IMPLEMENTATION OF THE LONGSTAFF-
SCHWARTZ INTEREST RATE MODEL

FRANCIS A. LONGSTAFF AND EDUARDO S. SCHWARTZ,

ur two-factor model of the term structure of
[ | interest rates [1992] has a number of attractive
I features from the point of view of practical

¥V implementation. Tt allows for twists in the
term structure. It explicitly takes into account the
stochastic nature of interest rate volatility. Closed-
form solutions for discount bonds and options on
discount bonds can be obtained. It allows for consis-
tent pricing and hedging of all interest rate-contin-
gent claims.

Here we address a number of important issues
related to practical implementation of the model.
First, we develop a simple procedure to estimate the
stationary parameters of the model. 'These parame-
ters are obtained from a time series of interest rates
and the corresponding time series of variances of
changes in interest rates estimated using a GARCH
procedure.

Second, we examine whether forecasts of future
interest rates and volatilities implied by these parame-
ters are reasonable. Third, we show how to estimate
the term structure parameter of the model from the
cutrent discount fanction. When only one term struc-
ture parameter is estimated, the discount function
obtained does not fit exactly all the discount bonds
used in the estimation. :

We then show how the model can be made
to fit exactly any number of discount bonds by esti-
mating one term structure parameter (“time-vary-
ing parameter”) for every discount bond used in
the estimation.? We use this last version of the
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I. THE LONGSTAFF-SCHWARTZ MODEL

We are concerned here only with the aspects of
the model that are required for its practical implemen-
tation. (For a complete presentation see Longstaff and
Schwartz [1992].) The model starts from assumptions
about the stochastic evolution of two unspecified posi-
tive state variables that follow uncorrelated mean-
reverting square root processes with unit variance:

dx = (Y - 8x)dt + Vxdw
dy = (1 - Ey)dt +/ydz (1)

where dw and dz are uncorrelated increments to
Gauss-Wiener processes, and the Greck letters are
parameters of the model.

The fact that these two state variables or factors
are unspecified will turn out to be unimportant,
because one of the important implications of the
model is that both the short rate of interest, r, and the
variance of changes in this rate, V, are linear functions
of x and y:

T =0Lx+f3y
V=0L2x+]32y (2)

where the parameters & and B come from the produc-
tion process assumed in the general equilibrium frame-
work.

The important thing for our purposes is that there
are so far six parameters to estimate, Later on we show
how to estimate these parameters from an historical time
series of interest rates and volatilities, and we then refer to
them as “stationary parameters” of the model.

As both r and V are linear functions of x and vy,
from (2) it is trivial to solve for x and y:

= Br-v
of5—o)
y= V-or 3)

Without loss of generality we can assume that
B > o Then, for the original state variables to be pos-
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itive we must have, from (3):

a<z<{3 4

We will make use of this relation when we estimate
the parameters ¢ and J.

From Equations (1), (2), and (3) we can obtain
the stochastic process for changes in r and V. As
opposed to the processes for the original state vari-
ables, the processes for r and V will be correlated, and
it can be shown that this correlation is positive and can
vary from O to 1. It can also be shown that r and V
have long-run stationary unconditional distributions
with means:

oy  Pn
& &
E[V] =—-5-I B? 5)

and variances:

2 2
Var[r] =2 + E—-n

262 282
4
Var[V] 282V S& 2 (6)

These expressions will be used to estimate the other
four stationary parameters of the model. _
Another important implication of the general
equilibrium framework is that the value of any default-
free interest rate-contingent claim follows the same
fundamental partial differential equation, which can be
written in terms of the original state variables as:

-
— (o +By)JH-Hy = 0 )

and subject to the appropriate boundary conditions of
the particular claim.
Note that one of the stationary parameters, &,
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does not appear in the PDE. It is replaced by a new
parameter, V, which we later call the term structure
parameter, and which corresponds to the original
parameter plus a market price of risk.

Partial differential equation (7) has a closed-
form solution for some claims such as discount bonds
and options on discount bonds, and can be solved
numerically for claims where closed-form solutions are
unavailable.

