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We show how genetic algorithms can be used to evolve strategies in oligopolistic markets
characterized by asymmetric competition. The approach is illustrated using scanner
tracking data of brand actions in a real market. An asymmetric market-share model and a
category-volume model are combined to represent market response to the actions of brand
managers. The actions available to each artificial brand manager are constrained to four typical
marketing actions of each from the historical data. Each brand’s strategies evolve through sim-
ulations of repeated interactions in a virtual market, using the estimated weekly profits of each
brand as measures of its fitness for the genetic algorithm. The artificial agents bred in this
environment outperform the historical actions of brand managers in the real market. The im-
plications of these findings for the study of marketing strategy are discussed.
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Introduction

We are interested in the strategic implications of asym-
metric competition. Previous work (Carpenter et al.
(CCHM) 1988) has estimated the Nash-equilibrium
prices and advertising expenditures for asymmetric
market-share models in the cases of no competitive reac-
tion and optimal competitive reaction. There are, however,
three important limitations to building marketing plans
on either of these extreme scenarios.

First, such static, single-period strategies do not pro-
vide insight into the actions undertaken over time by
manufacturers and retailers. Strategies such as ad puls-
ing versus continuous exposures, or every-day-low-
pricing versus deep discounting are played out over
time. As was called for by CCHM, it is time to investi-
gate dynamic, multi-period strategies.

Second, major sources of asymmetries are missing
from the CCHM equilibrium analysis. There are two
main sources of asymmetries. Asymmetries can arise
from stable, cross-competitive effects. The ““price-tiers”
hypothesis (Blattberg and Wisniewski 1989), for exam-
ple, indicates that when national brands go on sale, they
exert competitive pressure on regional brands that the
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regional brands cannot counter with their own price re-
ductions. When regional brands go on sale, they exert
pressure on the economy and private-label brands that
these brands cannot return. Asymmetries can also arise
from temporary differences in marketing offerings. We
expect that one brand on sale by itself might gain more
than if it were promoted along with four other brands
in the category, but such temporal distinctiveness of a
brand’s offering produces asymmetric competition in a
way that is an explicit violation of the Market-Share
Theory (Bell et al. 1975) and Luce’s (1959) Individual
Choice Theorem. Neither of these theorems allows the
choice context to have any influence on choice proba-
bility, which, of course, leads to the classic counter ex-
amples by Debreu (1960). While the CCHM study in-
corporated measures of distinctiveness into their meth-
ods for reflecting asymmetric competition, their
equilibrium analysis used a simpler model that did not
account for this source of asymmetries.

Third, the CCHM effort studied market share, while
the great swings in sales levels we observe in retail scan-
ner data encourage us to study the strategic implications
of asymmetric sales response. We want to investigate
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multi-period strategies, when the market response is
fundamentally asymmetric in both sales volume and
market share.

There are major barriers to traditional avenues of in-
vestigation. Mathematical exploration is hampered be-
cause sources of asymmetry explicitly violate the global-
convexity of profit functions required by normative eco-
nomic models. Numerical approximations, such as
traditional hill-climbing algorithms, may be computed
but the complexity of the response surface makes them
expensive and difficult to use. It is also difficult to in-
corporate more realistic competitive strategies such as
“tit for tat” into traditional models—either by mathe-
matical formulation or numerical approximation. One
major alternative to mathematical or numerical explo-
ration is multi-period simulations, such as the Axelrod
(1984) or Fader and Hauser tournaments (1988). While
these have the advantage of allowing strategies to be
played out over time, so far they have been undertaken
only with symmetric and hypothetical market-response
functions. We want to use asymmetric market-response
functions that characterize brand behavior in real mar-
kets to study the evolution of robust strategies.

