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Temporal Aggregation and the Continuous-Time 
Capital Asset Pricing Model 

FRANCIS A. LONGSTAFF* 

ABSTRACT 

We examine how the empirical implications of the Capital Asset Pricing Model (CAPM) 
are affected by the length of the period over which returns are measured. We show that 
the continuous-time CAPM becomes a multifactor model when the asset pricing relation 
is aggregated temporally. We use Hansen's Generalized Method of Moments (GMM) 
approach to test the continuous-time CAPM at an unconditional level using size 
portfolio returns. The results indicate that the, continuous-time CAPM cannot be 
rejected. In contrast, the discrete-time CAPM is easily rejected by the tests. These 
results have a number of important implications for the interpretation of tests of the 
CAPM which have appeared in the literature. 

FEW RESULTS IN FINANCE are as familiar or as widely used as the linear relation 
between expected returns and market betas implied by the Capital Asset Pricing 
Model (CAPM). However, because both the discrete- and continuous-time ver- 
sions of the CAPM lead to this linear relation,1 the literature often fails to 
distinguish between their respective empirical implications. For example, dis- 
crete- and continuous-time models are frequently used interchangeably to moti- 
vate empirical tests that use discretely observed return data.2 

This paper examines how the empirical implications of the CAPM are affected 
by the length of the period over which returns are measured.3 We show that, if 
this period differs from the implicit time frame of the model, then the familiar 
linear CAPM relation need not hold for the observed returns. For example, the 
CAPM can imply a multifactor expression for expected returns when the asset 
pricing relation is properly aggregated. This aspect has many important impli- 
cations for applied work as well as the interpretation of empirical tests of the 
CAPM that have appeared in the literature. 

We illustrate the importance of the temporal aggregation issue by deriving the 
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suggestions received from Warren Bailey, Stephen Buser, K. C. Chan, George Constantinides, Wayne 
Ferson, Campbell Harvey, Shmuel Kandel, Hersh Shefrin, Robert Stambaugh, Ren6 Stulz, Finance 
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'The CAPM has been derived in a discrete-time setting by Sharpe (1964), Lintner (1965), Black 
(1972), Constantinides (1980), and many others. Merton (1971, 1973) and Cox, Ingersoll, and Ross 
(1985b) (implicitly) have derived the continuous-time CAPM relation. 

2For example, see Chan, Chen, and Hsieh (1985), Chen, Roll, and Ross (1986), Gibbons and 
Ferson (1985), Ferson, Kandel, and Stambaugh (1987), and Ferson (1988). 

3Grossman, Melino, and Shiller (1987) discuss the effects of aggregation over time on the 
continuous-time CAPM. See also Christiano (1984) and Bergstrom (1984). 
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cross-sectional restriction on the means of discretely observed returns imposed 
by a simple version of the continuous-time CAPM. This formulation of the 
continuous-time CAPM is based on Cox, Ingersoll, and Ross (CIR (1985b)) and 
has the advantage of allowing both expected returns and covariances to be time 
varying.4 The cross-sectional restriction is obtained by aggregating the continu- 
ous-time price processes temporally, deriving closed-form expressions for the 
continuous-time parameters in terms of the moments of discretely observed 
returns, and then substituting these expressions into the continuous-time asset 
pricing relation. 

The resulting form of the continuous-time CAPM has a number of interesting 
and important implications for the properties of observable returns. We show 
that the relative riskiness of assets (as measured by their market betas) can 
depend on the length of the period over which returns are computed. This means 
that, although asset A may appear riskier than asset B when daily returns are 
used to compute market betas, the opposite could be true for some other return 
measurement period.5 In addition, we show that the relation between expected 
returns and market betas need not be strictly linear. However, for returns 
measured over short intervals such as a month, the continuous-time CAPM 
implies that expected returns can be approximated as linear functions of uncon- 
ditional market covariances, own variances, and first-order autocovariances. 
Thus, expected returns are approximated by a three-factor model in the contin- 
uous-time CAPM. 

We propose a test of this linear moment restriction using the Generalized 
Method of Moments (GMM) technique of Hansen (1982). Because these tests 
are performed at an unconditional level, long time series of returns can be used 
in order to obtain precise estimates of the sample moments as in Chan and Chen 
(1988). The simple functional form of the moment equations allows us to separate 
the data from the parameters and compute the GMM estimators directly in a 
single-step procedure similar to that used by Gibbons and Ramaswamy (1986). 
The empirical results indicate that the continuous-time CAPM cannot be rejected 
even when confronted with returns from portfolios formed on the basis of size. 
In contrast, the empirical tests strongly reject the discrete-time (single-factor) 
CAPM. The results also suggest that unconditional variances and autocovari- 
ances have significant incremental explanatory power for cross-sectional differ- 
ences in unconditional returns. 