1. ESTIMATION OF INTEREST RATE
VOLATILITY USING GARCH PROCEDURE

Unfortunately, one of the two factors of the
model, V, is not directly observable. Thus, our first
task in implementation of the approach is to obtain a
time series of volatilities. This can be easily done using
the GARCH (Generalized Autoregressive Condition-
ally Heteroscedastic) framework developed by Boller-
slev [1986]. :

: More specifically, the econometric specification
we use to model discrete changes in the riskless inter-
est rate is given by:

Ly — o = O + Oyr, + 0oV + 80

Eer1 ™ N(O> Vt)

V, =By + Bir, + BaVeor +Bael (8)
This specification closely parallels the continuous time
dynamics of r and V, and it allows unexpected changes
in r to be conditionally- heteroscedastic and V to follow
an autoregressive process.

The coefficients of system (8) and a time series
of volatilities can be obtained from a time series of
interest rates using an econometric package, such as
TSP, that computes GARCH models. The coefficients
depend in a complicated way on the six stationary
parameters of the model and could potentially be used
to estimate these parameters. We suggest instead an
casier procedure to estimate these parameters based
only on the time series of interest rates and volatilities.

Exhibit 1 shows the time series of one-month
USS. 'Treasury bill rates plotted at monthly intervals for
the period January 1964 through December 1989.
Exhibit 2 presents the GARCH estimates of the time
series of volatilicies over the same sample period. By
comparing the two figures we can see that r and V are
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EXHIBIT i @ One—Month Treasury Bill Rate
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positively, although not perfectly, correlated.

If the last observation of the time series of
interest rates is at the time when the model is to be
applied to value contingent claims, the last volatility
obtained using the GARCH procedure is the value of
the volatility factor to be used in the model. As a sec-
ond approach to compute this volatility, in Section VI
we will show how to obtain an “implied volatility”
factor from cap prices.

EXHIBIT 2 @ Variance of Changes in the One-
Month Treasury Bill Rate
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EXHIBIT 3} B Stationary Parameters

Obtained Using Monthly U.S. Treasury Bill Rates from
1964 to 1989

Mean Value of r 0.06717
Variance of r 0.0007157
Mean Value of V 0.0007658
Variancée of V 0.000001526
Mimimum Ratio of V/r 0.001149
Maximum Ratio of V/r 0.1325

o 0.001149

B 0.1325

Y 3.0493

& 0.05658

n 0.1582

3 3.998

IIt. ESTIMATION OF
STATIONARY PARAMETERS

A simple way to estimate all six stationary
parameters of the model using only the original time
series of interest rates and the GARCH estimated time
series of volatilities is as follows:

1. Compute the mean and variance of the time series
of interest rates.

2. Compute the mean and variance of the time series
of volatilities.

3. Compute the maximum and the minimum value
of the ratio V/r for contemporaneous values of

these factors.

With these six parameters of the long-run joint

EXHIBIT 4 B Comparison Between Historical and
Simulated Values

Historical Value  Simulated Value
Mean Value of r 0.06717 0.06766
Variance of r 0.0007157 0.0006781
Mean Value of V 0.0007658 0.0008681
Variance of V 0.000001526 0.000001715
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distribution of r and V, the stationary parameters of the
model can be obtained from (4), (5), and (6) as:

. [V,
O =min|{—
Ly

5 _ofa+B) pei] )
2(B2Var[r] - Var[V])

_ 3{BE[:]-Hv]

v ofp — o)
_ Blo+BYE[V] - oxfs])
Z(Var[V] - 0£2Var[r])
| _elv]-ert])

B(B - )

Note that the way o and P are estimated assures that
(4) will hold for the data used; these values are clearly
related to the historical covariation between r and V. -

In Exhibit 3 we report the six parameters of the
time series of r and V and the corresponding six
parameters of the model obtained using these formu-
las. Note that there is an exact mapping between the
six parameters of the model and the six parameters of
the distribution of r and V, so we could think about
the parameters of the model as the first two moments
of the distribution of r and V, and the maximum and
mimmum ratios of V/r.

To test whether the parameters obtained imply
reasonable dynamics for future interest rates and volatili-
ties, we use Equations (1) and (2) to simulate daily
changes (360 times per year) in interest rates and volatil-
ities up to a thirty—year horizon. Exhibit 4 reports the
means and variances of the simulated values of r and V
thirty years in the future using 10,000 simulations, and
compares them with the corresponding historical
parameters used to estimate the model parameters. As
we can see from the table, the distribution of r and V
obtained closely approximates its historical counterpart.

This is a test to which all interest rate models
should be subject. It is quite possible to have an inter-
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est model that nicely fits the initial term structure, but
that forecasts very unreasonable future term structures
giving, for example, negative interest rates.