Genetic algorithms (Holland 1975, Michalewicz 1994)
provide one mechanism by which we can study the evo-
lution of strategies. The next section describes genetic
algorithms and how adaptable they are to the study of
marketing strategy. Our major illustration is based on
competition between brands in a regional market for
coffee in the United States. The asymmetric market-
share competition was previously modeled and
mapped in this journal (Cooper 1988) and the combi-
nation of market-share dynamics and category volume
effects are modeled in Cooper and Nakanishi (1988).
Profits based on these published models are the central
component of the fitness function that drives genetic
algorithms. We use a genetic algorithm to breed artifi-
cial agents that represent the actions of brand managers.
In the tests we conduct, these agents outperform the historical
actions of brand managers in this market. Finally, we will
discuss the reasons why this might be so and what can
be done to extend our approach.

While we will focus on one set of modeling tech-
niques, and one particular market, it is important to
stress that the methods we propose have greater appli-
cability. Indeed they can be used in any marketing sit-
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uation where there is a good representation of the profit
consequences of competitive marketing actions. This
representation might be in the form of an explicit model
or it might be more of a “black-box” representation
(e.g., neural net). Given such a profit function, artificial
agents can be formulated and genetically optimized to
play multi-period dynamic games in a robust and prof-
itable manner. Our emphasis on asymmetric market
modeling in the CCHM tradition, and on a regional cof-
fee market, simply provides one case illustration of the
overall approach.

Genetic Algorithms

We model brand managers as responding to previous
states of the market when formulating their marketing
actions for the next period. By “state of the market” we
mean the pricing and promotional actions of each com-
petitor and their resulting profits. Each manager’s com-
petitive strategy can be represented as a set of rules,
each of which maps a previous state of the market to a
set of future actions (e.g., if a competitor ran a price
promotion last period, do the same this period). In ge-
netic algorithms, these sets of rules are represented as
chromosome-like binary strings. The performance (fit-
ness) of each string is judged by the profits it produces
over many competitive interactions (that is, over a
multi-period game). By mating the best strings, and by
random mutations, new strings are created, and hence
new strategies tested in parallel, as we describe below.
We use machine learning to search the vast number of
possible strings for robust and optimal strategies.

In essence these binary strings are artificial agents that
represent the brand manager in repeated games (cf.
Marks 1992a). Each agent responds with a unique ac-
tion to each possible state of the market' and is therefore
basing its next move on historical data. This is realistic
in that human managers do not have perfect foresight
of their competitors’ next moves, and forecast these
from the observed and remembered actions of all sell-

! This is a pure-strategy machine (i.e., a strategy chosen with proba-
bility 1.0). While it is feasible to employ mixed or probabilistic strat-
egies within this approach, we chose not to for reasons of parsimony.
We also do not believe that brand managers toss coins to determine
their actions.
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ers, including their own. If we view human managers
as boundedly rational (Simon 1972), then we accept lim-
itations on their memory, computing ability, or com-
petence at pattern recognition. In our application the
principal limitation we place on our artificial agents is
the number of previous states of the market that can be
held in memory.? If there are p players, a possible ac-
tions per round of the game, and m rounds of memory,
then the number of states is a”**. This number increases
very rapidly. With three players, four actions, and one
round of memory there are 64 states. Increasing this to
two rounds of memory creates 4,096 states.

Consider the simplest game—a two-player Prisoner’s
Dilemma with one round of memory. Players have two
actions, to cooperate (C) or defect (D). There are four pos-
sible states in this example (CC, DC, CD, and DD), and
16 possible mappings from past to future actions (only
a few of which have obvious names). Table 1 lists the
binary representation of these strategies where “0” in-
dicates cooperation and ‘1" indicates defection. For ex-
ample, the strategy “tit for tat’” is represented by the
agent (0011). Hence, we can represent our agents as
strings of ones and zeroes, where there is a one-to-one
mapping from states to positions on the string. With
only two possible actions each position on the string
corresponds to a single bit.

With more than two possible actions, we can code the
actions in binary, and use as many bits per position as
needed (log, a): two bits for four actions, three bits for
eight actions, etc.

In our two-player example, given that we know the
profit function for the game, we play each agent against
another in all possible pairings, and for a multiperiod
game. Simple tabulation of the results then indicates
which of the 16 strategies yields the best profit. How-
ever, as we move to more complex games, the number
of possible strategies explodes, so that enumeration be-
comes impractical and we use a machine-learning al-
gorithm to find the best one.