Section I discusses the continuous-time CAPM and derives its implications for 
the properties of returns measured over discrete intervals. Section II discusses 
the GMM methodology. Section III describes the data and the formation of 
portfolios. Section IV presents the empirical results. Section V summarizes the 
paper and makes concluding remarks. 

'Gibbons and Ferson (1885), Ferson, Kandel, and Stambaugh (1987), and Ferson (1988) examine 
models which allow expected returns to vary through time. Bollerslev, Engle, and Wooldridge (1988), 
Bodurtha and Mark (1987), Chan and Chen (1988), and Harvey (1988) study specifications which 
allow for time-varying covariances. 

5 This is because market betas computed from discretely observed returns can be expressed as 
weighted combinations of the assets' continuous-time parameters. As the return measurement period 
varies, the weights change (nonproportionally) and the relative rankings of the betas can shift. 



Temporal Aggregation and the Continuous-Time CAPM 873 

I. The Temporally Aggregated CAPM 

In this section, we derive the restrictions imposed by the continuous-time CAPM 
on returns measured over discrete intervals of time. We focus on the continuous- 
time CAPM because it unambiguously identifies the period over which the asset 
pricing relation holds (an instant). This property is not shared by the discrete- 
time CAPM, which leaves the relevant portfolio holding period unspecified. We 
will show in this section that the implicit time frame is a major factor in 
determining the properties of expected returns in the CAPM. 

In deriving these restrictions, we use the well-known continuous-time economy 
of CIR (1985b) as the basic setting for the model. This intuitively appealing 
framework has the advantage of providing a simple yet complete characterization 
of production and investment opportunities as well as technological change in a 
general equilibrium context. In addition, this framework has the realistic feature 
of allowing expected returns and market betas to vary through time. This feature 
is particularly important in view of the mounting empirical evidence of time 
variation in expected returns and risk measures.6 

In the CIR (1985b) framework, there are a fixed number of identical individuals 
with time-additive logarithmic preferences who allocate their wealth between 
consumption and physical investment. All physical investment is performed by 
stochastic constant returns to scale technologies or firms which produce a single 
good. The returns from investing Pi in the ith firm are governed by the stochastic 
differential equation: 

pi= axiXdt + oi ,'XdZi, (1) 

where axi and ai are constants, Zi is a scalar7 Wiener process, and X is a state 
variable which induces random technological change. The state variable X has 
the following dynamics: 

dX = K (g-X)dt + skaXdZx, (2) 

where K, A, and s are constants and Zx is also a scalar process. Together, the 
values of each firm and the current level of the state variable completely describe 
the state of the economy and the distribution of future investment returns. 

With these assumptions about preferences and the dynamic evolution of the 
investment opportunity set, the results of Merton (1971, 1973) and CIR 
(1985a,b) can be used to show that the representative investor selects a mean- 
variance efficient portfolio each instant. Since the assumption of logarithmic 
preferences implies that market weights are constant and that the risk-free rate 
is proportional to X, the continuous-time CAPM relation can be expressed as 

ai = X0 + X1 iM, (3) 

'For example, see Fama (1981), Keim and Stambaugh (1986), Gibbons and Ferson (1985), and 
Fama and French (1988). 

'Assuming that Z, (and Zx in (2)) is a scalar Wiener process involves no loss of generality; if Z, is 
a vector process, we can define a new scalar process by factoring the common >/X term and summing 
the normally distributed components. 
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where Xo and X1 are constants and aiM is the constant portion of the instantaneous 
covariance of the return on firm i with the market's return.8 Thus, (3) places the 
familiar linear restriction on instantaneous expected returns; all cross-sectional 
variation in instantaneous expected returns is due entirely to cross-sectional 
variation in the instantaneous covariances with the market's return. 

Because this restriction is imposed on the parameters of instantaneous returns, 
we need to express the restriction in terms of observable data in order to render 
it testable. In doing this, our approach is to identify the continuous-time param- 
eters using the unconditional moments of returns measured over discrete inter- 
vals. First, we obtain an expression for temporally aggregated continuously 
compounded returns from the dynamics in (1) and (2) by applying Ito's Lemma, 
integrating the resulting dynamics, and applying Fubini's Theorem to change the 
order of integration. The mathematical details of this procedure are described in 
the Appendix. Next, we designate the unconditional mean, variance, covariance 
with the return on the market, and first-order autocovariance of the continuously 
compounded returns for firm i measured over an interval r as Mi, Vi, Ci, and Ai, 
respectively. Using the temporally aggregated expression for returns in the 
Appendix and taking the appropriate expectations gives 

Mi= gr(ai - ai/2), (4) 

Vi = A7?i2 + - (ai- 2/2)iX + 2 (ai- i/2)2, (5) 
K K 

Ci = Traim +-Al 3vix + (S >2 3+ )~m (ai -a2/2)q (6) 
K K K 

Ai = 24 (a?i _oK/2)aix + 2K3 (ai - /2)2, (7) 

where 

T 1- (8) 
K 

2=_2 -2e I - e -2KT 

~~2 +~eK 1 - 9 
K 2K(9 

6= aM -aM/22 (10) 

4 1 - eK , (11) 

Yix is the constant portion of the instantaneous covariance of the return on firm 
i with changes in the state variable, and aM, 2m , and o0MX are constants (market 
parameters). 

