur Every 100 Years on Average
This table reports portfolioweights for the stochastic volatility model with deterministic jumps
in prices and volatility. Also reported are the percentage wealth equivalent losses for an inves-
tor who ignores the possibilityof event-related jumps.This loss re£ects the cost (as a percentage
of his wealth) to an investor who assumes that jumps cannot occur, calibrates the model to
match historical moments, and follows the portfolio strategy he believes is optimal, but is actu-
ally suboptimal in cases where jumps can occur.The average frequency of an event is 100 years.
The ¢rst column reports the portfolioweights when the jump sizes are both zero (no jumps).The
second column reports the portfolio weights and wealth equivalent losses when the stock price
jump is � 50 percent and the volatility jump is zero (stock jumps only). The third column re-
ports the portfolio weights and wealth equivalent losses for the baseline case where the stock
price jump is � 50 percent and the volatility jumps to 70 percent. Each scenario is calibrated to
match the parameter estimates inTable 1 of Pan (2002).

No Jumps Stocks Jumps Only
Both Stock andVolatility

Jumps

Risk Aversion
Parameter

Portfolio
Weight

Portfolio
Weight

Wealth
Equivalent

Loss
Portfolio
Weight

Wealth
Equivalent

Loss

0.50 8.106 1.993 100.0 1.987 100.0
1.00 4.396 1.859 100.0 1.859 100.0
2.00 2.305 1.395 100.0 1.481 100.0
3.00 1.564 1.059 30.5 1.174 100.0
4.00 1.183 0.844 11.2 0.956 5.3
5.00 0.952 0.698 6.3 0.801 2.2

15 This feature appears in many other continuous time portfolio choice models and is not
unique to jump di¡usion models. For other examples, see Liu (1999).
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Finally,Table III shows thewealth equivalent losses can be signi¢cant for other
parameter values. For example, when only price jumps can occur, an investor
with g5 3.00 who ignores the e¡ects of jumps has a wealth equivalent loss of
30.5 percent. For larger values of g, the wealth equivalent losses are smaller, but
are still economically signi¢cant.
The results inTables II and III are based on two simple calibrations of the mod-

el. Given than there is always uncertainty about the precise values of estimated
parameters, however, it is useful to provide some additional information about
the sensitivityof the optimal portfolioweights to the key jump size and frequency
parameters.To this end,Table IVreports the optimal portfolioweights for various
combinations of jump frequencies and price jump sizes, whileTableVreports the
optimal portfolio weights for various combinations of jump frequencies and vola-
tility jump sizes. For each set of jump size and frequency parameters in these two
tables, the a, Z, and s parameters are chosen to match the three moments from
Table 1 of Pan (2002) using the same procedure as before.We note that in a few
cases involving large but infrequent jumps, these moments cannot be matched,
since they imply negative values for s; these cases are designated by a dash in
Tables IVandV.
Tables IVandV indicate that the optimal portfolio weight is clearly a¡ected by

both the jump size and frequency parameters.The size of the price jump appears
to have the largest e¡ect on the optimal portfolioweight.The size of the volatility
jump as well as the level of the frequency parameter can also have important ef-
fects. Despite this dependence on the parameter values, however,Tables IVandV
indicate that the optimal portfolio weight is generally fairly robust to small per-
turbations in the parameter values.This is important, since it implies that even if
the jump size and frequency parameters are estimatedwith some error (provided
it is not overly large) from historical data, the general implications for optimal
portfolio choice may still be qualitatively valid.
Admittedly, we have focused only on simple calibrations of one of the simplest

versions of the model. Despite this, however, we believe that several important
general insights about the role that event risk could play in real-world portfolio
decisions emerge from this analysis. Foremost among these is that investors have
strong incentives to signi¢cantly reduce their exposure to the stock market when
they believe that there is event risk. This is true even when the probability of a
major downward jump in stock prices is very small, as in the scenario of a � 50
percent jump occurring every 100 years on average. Certainly, jumps of this mag-
nitude and frequency cannot be ruled out; it is all too easy to think of extreme
situations where a downward jump of this magnitude could occur during the
next century even in the United States, particularly in the wake of September
11, 2001. Our analysis suggests a possible reason why historical levels of partici-
pation in the stock market have been much lower than standard portfolio choice
models would view as optimal.16

16 For example, see Mankiw and Zeldes (1991), Heaton and Lucas (1997), and Basak and Cuo-
co (1998).
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V. Conclusion

In this paper, we study the e¡ects of event-related jumps in prices andvolatility
on investment strategies. Using the double-jump frameworkof Du⁄e et al. (2000),
we take advantage of the a⁄ne structure of the model to provide analytical solu-
tions to the optimal portfolio problem.