To search for better strategies, we consider the bit
strings as chromosomes and use a simulation of natural

2For convenience, we have also modeled the number of actions as
equal to the number of partitions of the action space perceived by the
players.
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Table 1 Binary Agents for a Prisoner’s Dilemma—One-Round
Memory
Possible Previous States
Phantom
Strategy cC DC cD DD Memory®
1. Always cooperate 0 0 0 0 00
2 0 0 0 1
3. 0 0 1 0
4. Nasty trigger 0 1 0 0 10
5. 1 0 0 0
6. Tit for tat 0 0 1 1 00
7 0 1 0 1
8. 1 0 0 1
9. 0 1 1 0
10. 1 0 1 0
11, 1 1 0 0
12. 0 1 1 1
13. 1 0 1 1
14. 1 1 0 1
15. 1 1 1 0
16. Always defect 1 1 1 1 11

% Phantom memory contains the strategic actions of the players the period
before the game commences. That is, the initial conditions for the competitive
game. Phantom memory allows us to endogenize these initial conditions.
The concept was introduced by Axelrod (1987) and named by Marks (1992).
For the example in the table we would need a six-bit string—where the first
four bits map from states to actions and the last two are the initial conditions.

selection and reproduction with variation. The genetic algo-
rithm (GA) pits the strategies against each other and
selects the highest-scoring strategies to procreate a new
generation of strategies (Holland 1975). Over repeated
iterations (generations) a population of strings is
evolved which exhibits even better performance.

The GA can be thought of as an optimization method
that generates and evaluates a number of alternatives
per iteration. The GA selects the best of these alterna-
tives to pass on their characteristics to the next iteration.
In doing so the GA evolves a population of alternative
solutions that are all improving—rather than the single
solution of many hill-climbing algorithms. The popu-
lation of alternative solutions gives the GA its property
of explicit parallelism. Explicit parallelism helps over-
come the two problems of hill-climbing algorithms: con-
vergence on local optima, and creeping along flat
regions in objective-function space (Goldberg 1989).
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The GA uses the fitness (brand profits in our case) of
each string in the population at each generation to breed
and test a new generation of strings, that may include
the best individuals from the previous generation. The
new generation of strings is obtained from old strings
using evolutionary operators such as (i) reproduction of
an individual according to its performance, (i) the
crossing over of genetic material of two parents, and
(iii) random mutation. This process progressively biases
the genetic sampling procedure toward the use of com-
binations of substrings associated with above-average
fitness in earlier generations (i.e., strategies character-
ized by higher profits). GAs gain their power by search-
ing the set of all sub-strings and identifying and ex-
ploiting the combinations that are associated with high
performance.

Axelrod and Forrest have used Holland’s GA to breed
strategies in a two-person, repeated Prisoner’s Dilemma
game (Axelrod 1987). This study demonstrated that
GAs could replace the human programmers used in the
original Axelrod tournament (Axelrod 1984). Axelrod
reports that the GA evolved populations whose median
member resembled Tit for Tat and was just as successful.
In some cases the GA was able to generate highly spe-
cialized adaptations to a specific population of strate-
gies for particular situations that performed substan-
tially better than Tit for Tat. There is, of course, no best
winning strategy in the repeated Prisoner’s Dilemma
game: we can only speak of a best strategy given the set
of strategies it is pitted against. Hence, the set of com-
peting strategies also defines an environmental niche.

Marks (1989) used an environment of five of the strat-
egies from Axelrod’s second tournament. Against this
environment Always Defect scored 343,* Always Cooper-
ate 406, and Tit for Tat 422. But after using the GA to
breed a one-round memory strategy of six bits, Marks
. found the following strategy: 010010 (strategy 4 in Table
1). This is not Tit for Tat (001100), but something nastier,
a trigger strategy which Defects first, and continues to
do so long as the other player lets it, but once its op-
ponent Defects, it never Defects itself again. Its score
against the environment was 447, significantly better

* These scores are generated from the payoff function defined by
Axelrod.
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than Tit for Tat's. Marks (1992b) has shown that GAs
can generate new strategies in the computer without an
open tournament (including for more generalized ver-
sions of the Prisoner’s Dilemma such as that used in the
Fader and Hauser (1988) tournament).