These moments imply a number of interesting properties for discrete returns. 
For example, differentiating Vi with respect to r shows that the variance of 

8The representative investor's first-order conditions imply a,X = r + X1,uMX. However, r = XOX, 
which implies (3). 
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returns does not grow linearly with the length of the holding period. In particular, 
the variance of returns can grow more slowly than implied by a random walk for 
small values of r but can grow at a rate more rapid than implied by a random 
walk for larger values9 of r. Another important property implied by these 
moments is that the value of the market beta for firm i is a function of the length 
of the period over which returns are measured. Thus, betas estimated from daily 
returns need not equal betas estimated from monthly data, all other estimation 
problems aside. Perhaps even more important, the relative ranking of firms by 
betas estimated from daily data need not be the same as the ranking based on 
betas estimated from monthly returns.10 This property underscores the impor- 
tance of considering temporal aggregation in implementing tests of the CAPM. 
Finally, (7) shows that the first-order autocovariance of returns can be either 
positive or negative, depending on the values of the parameter ULx. If uix < 0, 
then the return autocorrelation function can be close to zero for returns measured 
over short holding periods, decline to a minimum for intermediate holding 
periods, and then increase for long holding periods. 

Equations (4), (5), (6), and (7) form a system of four equations in the four 
firm-specific instantaneous parameters axi, ai, TiM, and 0ix. Inverting this sytem 
yields the following explicit expressions for the instantaneous parameters in 
terms of the unconditional moments of returns measured over discrete intervals 
of time: 

1, M + V, 2 A 3 Q144 42)M2 (12) 2=i- i_+22 
A, + (2 2K(T3 

AT 2AT 4 2 K 1 __ _ _ 2_ _ 

2 _ ~~2 M+-C2 

((01K/ /IT _ M ' (14) 

= 4- 226 M' +j U KMj 6A,(15) 

returns. From (3) and (4), the expected return on any firm is of the form: 

M = = + X1OM + M2Oi, (16) 

where X2 iS also a constant. Substituting the expressions for ?i and CiM from (13) 
and (14) ~into (16) and rearranging give a cubic equation for Mi. Solving for M~ 

The intuition for this is that an asset's ability to hedge against shifts in the state variable 
(negative nx) can dampen the growth rate of return variances for small , but the additional variance 
induced by the time-varying expected returns eventually offsets the dampening effect as o increases. 

10 This follows because Cl is a weighted combination of pM, ex, and (af-r 2/2) and because the 
weights do not increase linearly as r increases. For example, the rankings of C, are governed primarily 
by the rankings of U,M for small r. However, as r increases, additional weight is given to the other 
idiosyncratic parameters, which need not have the same cross-sectional ranking as the UM terms. 
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and taking the positive root result in a complicated closed-form expression for 
Mi as a nonlinear function of the three unconditional moments Ci, Vi, and Ai. 
This implies the surprising result that expected returns need not be linear in 
their market betas in the temporally aggregated CAPM. 

Although the expression for Mi is nonlinear, the degree of nonlinearity is 
related to the length of the interval over which returns are measured. Over short 
intervals such as a month, Mi can be approximated11 by the linear expression: 

Mi= YO + YlCi + y2Vi + Y3Ai, (17) 

where yo, 'Yl, Y2, and y3 are constants. Although the values of the y coefficients 
depend on the parameters of the unobservable state variable dynamics, it is 
readily shown that yo > 0, oyi > 0, and Y2 < 0 for small r. (The sign of -y3 is 
indeterminate.) Assuming the restriction imposed on expected returns by the 
continuous-time CAPM to be linear greatly reduces the computational burden in 
performing the empirical tests. This linear version of the temporally aggregated 
model forms the basis of the empirical tests in Section III. 

Note that (17) is a three-factor model of expected returns in the sense that all 
cross-sectional variation in expected returns is due to differences in just three 
variables. This is important because it implies that empirical tests which reject 
a single-factor model of expected returns cannot be interpreted as rejecting all 
forms of the CAPM. However, also note that two of the three factors in (17) are 
purely idiosyncratic; (17) is not equivalent to a model in which there are three 
common priced factors. 

II. The Econometric Methodology 

In the previous section, we derived a linear restriction imposed by the continuous- 
time CAPM on unconditional expected returns measured over discrete intervals. 
In this section, we propose a simple yet direct test of this linear restriction using 
observable returns. 