Table IV
PortfolioWeights for the Calibrated Model forVarying Percentage Price

Jumps andJump Frequencies
This table reports portfolio weights for the stochastic volatility model with deterministic jump
sizes in prices and volatility. Each combination of parameters is calibrated to match the para-
meter estimates inTable 1of Pan (2002).The frequency of jumps is expressed in years and equals
the reciprocal of the jump intensity. Sets of parameters for which the moments cannot be
matched are denoted by a dash.

Risk
Aversion
Parameter

Volatility
Jumps to

Frequency
of Jumps

Percentage Price Jump Size

� 10 � 20 � 30 � 40 � 50

0.50 25 20 7.772 4.825 3.219 2.398 1.900
30 7.871 4.903 3.272 2.444 1.945
40 7.924 4.938 3.295 2.465 1.965
50 7.958 4.957 3.307 2.476 1.976
100 8.029 4.987 3.326 2.493 1.993

0.50 50 20 7.757 4.752 3.175 F F
30 7.838 4.855 3.246 2.423 1.925
40 7.892 4.906 3.278 2.452 1.953
50 7.929 4.934 3.295 2.467 1.968
100 8.011 4.979 3.322 2.490 1.991

2.00 25 20 2.287 2.091 1.687 1.325 1.066
30 2.293 2.149 1.790 1.426 1.153
40 2.296 2.182 1.858 1.496 1.216
50 2.298 2.204 1.908 1.549 1.264
100 2.302 2.251 2.040 1.702 1.403

2.00 50 20 2.262 2.130 1.764 F F
30 2.281 2.184 1.859 1.494 1.217
40 2.288 2.211 1.920 1.557 1.270
50 2.292 2.228 1.964 1.605 1.312
100 2.299 2.265 2.081 1.746 1.440

5.00 25 20 0.948 0.897 0.776 0.639 0.528
30 0.949 0.913 0.814 0.686 0.572
40 0.950 0.922 0.839 0.719 0.605
50 0.950 0.928 0.855 0.743 0.631
100 0.951 0.939 0.896 0.811 0.708

5.00 50 20 0.928 0.917 0.839 F F
30 0.939 0.931 0.870 0.762 0.655
40 0.943 0.937 0.885 0.784 0.674
50 0.945 0.940 0.895 0.801 0.693
100 0.949 0.946 0.920 0.852 0.755
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The presence of event risk changes the standard portfolio problem in several
important ways. First, since the investor no longer has complete control over his
wealth, the investor acts as if some part of his portfolio consists of illiquid assets
and he is much less willing to take leveraged or short positions.The optimal port-
folio strategy blends elements of both a standard dynamic hedging strategyand a
buy-and-hold or ‘‘illiquidity’’ hedging strategy. Furthermore, event risk a¡ects

TableV
PortfolioWeights for the Calibrated Model forVaryingVolatilityJump

Sizes andJump Frequencies
This table reports portfolio weights for the stochastic volatility model with deterministic jump
sizes in prices and volatility. Each combination of parameters is calibrated to match the para-
meter estimates inTable 1of Pan (2002).The frequency of jumps is expressed in years and equals
the reciprocal of the jump intensity. Sets of parameters for which moments cannot be matched
are denoted by a dash.

Risk Aversion
Parameter

Percentage
Price Jump

Frequency
of Jumps

Volatility Jumps to

20 30 40 50

0.50 � 25 20 3.876 3.861 3.841 3.816
30 3.932 3.924 3.912 3.896
40 3.958 3.953 3.945 3.934
50 3.971 3.967 3.962 3.954
100 3.992 3.991 3.989 3.986

0.50 � 50 20 1.905 1.894 1.877 F
30 1.947 1.942 1.935 1.925
40 1.966 1.964 1.959 1.953
50 1.977 1.975 1.972 1.968
100 1.993 1.993 1.992 1.991

2.00 � 25 20 1.885 1.911 1.942 1.963
30 1.976 1.996 2.022 2.044
40 2.033 2.050 2.071 2.091
50 2.072 2.087 2.105 2.123
100 2.167 2.177 2.188 2.199

2.00 � 50 20 1.054 1.080 1.117 F
30 1.146 1.163 1.188 1.217
40 1.209 1.224 1.245 1.270
50 1.258 1.271 1.289 1.312
100 1.399 1.409 1.423 1.440

5.00 � 25 20 0.833 0.854 0.878 0.887
30 0.864 0.880 0.897 0.090
40 0.882 0.894 0.908 0.918
50 0.894 0.904 0.916 0.924
100 0.920 0.926 0.932 0.937