After Axelrod’s pioneering study, other applications
of genetic algorithms to economics have appeared
(Marks 1992a, Marimon et al. 1990, Arthur 1990, and
Arifovic 1994). Hurley et al. (1994) review the applica-
tion of evolutionary algorithms in management science
(including GAs). They find a number of applications to
job shop scheduling, to financial risk, trading and port-
folio management, and to some organizational prob-
lems. However, besides our early work (Marks et al.
1993) they report only one other investigation of the
application of GAs to marketing problems, namely the
work of Balakrishman and Jacob (1992) on optimal
product design. Hurley et al. consider that GAs have
wide applicability to marketing management. They go
on to provide simple illustrations of how GAs might be
applied to site location and market segmentation. They
note that the optimization of marketing strategies is an-
other area of considerable potential. We believe our
work is the first application in this area, and the first
application in marketing which is based on empirical
data.

We agree with Hurley et al. that GAs are well suited
to the study of asymmetric competition. They do not
require well-behaved, differentiable, globally convex
objective functions. Indeed, provided we can associate
a fitness with each market outcome, GAs do not require
an explicit objective function at all—which provides the
opportunity for an exhaustive study of patterns of stra-
tegic behavior. Our challenges are (i) to develop artifi-
cial agents that produce realistic strategies for asym-
metric markets, and (ii) to combine these agents with
market-response functions that translate their strategies
into fitness measures. With these agents and fitness
measures we can simulate market behavior for a large
number of rounds—allowing us to assess the effective-
ness and robustness of a strategy over a number of com-
petitive interactions. The market simulations would oc-
cur one at a time with each artificially intelligent agent
being bred against a set of rivals. This set of rivals is the
niche in which competition occurs. For n brands and m
alternative agents we can then use m" niches each to
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search for the most profitable agent for the ith brand,
using the GA.

A hypothetical example may help clarify this proce-
dure. Suppose we have a two-brand market and have
chosen a population of three agents to represent possi-
ble strategies for each brand. The two brands are shown
as A and B in Table 2 and the alternative agents as 4,
a,, as, by, by, and b;. The table shows the set of nine
possible niches or competitive games that could be
tested (g1, £, etc.). Each game would be played for the
desired number of rounds before computing the profit
performance, and there would be three profit scores for
each string. With a GA we select the two best agents
(say a; and a3) and “cross” their characteristics to see if
we can produce a better agent in the next iteration. The
nine games would then be repeated, and so on until no
further improvement in profit performance is observed.

We can also take each of the m separately bred arti-
ficial agents from the final generation and separately
play it against the actual history of the other n — 1
brands, and assess its performance against that
achieved by human brand managers. That is, we can
then ask if our procedure evolves a strategy for Folgers
that is more profitable than Folgers brand management
was. If so, then our proposed methods have value. But,
before we examine a real market, we need to justify our
choice of genetic algorithms and binary representations
for our strategies—in preference to other evolutionary
algorithms and representations.

GAs are iterative procedures that maintain a popu-
lation of solutions to the focal problem, each of which
is implemented as a data structure. These data struc-
tures can be binary or decimal integers, real numbers,
or matrices. We use binary strings for our strategies,
following the classical work of Holland (1975). Our rea-
sons for this choice are partly convenience: we are able
to use a well-accepted package—Genesis—which uses
binary strings; and partly reassurance: the foundations
of genetic algorithms are derived in terms of binary rep-
resentation (Nix and Vose 1992, Michalewicz 1994). In
common with most classical algorithms, Genesis uses
fixed-length binary strings and three operators: selec-
tion, binary mutation, and crossover.