Our econometric approach is to test (17) as a set of overidentifying restrictions 
on a system of moment equations using the Generalized Method of Moments 
(GMM) technique of Hansen (1982). This technique has a number of important 
advantages which make it an intuitive and logical choice for testing the contin- 
uous-time CAPM relation. First, the GMM approach does not require that the 
joint distribution of returns be multivariate normal; the asymptotic justification 
for the GMM procedure requires only that the joint distribution of returns be 
stationary and ergodic and that the relevant expectations exist. This feature is 
of particular importance in testing the continuous-time CAPM since the Appen- 

11 Using estimates of A, from monthly returns shows that the cubic and constant terms in the 
expression for M, are very small relative to the other terms for small r. Dropping the cubic and 
constant terms and dividing the resulting quadratic expression by M, result in (17). In order to 
determine how closely (17) approximates M, for monthly returns, we used sample estimates of A,, C,, 
and V, for the monthly returns on twenty size-based portfolios and the value-weighted market index 
during the 1966-1985 period and examined the approximation error implied by (17) for a wide range 
of values for the parameters K and A/la2. The approximation error for the twenty portfolios was always 
less than one basis point per month and was generally much less. 
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dix shows that returns need not be multivariate normal in this time-varying 
framework. Second, the GMM estimators and their standard errors are consistent 
even if returns are conditionally heteroskedastic or if disturbances are serially 
correlated. French, Schwert, and Stambaugh (1987) have recently presented 
convincing evidence of the conditional heteroskedasticity of market returns. 
Finally, tests using the GMM technique can be implemented with long time 
series of returns since the asset pricing relation is expressed in terms of uncon- 
ditional moments. This means that the parameters will be more precisely esti- 
mated than in conventional approaches,12 which use only a limited time series of 
returns in order to avoid variation in the risk measures. The GMM technique 
has also been used in an asset pricing context by Hansen and Singleton (1982), 
Brown and Gibbons (1985), Ferson (1988), Harvey (1988), and others. 

Define d to be the 3n + 4 parameter vector with elements yo, yi, Y2, Y3, C1, 
C2, ... , Cn, V1, V2, ... , Vn, A1, A2, . *, An, where n is the number of assets (or 
portfolios). Define the vector13 ht (d3) as 

R- R o- yiC1 -2 V1 - 3A, 

Rnt-- Y0 - 1 Cn - 2 Vn - _Y3An 

Rit - V,. 

ht (i) = RltRMt- (18) 

RjtRmt - C 

Rnt RMt-Cn 

RjtRjt_j-A1 

RntRnt_-1An 

Under the null hypothesis that the cross-sectional restriction in (17) is true, 
E[ht (d3)] = 0. The GMM procedure consists of replacing E[ht (d3)] with its sample 
counterpart gT(3), where 

gT(/) = - Et=, ht(i), (19) 
T- 

12 For example, see Fama and MacBeth (1973), Gibbons (1982), Stambaugh (1982), and Chan, 
Chen, and Hsieh (1985). 

13 Following French, Schwert, and Stambaugh (1987), we do not adjust for the means in computing 
second moments because this adjustment is so small and significantly increases the computational 
difficulty of the estimation procedure. Correcting for the mean had little effect on the value of the 
weighting matrix. 
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and then choosing parameter estimates that minimize the quadratic form: 

JT(/3) = gT(3) WT(3)gT(/3), (20) 

where WT(3) is a positive-definite symmetric weighting matrix. Matrix differ- 
entiation shows that minimizing JT(3) with respect to 3 is equivalent to solving 
the homogeneous system of equations (orthogonality conditions): 

DV(3) WT()gT() = 0, (21) 

where D (p) is the Jacobian Matrix of gT(f) with respect to 3 and is independent 
of the data (nonstochastic) because of the structure of gT(O). 

If n = 4, the parameters are just identified and JT(G) attains zero for all choices 
of the weighting matrix WT(3). In the more general case where n > 4, the GMM 
estimates of the overidentified parameter vector d depend on the choice of WT(13). 
Hansen (1982) shows that choosing WT(13) = S'1 (d), where 

S(3) = E[hT(Ih)h3()], (22) 

results in the GMM estimator of d with the smallest asymptotic covariance 
matrix. 

As in Gibbons and Ramaswamy (1986) and Richardson and Smith (1988), the 
special structure of gT (3) implies that S(3) does not depend on d (S S(3)). 
Thus, the GMM estimation can be conducted in a single step. Newey and West 
(1987) derive a consistent estimator of S which has the important property of 
being positive definite. Designating this estimator by S0, the asymptotic covari- 
ance matrix for the GMM estimate of 3 is 

T (Do(0)So VDo(0))-1, (23) 

where Do is the Jacobian evaluated at the estimated parameters. This covariance 
matrix can be used to test the significance of the individual parameters. Note, 
however, that finding the coefficients yi, Y2, and y3 to be significant (that is, 
finding that CV, Vz, and A, are priced) does not imply that the linear restriction 
is true. This follows since 71 , Y2, and y3 can be significant without explaining all 
cross-sectional variation in the unconditional means; the linear relation places a 
stronger restriction on expected returns. 