5.00 � 50 20 0.515 0.546 0.596 F
30 0.562 0.584 0.616 0.655
40 0.597 0.615 0.641 0.674
50 0.623 0.640 0.663 0.693
100 0.702 0.715 0.733 0.754
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investors with low levels of risk aversion more than it does highly risk-averse in-
vestors.These results illustrate that the implications of event risk for the optimal
portfolio strategy are both subtle and complex. Our analysis suggests that jumps
in both prices and volatility have important e¡ects on optimal portfolios,
although our calibrated exercise indicates that price jumps tend to have a larger
e¡ect than do volatility jumps. Finally, our results suggest that if market partici-
pants believe that there is even a remote chance of a sudden market collapse,
their portfolio behavior could be very di¡erent from that implied by classical
portfolio choice models which abstract from event risk.
This paper is only a ¢rst attempt to systematically study the e¡ect of event risk

on optimal portfolio choice. Along with other studies in the ¢eld of asset alloca-
tion, we use a partial equilibrium approach by taking prices as given. Clearly,
however, an equilibrium study would be necessary to provide a complete under-
standing of the interaction between price dynamics and investor’s portfolio
choices. Nevertheless, we hope that this partial equilibrium study provides some
understanding of the complete picture.

Appendix: Proofs

Proof of Proposition 1: Let fW n
t ; 0 � t � Tg be the wealth process attained by

an investor who follows the optimal portfolio processf n.We ¢rst remark thatW n
T

must be positive almost surely. Otherwise, a nonzero probability ofW n
T � 0 will

result inE½UðW n
T Þ� ¼ �1, which is inferior to investing all of the positive initial

wealth in the riskless asset.
We next show that for W n

T to be positive almost surely, W n
t must be positive

almost surely for any toT. To see this, we ¢rst condition on the event that there
is no jump between t andT. This implies

WT ¼Wt exp
Z T

t
rþ ftðZ� mlÞVt �

f2
tVt

2

� �
dtþ ft

ffiffiffiffiffiffi
Vt

p
dZ1

� �
; ðA1Þ

for any portfolio policy f. Such an event of no jump between t and T has a
positive probability given the assumption that

0oEt exp �
Z T

t
lVtdt

� �� �
o1: ðA2Þ

SoW n
T40 almost surely impliesW n

t 40 almost surely for any t.
Finally, we show that forW n

t 40 almost surely, the optimal portfolio weight f n

must satisfy equation (7). Suppose equation (7) is not satis¢ed for some t. Then
there is a positive probability of a jump event between t and t1Dt for some
Dt40. Conditioning on such a jump event, the time t wealth isWt5Wt� (11fX),
whereWt� is the wealth before the jump event, and where X is the jump size. By
the de¢nition of XInf and XSup, we have for an arbitrary e40, a positive probabil-
ity of X 2 ðXInf ;XInf þ eÞ and a positive probability of X 2 ðXSup � e;XSupÞ.Thus,
if (7) is not satis¢ed, there is a positive probability ofW n

t � 0, which contradicts
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the assumption thatW n
t is the wealth process generated by the optimal portfolio

weight f n.

Proof of Proposition 2: Suppose that the indirect utility function J is of the con-
jectured form in equation (11) with state-independent time-varying coe⁄cients
A(t) and B(t) to be determined shortly.Then the ¢rst-order condition of the HJB
equation (10) implies

f n
t ¼� JW

WJWW
ðZ� mlÞ þ rs

JWV
JW

þ lM1
J

WJW

� �

¼ Z� ml
g

þ rsB
g

þ lM1

g
; ðA3Þ

which is the optimal portfolio weight given in (17). It should be noted that f n is
state independent and a nonlinear function of B.
We now proceed to derive the ordinary di¡erential equations for the time-vary-

ing coe⁄cientsA(t) andB(t), under which the conjectured form (11) for the indir-
ect utility function J indeed satis¢es the HJB equation (10). For this, we
substitute (11) and (12) into the HJB equation and obtain,

� gf n2V
2

þ f nrsBV þ s2B2V
2ð1� gÞ þ ðrþ f nðZ� mlÞVÞ

þ ða� bV � kVÞ B
1� g

þ lV
1� g

M2 �
lV
1� g

þ 1
1� g

ðA0 þB0VÞ ¼ 0: ðA4Þ

The left-hand side of this expression is an a⁄ne function in V. For this
expression to hold for allV, the constant term and the linear coe⁄cient ofVon
the left-hand side must be set equal to zero separately, which leads to the
ordinary di¡erential equation for B(t) given in (18) and the following ordinary
di¡erential equation forA(t):

A0 þ aBþ ð1� gÞr ¼ 0: ðA5Þ
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