Evolutionary algorithms have also appeared with
other representations, variable length strings, and mod-
ified genetic operators. Although Koza (1992) argues
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Table 2 Hypothetical Niches, Two
Brands and Three Agents
Brand B Agents
Brand A Agents by b, bs
a4 01 [*} U3
dy U4 Os Us
a3 97 Js U9

that these newer algorithms are more appropriate than
string-based schemes for many problems, we believe
that strings are the best choice for our mapping func-
tion. This debate centers on the degree to which one
wishes to explicitly encode the rules that translate pre-
vious states to future actions. On the one hand there is
the classical approach, which provides a position on the
string for every possible state, and codes directly from
each position to an action. On the other hand there are
newer methods such as genetic programming, in which
each strategy takes the form of a tree—each branch of
which is labeled with an operator, and each leaf labeled
with an action. If we were interested in the structure (or
genotype) of the best solutions, and we had the knowl-
edge on which to base a genetic program, then the extra
effort to encode the artificial agent explicitly might be
worthwhile. However, we lack detailed enough knowl-
edge to formulate the genetic program, and we are, in
any event, more interested in the emergent behavior
(the phenotype) at this early stage of our research.
Moreover, the theoretical basis for the newer evolution-
ary algorithms is only now being developed (Michal-
ewicz 1994). It may be that these heuristic approaches
will turn out to be well founded, but our preference is
to rely on the better understood and more accessible
classical formulation.

Asymmetric Competition in a
Regional U.S. Coffee Market

Choice of h'farket Example
We want to work with an example of competition that
exhibits four aspects of real markets.

(I) Differential effectiveness of marketing-mix instru-
ments across brands. Each brand may have its own
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Figure 1 Prices and Sales in Chain One
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unique sensitivity to consumer response to its market-
ing action. The allocation of equal resources to adver-
tising, for example, can return more to some brands
than to others.

(II) Stable cross-competitive effects. Through position-
ing, historical rivalries, or other mechanisms, some sub-
groups of brands compete more (or less) intensely with
each other than do other brands. The symmetric-market
hypothesis (cf. Bell et al. 1975) dictates that gains or
losses in share for one brand are distributed among oth-
ers strictly in proportion to their market shares. The re-
ality we see in markets is that some brands gain more
from the losses of certain rivals than would be dictated
by market share alone, while other brands are more in-
sulated by competitive boundaries than the symmetric-
market hypothesis would allow.

(III) Asymmetries due to the temporal distinctiveness of
marketing actions. That is, we want to use methods that
reflect the role of choice context on what brands are cho-
sen. The basic thesis here is that marketing actions must
be distinctive to be effective.
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(IV) The dramatic swings in volume that characterize pro-
motion response we see in store-tracking data at a dissaggre-
gate level. Scanner data have taught us that, when
viewed at the store or chain level, market response to
tactical market-mix decisions is abrupt and dramatic.

The retail coffee market modeled by Cooper and Nak-
anishi (1988) satisfies all four criteria. There are nine
brands: Folgers, Regular Maxwell House, Maxwell
House Master Blend, Hills Brothers, Chock Full O’Nuts,
Chase and Sanborne, Yuban, an aggregate of premium
brands called All Other Branded (AOB), and an aggre-
gate of All Private Label (APL) brands. The data track
the sales impact of price per pound (net of coupons re-
deemed), major newspaper ads, in-store displays, and
store (but not manufacturer) coupons, for 52 weeks in
three grocery chains. A considerable amount is known
about modeling this market.

* The asymmetric market-share model (Cooper and
Nakanishi 1988, p. 159-161) revealed differential effec-
tiveness of price and promotion for all major brands (as
well as differential base franchises depicted in the dif-
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ferent brand-specific intercepts for the share model).
This model is also the basis of competitive maps pub-
lished in this journal (Cooper 1988).

* There were 44 significant cross-competitive effects
on market share: 21 involving prices, 4 involving fea-
tures, 9 involving displays, and 10 involving store cou-
pons.