The empirical tests of the continuous-time CAPM can be conducted as simple 
tests of the overidentifying restrictions. Under the null hypothesis that (17) is 
true, only 3n + 4 parameters appear in the 4n moment equations (the vector 
gT(/)). Hansen (1982) shows that T times the minimized value of JT(C) is 
asymptotically distributed as a X2( q) variate under the null hypothesis, where q 
= n - 4 is the number of overidentifying restrictions. 

III. The Data 

We implement the tests described in the previous section using CRSP monthly 
stock return data for the sixty-year period from 1926 to 1985. Because our 



Temporal Aggregation and the Continuous- Time CAPM 879 

objective is to test a restriction on unconditional moments, we follow Chan and 
Chen (1988) and use long time series of returns to compute the appropriate 
sample moments. Accordingly, we organize the data into three twenty-year 
periods (1926-1945, 1946-1965, and 1966-1985) and test the linear restriction on 
mean returns within each of the individual periods. The overall test for the full 
sixty-year period can be conducted by aggregating the x2 test statistics from the 
individual twenty-year periods. (We assume that the test statistics are independ- 
ent across the periods.) 

In principle, the tests could be performed at an individual firm level since the 
unconditional sample moments of individual firms can be estimated to any 
desired degree of precision by using a sufficiently long time series of returns. 
However, this approach is computationally very difficult because of the size of 
the covariance matrix that is inverted in the GMM procedure. Consequently, we 
follow the traditional approach and conduct the tests at the portfolio level. 

Several considerations guide our portfolio formation strategy. First, the port- 
folios should be formed in a manner that preserves cross-sectional differences in 
expected returns; otherwise, the tests will have little or no power. Accordingly, 
we form portfolios on the basis of firm size at the beginning of the period since 
firm size is well-known to be a useful instrumental variable for expected returns.14 
Once formed, we would prefer to hold portfolio composition constant over the 
twenty-year test period. However, this long-term buy-and-hold strategy is not 
practical because a substantial proportion of the smaller firms are not listed for 
the full twenty-year period.15 As a result, attrition introduces bias16 into the 
sample moments unless the portfolios are periodically rebalanced. Consequently, 
we rebalance the size portfolios every five years as a tradeoff between portfolio 
continuity and attrition-induced bias. However, note that this approach implicitly 
assumes that the unconditional moments are unaffected by the rebalancing. 
Specifically, the portfolios are formed by sorting every firm listed in the CRSP 
monthly return file at the beginning of each five-year holding period into one of 
twenty portfolios. Portfolio returns are equally weighted averages of the returns 
on the firms contained within the portfolio. 

Table I presents the average returns, value-weighted market betas, variances, 
and first-order autocorrelations for each of the portfolios over the study period. 
As shown, forming portfolios on the basis of firm size appears to give cross- 
sectional dispersion in all of the moments. Note that the decline in the autocor- 
relation coefficients from the portfolio with the smallest firms (portfolio 1) to 
the portfolio with the largest firms (portfolio 20) is gradual. Thus, cross-sectional 
differences in autocorrelations do not merely reflect the thin trading patterns of 
small firms- discussed by Roll (1983). We use the value-weighted CRSP index in 
estimating the covariances Ci because it reflects the relative weighting of firms 
within the actual market portfolio. 

14 For example, see Chan and Chen (1988). 
15 Over fifty percent of the firms in the smallest size portfolio disappear from the sample in a 

typical twenty-year period. 
16 For example, if the number of firms remaining in a portfolio is decreasing over time, then the 

portfolio is becoming less diversified and its variance is increasing. Thus, estimates of the uncondi- 
tional variance of the portfolio's return will be meaningless. 
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Table I 

Average Monthly Return, Market Beta, Variance, and 
First-Order Autocorrelation by Size Portfolio, 1/1926 to 

12/1985 (720 Observations) 
All returns are continuously compounded. Average betas, variances, and autocorre- 
lations for each size portfolio are averages of the estimates from the three twenty- 
year estimation periods. Market betas are computed using the CRSP value-weighted 
market index. 

Size Average Market First-Order 
Portfolioa Return Beta Variance Autocorrelation 

1 0.01532 1.281 0.01212 0.1766 
2 0.01313 1.280 0.01017 0.1787 
3 0.01283 1.261 0.00889 0.1492 
4 0.01140 1.258 0.00843 0.1565 
5 0.01200 1.260 0.00813 0.1837 
6 0.01061 1.254 0.00754 0.1564 
7 0.01074 1.206 0.00660 0.1663 
8 0.01013 1.202 0.00660 0.1585 
9 0.00973 1.167 0.00596 0.1475 

10 0.00999 1.169 0.00585 0.1372 
11 0.00943 1.184 0.00592 0.1546 
12 0.00837 1.148 0.00591 0.1374 
13 0.00916 1.139 0.00525 0.1444 
14 0.00928 1.100 0.00475 0.1500 
15 0.00892 1.128 0.00493 0.1426 
16 0.00877 1.136 0.00548 0.1482 
17 0.00896 1.049 0.00418 0.1304 
18 0.00774 1.062 0.00446 0.1134 
19 0.00692 1.003 0.00386 0.1050 
20 0.00716 0.955 0.00314 0.0815 

Portfolio 1 includes the smallest firms, portfolio 20 the largest. 