IV. ESTIMATION OF THE TERM STRUCTURE
PARAMETER

To price any interest rate-contingent claim, we
need to solve PDE (7), subject to the boundary condi-
tions determining the payoffs to the particular claim.
But to do this, we need first to estimate the term
structure parameter V that replaces the stationary
parameter § of the model in the equation (v is simply
£ plus the market price of interest rate risk).

An easy way to estimate V is to make use of
the fact that the PDE has a simple analytical solation
for a discount bond (see Longstaff and Schwartz
[1992, p. 1266]). Given any number of discount
bond prices (or STRIP prices) at any time, a grid
search can very rapidly find the value of v that mini-
mizes the squared deviation between model and
market prices.

To illustrate the procedure, we obtained from
the Wall Street Journal fifteen note and bond principal
U.S. Treasury -STRIPs prices on November 9, 1992
(midpoint between bid and ask prices). Maturities
ranged from one to twenty-nine years. The first two
columns of Exhibit 5 report the maturities and prices,
respectively, for the fifteen discount bonds. The dis-
count function is also graphed in Exhibit 6.

To apply the discount bond formula, we also
need the current value of the factors and five of the
six stationary parameters. On November 9, 1992,
the one-month Treasury bill rate was 0.0304, and
we assumed a volatility factor of .0003. Because
our interest rate data to estimate volatilities end in
1989, we could not get the volatility factor as the
last element in the time series of volatilities estimat-
ed with the GARCI procedure. (Later we show
how to imply the volatility factor from cap prices.)
The stationary parameters used are the first five
from Exhibit 3.

The value of v obtained in the grid search is
0.335. The model discount bond prices obtained using
this value of the term structure parameter and the cor-
responding error between market and model prices are
given, respectively, in columns 3 and 4 of Exhibit 5.
For some applications the magnitude of the errors
reported in the table will be too large. Notice, howev-
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EXHIBIT 5 B Prices and Maturities of STRIPs Used
to Estimate Term Structure Parameter

Maturity (Years) STRIP Price  Model Value Error
1 96.172 96.050 © 0122
2 91.125 90.843 0.282
3 85.453 85.059 0.394
4 79.016 79.133 -0.117
5 73.203 73.312 -0.109
6 67.313 67.726 -0.413
7 62.188 62.438 -0.250
8 56.813 57.471 -0.658
9 52.484 52.831 -0.347

12 40.156 40.791 -0.635
17 25.563 26.107 -0.544
23 15.516 15.020 0.496
24 14.266 13.680 0.586
26 12.328 11.337 0.991
29 9.859 8.537 1.322

er, that we are estimating one stationary term structure
parameter for a discount function that goes twenty-
nine years into the future.

In Exhibit 7, we can see that the model dis-
count function calculated using the stationary term
structure parameter obtained in the grid search does
not exactly fit the STRIP prices used in the estima-
tion of v. The model spot rates and one-year forward
rates shown in Exhibit 8, however, seem to be very
reasonable.”

EXHIBIT 6 B Discount Function on November 9,
1992
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EXHIBIT 7 B Discount Function: Stationary Term
Structure Parameter
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V. TIME-VARYING TERM STRUCTURE
PARAMETER

For some applications it may be important that
the model discount bond prices exactly fit the STRIP
prices used in the estimation. This can be accom-
plished in our mode]l by making the term structure
parameter time-varying. In this case there will be the
same number of term structure parameters as the num-
ber of discount bond prices used in the estimation.

To implement the procedure, we first consider
the discount bond closest to maturity: in our previous
illustration the one-year STRIP. We determine the

EXHIBIT 8 B Spot and One-Year Forward Interest
Rates: Stationary Parameter
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EXHIBIT 9 8 Time-Varying Term Structure
Parameter

Term Structure
Parameter: v(t)

Time to Maturity of
Discount Bond

1 0.713
2 0.253
3 0.443
4 -0.097
5 0.993
6 -0.332
7 1.305
8 -0.724
9 2.029
12 -0.036
17 0.544
23 0.510
24 (.537
26 1.188
29 0.685

first term structure parameter, V(1}, as the value of v
that fits this first bond. As now we have only one bond
to fit, this can be done exactly.

We then consider the next discount bond clos-
est to maturity: the two-year STRIP in our example.
We determine the value of the second term structure
parameter, V{2), which will hold from the maturity of
the first bond to the maturity of the second, by deter-
mining the value of v that will exactly price the sec-
ond bond (taking into account that up to the maturity
of the first bond v(1) already estimated in the first step
will be used). As this procedure involves values of v
that change with time to maturity, PDE (7) must be
solved iteratively using numerical methods.