¢ In Cooper and Nakanishi’s analysis the distinctive-
ness of marketing activity in each choice context was
presented by an exp(z-score) model—in essence a mul-
tinomial logit model using standardized scores for the
marketing instruments in each chain each week. If the
action across brands on a particular marketing instru-
ment was indistinct, all brands scored, in essence, a
zero.” The asymmetric market-share model has an R* of
0.93 and cross-validates to a hold-out sample with an
R? of 0.85 (Cooper and Nakanishi 1988, p. 158).

* The asymmetric market-share model was com-
bined with a category volume model (Cooper and Nak-
anishi 1988, p. 166). Total category volume was repre-
sented as being log-log for the price terms and log-linear
for the other marketing instruments. The category
volume model has an R? of 0.91 (Cooper and Nakanishi
1988, p. 167). Since sales are the product of market share
and category volume, these combined models can re-
flect the dramatic swings in sales we see in scanner data.

The asymmetric market-share model and the cate-
gory volume model have been combined into a single-
shot market simulator called Casper (competitive anal-
ysis system for promotional effectiveness research,
Cooper and Nakanishi 1988, p. 219-257). The Casper
simulator merely takes as input prices and promotional
activities of all brands, estimates market shares for all
brands and sales volume for the whole category, and
then calculates the profit implications for all brands.
These profit estimates are thought to be roughly accu-
rate.®

® Even in the absence of stable cross-competitive effects, representing
the role of context using exp(z-scores) guarantees that a choice model
or market-response model is a non-IIA representation.

® Profit margins and hence unit costs were estimated from publicly
available corporate and SBU level accounting information rather than
provided by the companies concerned. To the extent that these esti-
mates are inaccurate, the validity of our results for the coffee market
may be reduced.
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Typical behavior of the major national coffee brands
is to maintain the quality image through periods of high
shelf price and no promotional activity, and then to cut
their price and engage in newspaper advertising, in-
store displays and coupon distribution (through both
store and manufacturer coupons). The effect, not un-
expectedly, is usually to increase sales and market
share, and perhaps total profits in the market, depend-
ing on the costs of the promotions and the activities of
other brands in the market. We have one year of weekly
observations across the three retail chains operating in
this two-city market, and Cooper and Nakanishi esti-
mated market share and category volume models for
the three retail chains (1988, p. 219-257), but for the
sake of simplicity, we focus on the 52 weeks of data for
Chain One. There is no conceptual difficulty with ex-
tending the approach to encompass the three chains, but
interpreting the results would be more complex. In a
first application we chose to limit complexity to make
the interpretation of the results relatively straightfor-
ward. The data for Chain One exhibit all the aspects of
market behavior mentioned above (differential effec-
tiveness, stable cross-effects, asymmetries, and swings).
Choosing Chain One also means we do not have to con-
sider private labels—whose goals might be different
from major brands—as these are not present. The over-
all patterns of prices and sales for the three major brands
available in Chain One (Maxwell House Regular, Fol-
gers, and Chock Full O’Nuts) are depicted in Figure 1.
These three brands account for 77% of the market in
Chain One.

Given the Chain One data, there are at least two ways
we might breed artificial agents. .

—Closed-loop learning. Breed populations of each
brand against the history of the other seven over the
complete 52 weeks. In this approach, each brand’s
agents are exposed to all of the other brands’ actions
and thus to a diversity of competitive strategies. But the
competitors’; of the focal brand do not react to the ac-
tions of its agent; they simply repeat history. There is
no way around the static nature of the historical data,
since it does not reveal what the contingent strategies
of the competing brands might have been (given the
actions of the agent).

—Open-loop learning. Co-evolve populations of each
of the eight brands against all the other brands, using
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the Casper model to estimate the profits generated from
each 52-week game, but with all actions generated by
artificial agents rather than by history. In this approach
we would co-evolve eight populations each of g agents
and, as discussed, this can be done by wayl of g® exper-
iments. This is analogous to breeding the agents in a
laboratory experiment rather than the field as above.
The advantage of this approach is that all agents “learn”’
how to react to the contingent strategies of other
brands—rather than the unchanging patterns of histor-
ical actions. We might then try the best artificially bred
agents for each brand against the historical actions of
the other seven over 52 weeks.