IV. Empirical Results 

In this section, we use the GMM framework to test the moment restrictions 
imposed by the linear asset pricing relation. We also test whether the uncondi- 
tional variance and first-order autocovariance of returns provide incremental 
explanatory power for cross-sectional differences in expected returns after con- 
trolling for the unconditional covariance of returns with the market's return. We 
examine whether the differences between the sample means and the fitted values 
of the means (the residuals) are systematically related to portfolio size in order 
to determine- whether the size effect is explained by the model. Finally, we also 
use the GMM framework to test the moment restrictions imposed by the discrete- 
time CAPM (Mi = yo + y1C). 

A. Tests of the Continuous-Time CAPM 

Using the continuously compounded returns on the twenty size portfolios, we 
obtain GMM estimates of the 3n + 4 = 64 dimensional parameter vector, the 
covariance matrix of the GMM parameter estimates, and the X 2 test statistic for 
the overidentifying restrictions for each of the three twenty-year periods. Under 
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the null hypothesis, only four parameters are required to explain the cross- 
sectional variation in unconditional mean returns; the continuous-time CAPM 
places n - 4 = 16 overidentifying restrictions on the system of moment equations. 
The minimization procedure is repeated with a variety of different starting values 
in order to ensure convergence to the global minimum. 

Table II presents the X 2 test statistics for the overidentifying restrictions. As 
shown, we cannot reject the linear moment restriction of the continuous-time 
CAPM in any of the three twenty-year periods. The p-values for the test statistics 
are, respectively, 0.762, 0.260, and 0.801. The test statistic for the full sixty-year 
study period is given by summing the individual x2 statistics and has a p-value'7 
of 0.714. Thus, the continuous-time CAPM appears to be well supported by the 
data even when confronted with returns from portfolios formed on the basis of 
size. We note that the critical five percent level of the test statistic for the overall 
period is 65.17. This indicates that the overall test statistic would have to be 
fifty-five percent larger before it could be rejected and provides some margin of 
error if the small sample distribution of the test statistic does not correspond 
precisely to its asymptotic distribution."8 

The GMM parameter estimates of 'YO, -Yl, Y2, and y3 are also presented in 
Table II. As indicated, y3 is positive and highly significant in all three periods; 
the t-statistics for y3 are 2.72, 3.35, and 3.47, respectively. This shows that the 
information in the autocovariance Ai has significant cross-sectional explanatory 
power for unconditional expected returns. The positive sign of y3 (in conjunction 
with the positive values of Ai in Table I) implies that greater predictability on 
the basis of previous returns is associated with higher unconditional expected 
returns. 

While the coefficients yo, y', and Y2 are not significant in any of the individual 
twenty-year periods, they are consistent in sign across the periods. Furthermore, 
the signs of yo, y', and Y2 are consistent with the signs predicted in Section I: yo 
> 0, y1 > 0, and Y2 < 0 in each of the three periods. We can examine the 
significance of the coefficients over the full sixty-year study period by examining 
the significance of the average t-statistic for the coefficients. The asymptotic t- 
statistics for these means are reported in the last row of Table II. As shown, the 
mean t-statistics for yo and y1 are not significant at conventional levels. However, 
the mean t-statistic for Y2 is significant at the 0.10 level. This provides weak 
evidence that the unconditional variance has cross-sectional explanatory power 
for mean returns. 

B. The Continuous-Time CAPM and the Size Effect 

As discussed in Section II, the tests of the overidentifying restrictions are tests 
against an alternative which places no cross-sectional restrictions whatsoever on 

" We also tested the overidentifying restrictions for the full sixty-year period directly by pooling 
the data. The resulting p-value for the restrictions was 0.846, which is consistent with the overall p- 
value reported in Table II. In addition, the estimated parameter values (0.0042, 3.34, -2.86, and 31.4) 
are also consistent with the ave-rages of the subperiod parameter estimates. However, because of the 
difficulties associated with the pooling procedure (changing portfolio composition, strict parameter 
stationarity, etc.), the pooled results could potentially be less reliable and are not reported in the 
tables. 