The next step in the procedure involves the
determination of v{3) from the third discount bond
price, but taking into account that up to the maturity
of the first bond v(1) will be used, and between the
maturity of the first and second bond v(2) will be
used. The procedure continues in this way until all the
desired discount bonds have been used.

Exhibit 9 shows the values for the fifteen time-
varying term structure parameters obtained by exactly
fitting the fifteen STRIP prices reported in Exhibit 5.
These time-varying term structure parameters are also
graphed in Exhibit 10. On average their value is close
to the value of the stationary term structure parameter
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EXHIBIT 10 B Time-Varying Term Structure
Parameter on November 9, 1992
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obtained in the previous section.

The discount function obtained using the
time-varying term structure parameter is shown in
Exhibit 11. The fifteen discount bonds used in the
estimation of these parameters correspond exactly to
those shown in Exhibit 6. In Exhibit 12 we plot the
spot tates and one-year forward rates implied by this
discount function.

It is interesting to compare these fluctuating
rates with the smooth rates obtained using a single sta-~
tionary term structure parameter (sce Exhibit 8). We
see that fitting the discount function exactly has its
drawbacks. Small errors in prices can have a big effect
on vields.

It is hard to give a good theoretical justification
for the pattern of forward rates observed in Exhibit 12.
The result might just as well be a consequence of slight
errors in the prices or non-synchronous trading as
opposed to a time-varying term structure parameter.

VI. VALUATION OF CAPS

We are now in a position to value any interest-
contingent claim. Using the stationary parameters esti-
mated in Section I, the time-varying term structure
parameters for November 9, 1992, estimated in Sec-
tion V, and the values of the factors r and V for that
day, PDE (7) can be solved numerically by imposing
the appropriate boundary conditions of the particular
claim. As an illustration, in this section we apply the
methodology.to value caps. '
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EXHIBIT 12 ® Spot and One-Year Forward Interest
Rates: Time-Varying Parameters
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Consider a five-year cap tied to the short rate of
interest in which the potential payments occur every
six months., Fach payment is the largest of the differ-
ence between the prevailing short-term interest rate
and the cap rate or zero, muldplied by the face value
of the contract. Exhibit 13 shows the value of the cap
for different values of the cap rate on November 9,
1992, assuming a face value of 100.

In Exhibit 14 we graph the same cap just
described, but fixing the cap rate at 0.06 and changing
the volatility factor from 0.0001 to 0.0011. Note that
when we change the current volatility factor we need
to recalculate the time-varying term structure parame-
ters as indicated in Section V before we solve for the

EXHIBIT 11 B Discount Function: Time-Varying
Parameters :
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EXHIBIT 13 B Cap Prices as a Function of -
Cap Rates
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value of the cap, because these parameters depend on
the assumed volatility.

This exercise suggests a procedure to obtain an
“implied volatility factor” from cap prices. If the mar-
ket price of a cap is known, volatility: can be easily
inferred from Exhibit 14,

VII. SUMMARY AND CONCLUSIONS

We have shown how to implement our two-
factor model of the term structure of interest rates.
The parameters of the model are obtained from the
time series of the two factors (the five stationary
parameters) and from the initial term structure of
interest rates (the same number of parameters as points
given on the term structure).

Thirty-year simulations show that this estimation

ENDNOTES

10ne factor is an interest rate factor, the short rate
of interest, and the other is a volatility factor, the variance of
changes in the short rate of interest.

2This is somewhat like a two-factor version of Hull
and White [1990].

3The first forward rate shown in the graph corre-
sponds to the one-year spot rate.
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EXHIBIT 14 & Cai:o Prices as a Function of
Volatility
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procedure provides reasonable future dynarmies of the fac-
tors. When the model is required to fit the initial term
structure, no analytical solutions exist, but efficient
numerical algorithms have been implemented that can
take into account American features as often as desired
and can fit any number of points on the term structure.

Once the parameters have been estimated, the
model can be applied to value any interest-contingent
claim. A byproduct of the analysis is the sensitivities of
the claim to changes in the two factors. These sensitiv-
ities can then be used to hedge simultaneously all
default-free interest-contingent claims.

In spite of the clear theoretical superiority of
two-factor models, their adoption has been slow. We
believe this is because they are usually difficult to esti-
mate and implement. Our work shows one way that
our model can be implemented.
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