Two tests of the artificial agents are explicit in the
second and preferred approach. One test is their profit
performance against other agents in the laboratory; the
other is the field test of each against the historical ac-
tions of the other brands. Neither of these tests is per-
fect. The laboratory test is, of course, artificial. More-
over, because of convergence of behavior, it results in a
reduced set of actions being expressed, and so a smaller
number of positions on each string being selected for.
The field test suffers from the lack of learning noted
above. But, the only better tests we can envisage are to
play an artificial agent against the future actions of
brand managers—either in a brand-management game
or in the real market. We have not conducted such tests.

There are also problems of complexity with an eight-
brand example, especially if a wide range of possible
actions is allowed, and hence we have a large number
of states of the game. Because of the number of states
our agents would need to be more complex—so that
their mappings from states to actions encode an ade-
quate number of contingencies. What is more impor-
tant, with only 52 weeks of data, we might not have an
adequately rich environment in which to test a complex
agent. By this we mean that some contingent strategies
might not be invoked by the environment and therefore
their fitness never tested. While our data has a theoreti-
cal maximum of 52 unique states, in practice it has
fewer, because of weeks with close or identical actions.
For these reasons we sought to simplify the problem.

Modeling the Coffee Players
We want to reduce the number of possible states for
both computational and data reasons. We can do this
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by reducing the number of rounds of memory, by re-
ducing the number of actions of the players, and by re-
ducing the number of strategic players. This implies that
any economy will occur only with a cost to realism. So
the question becomes, what can we do with the smallest
sacrifice of realism?

We note that store tracking data typically only rec-
ords store coupons and not manufacturers’ coupons.
This was true in our case. Store coupons are merely
newspaper advertisements that focus on price dis-
counts. Customers must clip and present the newspaper
coupon to receive the discount. Often, however, stores
have extra copies of the ad pages available so that all
shoppers can avail themselves of these discounts. Given
that this effect is partially represented by the price mea-
sure (which is net of coupons redeemed), we assume
that the decision to use a store coupon promotion is
simply a decision to lower price. Eliminating the actions
associated with couponing is probably a minimal sac-
rifice.

Rather than considering price to be a continuous vari-
able with a consequently high number of states, we con-
sider only four price levels. The first is a high, cooper-
ative (Pareto Optimal) price. This is like a shelf price. If
all brands adopted this price (implicitly collude) in the
long term, profits would be maximized. Second is the
noncooperative, Nash-Cournot, price that maximizes a
brand’s one-shot profit regardless of the other prices.
Third is the two-brand coalition price that maximizes
the one-shot profits for two colluding brands when a

 third brand does not cooperate. And fourth is an envi-

ous price that maximizes the share of a brand’s own
profit in total one-shot profits. These are the four special
prices that Fader and Hauser (1988) discuss for their
Generalized Prisoner’s Dilemma tournament. Here we
cannot calculate such prices, since real markets do not
provide a closed-form profit function for each brand.
However, the coffee data do seem to support the notion
of four price ranges and suggest that we can reduce the
complexity of the price variable by categorization. For
example, smoothed histograms of weekly prices by
brand show a large peak relating to shelf price and three
smaller peaks relating to favored types of promotions
involving price discounts with features and display.
Given that each brand has a choice of four prices and
the choices of whether to display or not, and to feature or
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not, there are still 16 possible actions per week. How-
ever, in the historical data we observe that features and
displays are highly correlated with low prices. Manag-
ers presumably only wish to incur the cost of these pro-
motions when they want a significant price discount to
be brought to the attention of shoppers. We therefore
reduce the number of actions per brand per week to
four, where each price level has an associated feature
and display. Reducing the number of actions to four
involves some sacrifice of realism, but possibly not as
great as it might first appear. The four actions we chose
for each brand are representative of the majority of ac-
tions taken by that brand in the 52 weeks. Thus we
maintain the connection to the four prices in strategy
tournaments while reflecting the styles of promotions
seen in most store tracking data.