18 However, see Tauchen (1986). 



882 The Journal of Finance 

Table II 

Generalized Method of Moments Paranmeter Estimates and Tests of the 
Continuous-Time CAPM 

Mi = Y0 + Y1 Ci + Y2 Vi + 73 Ai 
The parameters are estimated by the generalized method of moments using continuously compounded 
monthly return data for twenty size portfolios for each of the three twenty-year periods. The t- 
statistics for the parameters are in parentheses. M, is the mean return for portfolio i, C, is the 
covariance of the return for portfolio i with the CRSP value-weighted market index, V, is the variance 
of the returns for portfolio i, and A, is the first-order autocovariance of the returns for portfolio i. 
The test statistics (x2) for the individual periods are x16; the test statistic is x48 for the overall period. 
p-Values for the test statistics are in parentheses. 

Period 'Yo 1 2 3 X2 

1926-1945 0.0014 2.49 -0.19 6.10 11.74 
(0.20) (0.83) (-0.25) (2.72) (0.762) 

1946-1965 0.0101 0.01 -5.59 37.02 19.17 
(1.03) (0.;)0) (-1.53) (3.35) (0.260) 

1966-1985 0.0084 1.89 -2.68- 18.76 11.14 
(1.17) (0.32) (-1.28) (3.47) (0.801) 

Overalla 42.05 
(1.39) (0.66) (-1.77) (5.51) (0.714) 

a The t-statistics reported for the overall period are for the means of the t-statistics reported for 
the individual periods. 

the unconditional expected returns of the portfolios (the just identified system). 
Accordingly, the hypothesis that expected returns are functions of firm size is 
embedded in the alternative hypothesis as a special case. Thus, the failure to 
reject the linear restriction imposed by the continuous-time CAPM is evidence 
against the existence of a size effect after properly controlling for risk. 

However, in order to provide some information about the power of our tests of 
the overidentifying restrictions against the size alternative, we examine whether 
the difference between actual expected returns and the fitted expected returns 
from the estimation procedure (the residuals E), 

E, = M - YO- YlC - 2Vi - Y3Ai, (24) 

is systematically related to firm size. Accordingly, we regress the average values 
of Ei over the sixty-year period on the natural logarithm of average firm size for 
each of the portfolios. The results of this regression are 

= -0.00027 - 0.000004 ln Ave. Size1, (25) 
(-0.79) (-0.15) 

where R2 = 0.0007 and the t-statistics (in parentheses) are based on the White 
(1980) heteroskedasticity-consistent estimate of the covariance matrix. This 
regression indicates that there is little or no relation between the logarithm of 
average firm size and the residuals from the unconditional continuous-time 
CAPM. This result is perhaps more directly demonstrated by simply plotting the 
residuals against the portfolio rankings. Figure 1 shows the unconditional ex- 
pected return for each portfolio over the sixty-year period as well as the residuals. 
As illustrated, there is a pronounced relation between average size and unadjusted 
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Figure 1. Average monthly return (labeled E) and average monthly residual or mis- 
pricing from the GMM estimation (labeled +) by size portfolio for the 1926-1985 period. 
Portfolio 1 contains the smallest firms, portfolio 20 the largest. 

expected returns. However, this relation disappears after risk adjusting by the 
continuous-time CAPM. 

C. Tests of the Discrete-Time CAPM 

We can also conduct tests of the moment restrictions imposed by the discrete- 
time CAPM on unconditional means: 

Mi= Yo + YlCi, (26) 

using the GMM methodology. In this expression, all cross-sectional variation in 
expected returns is due to cross-sectional differences in the covariance with the 
market's return (or, equivalently, the market beta). Thus, the discrete-time 
CAPM places n - 2 = 18 overidentifying restrictions on the system of moment 
equations. 

Table III reports the GMM estimates of the parameters y0 and yi and the 
associated x2 test statistics for the overidentifying restrictions for each of the 
periods. The results show that the discrete-time CAPM is easily rejected by the 
data; the discrete-time CAPM is strongly rejected in two of the three periods, 
and the p-value of the overall test statistic is only 0.0003. Again, note that the 
five percent level critical value of the overall test statistic is 72.15; the overall 
test statistic is thirty-four percent larger than the critical value. 

These results also demonstrate the important point that the GMM procedure 
has power to reject a specific linear asset pricing relation at the unconditional 
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level. This provides evidence about the value of the GMM approach in testing 
asset pricing theories. 

These tests are in the spirit of the unconditional tests in Chan and Chen 
(1988). However, our tests differ in several important ways. Chan and Chen test 
and fail to reject the discrete-time CAPM against the specific alternative of the 
log size-return relation. However, our tests examine a more general alternative. 
In addition, our tests use the value-weighted market index to compute the 
unconditional covariances with the market, while Chan and Chen use the equally 
weighted index. The combination of these two factors is the likely cause of the 
differences in results. 

Table III shows that the unconditional covariance Ci has significant cross- 
sectional explanatory power for expected returns; the t-statistics for Y1 for the 
three periods are 2.52, 3.68, and 2.80, respectively. Recall from the discussion in 
Section II that a rejection of the moment restrictions does not imply that Ci ts 
without cross-sectional explanatory power. Interestingly, the estimates of the 
coefficient yo are negative and have a significant mean t-statistic. This is 
consistent with the results of Chan and Chen, who also obtained negative 
estimates of yo of the same order of magnitude. 

Finally, we regress the residuals from the GMM estimation on the natural 
logarithm of average firm size as before. The resulting regression is 

= -0.00931 + 0.00031 ln Ave. Sizei, (27) 
(-13.31) (4.98) 

where R2 is 0.571 and the t-statistics (in parentheses) are based on tho White 
(1980) heteroskedasticity-consistent estimate of the covariance matri-x. Thus, 

Table III 

Generalized Method of Moments Parameter Estimates and 
Tests of the Discrete-Time CAPM 

Mi = Yo + Yi Ci 
The parameters are estimated by the generalized method of moments using contih- 
uously compounded monthly return data for twenty size portfolios for each of the 
three twenty-year periods. The t-statistics for the parameters are in parentheses. Mi 
is the mean return for portfolio i, and C, is the covariance of the return for portfolio 
i with the CRSP value-weighted market index. The test statistics (x2) for the 
individual periods are X'18; the test statistic is X54 for the overall period. p-Values for 
the test statistics are in parentheses. 

Period Yi x2 

1926-1945 -0.0063 16.50 37.10 
(-0.84) (2.52) (0.005) 

1946-1965 -0.0150 36.99 42.54 
(-2.01) (3.68) (0.001) 

1966-1985 -0.0047 8.06 17.13 
(-0.99) (2.80) (0.514) 

Overalla - - 96.76 
(-2.22) (5.20) (0.0003) 

a The t-statistics reported for the overall period are for the means of the t-statistics 
reported for the individual periods. 
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there is a strong relation between the residuals of the discrete-time CAPM and 
the proxy for average firm size. 

V. Conclusion 

We have examined the implications of the continuous-time CAPM for the 
properties of discretely observed returns. These implications differ significantly 
from those usually associated with the CAPM. For example, in the context of a 
simple model of conditional mean-variance efficiency, we have shown that the 
continuous-time CAPM becomes a multifactor model when the asset pricing 
relation is aggregated temporally. Tests of this multifactor relation at the uncon- 
ditional level support the continuous-time CAPM but not the discrete-time, 
single-factor CAPM. In addition, the tests indicate that the information in the 
autocovariance function is useful in explaining the cross-sectional variation in 
expected asset returns. 

These results have a number of important implications for asset pricing. First, 
the results suggest that models which allow for time-varying expected returns 
and risk measures (which introduce the autocovariance into the time-aggregated 
pricing relation) can lead to improved descriptions of return behavior. In addition, 
the GMM tests indicate that the size anomaly can be explained by equilibrium 
risk and return arguments even at the unconditional level. Finally, we have 
shown that empirical tests which reject a single-premium or -factor model of 
asset pricing cannot be interpreted as rejecting all forms of the CAPM. 

Appendix 

Let Yi = ln Pi. By Ito's Lemma and the dynamics in (1), 

dY, = (a- -ui/2)Xdt + ai-,XdZi. (Al) 

Define the continuously compounded return for firm i from time 0 to r as Ri. 
(Note that the dynamics in (Al) are time homogeneous.) The return Ri can be 
expressed in integral form as 

Ri= (ai -o/2) f X(t) dt + ai f X(t) dZi(t). (A2) 

Now consider the dynamics of eKtX. By applying Ito's Lemma and integrating, 

rt 
X(t) = A + (X(O) - u)eKt + seKt eKt' (t') dZx(t') (A3) 

Substituting this expression into the first integral in (A2) gives 

+i =f(e Xtdi /2t) )d+ + (eX) t (A4) 
K 

+ s Jse-KT J eKt 'V+t dZx (t ')dt) + ai VX(t dZi (t ). (A4) 
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However, a modified version of Fubini's Theorem (Ikeda and Watanabe (1981), 
Lemma 4.1 (p. 116)) allows us to express the double integral in (A4) as 

rT rT 
f eKt , j e-Kt dt dZx(t'), (A5) 

0 ~~~~~~~~~tt 

which reduces to 
ST (1 - e-KTeKt) 

f vY-7iY dZx(t). (A6) 
O ~~~~K 

Thus, 

=(ax -oK /2) R= oi i/- 
I 

(KA- + (A - X ())(e -KT1) 
+ 

5 X~X (1 
KO 

eKTeKtdZx(t)) ) i +o?ifXV-t dZi (t). (A7) 

Note that Ri involves two different stochastic integrals. Since v/Y~TF is also 
stochastic, it is clear that neither of these two stochastic integrals will be normal 
variates. Hence, Ri will generally not be normally distributed. The unconditional 
moments can be obtained from (A7) by computing the conditional moments, 
which are linear in X(O), and then taking the unconditional expectation. 
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