Four actions can be coded in two bits, considerably
reducing the complexity of the problem. Indeed, four
actions and five brands results in 1,024 states, and if
each of these governs two bits, then individual brands
can be modeled with agents of length 2,048 bits. Strings
of this length are feasible from a computational point of
view but there would still be questions about whether
our environment was rich enough to evolve adequate
agents. We therefore made a final simplification and de-
cided to focus on the three major brands in this market
(Folgers, Regular Maxwell House, and Chock Full
O’Nuts). While all brands are involved in the market-
share dynamics, only these brands are able to signifi-
cantly expand or contract category volume with their
marketing actions (Cooper and Nakanishi 1988).

We can model the market as having three major play-
ers, with the other brands as fringe players who act as
nonstrategic price takers. This means there are only 64
possible states (three players, each with four possible
actions) and this results in strings of 128 bits. A one-
round memory game with three strategic players also
requires six bits of phantom memory, resulting in 134
bit strings for strategies. Strings of 134 bits are not only
easy to estimate, but the 52-week environment is ade-
quate to evolve effective agents of this length. The
brands emphasized in this simplification are by far the
major players in this market. The Casper game that has
been run with MBAs for seven years has conceptualized
competition this way—employing only three brand
teams. Another advantage of this simplification is that
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the Fader and Hauser results are more readily com-
pared with our simulations. However, perhaps the best
defense of our simplifications is that the agents we
breed can perform well in both laboratory and field.

We used a version of the machine-learning GA” to
simulate the actual behavior of the brands in a realistic
manner. Again to reduce complexity we set up the al-
gorithm using a single population of strings for the
three brands rather than three separate populations.
Our open-loop procedure did not use the historical pat-
tern of actions, but only the payoffs (profits) as esti-
mated by Casper. These were used to derive a 4 X 4
X 4 payoff matrix for each of the three major brands.
The four possible actions that define each face of this
payoff cube were a High price to approximate the co-
operative or collusive price, a high price to approximate
the two-person coalition price, a low price to approxi-
mate the noncooperative, Nash-Cournot price, and a
Low price to approximate the envious price. We not only
had to determine four price levels but also the amounts
of feature and display promotions we would associate
with each level. The following two-step process was
used to determine the price and promotion actions for
each brand. First, we used cluster analysis techniques
to identify the common patterns of price-promotion be-
havior for each brand. Second, we chose the four pat-
terns that covered the spectrum of possible actions and
occurred with high frequency in this market. However,
because of the need to have adequate degrees of free-
dom for the cluster analysis and to use a richer environ-
ment of actions, we chose the four actions from the data
for the three chains rather than Chain One alone. The
chosen actions have great similarity to actions observed
in Chain One, differing at most by one or two cents on
price. See Table 3 for the marketing mix associated with
each action for each strategic brand. The other five non-
strategic brands are held constant at their shelf prices,
which is their most common action.

The agents for each brand participate in 50-week
games, with all combinations of the agents for the other
two brands. The number of weeks is fixed, which might
lead to end-g'ame strategies, but the use of one round of

”We adapted GAucsd, the U.C. San Diego version of GENESIS
(Schraudolph and Grefenstette 1992).
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Table 3 Possible Actions for Each Strategic Brand
Feature Display
Price Per (% Stores (% Stores
Action Pound Featuring) Displaying)
Folgers
Low (0) $1.87 95 . 69
low (1) $2.07 83 0
high (2) $2.38 0 0
High (3) $2.59 0 0
Maxwell House
Low (0) $1.96 95 69
low (1) $2.33 83 0
high (2) $2.46 0 0
High (3) $2.53 0 0
Chock Full O’Nuts
Low (0) $1.89 100 77
low (1) $2.02 100 65
high (2) $2.29 0 0
High (3) $2.45 0 0

memory eliminates these. Using the GA, we chose a
population size of 25 agents (or strings). Typical pop-
ulation sizes in the GA literature are 25 or 50. As our
goal is to evolve a small number of high-performing
agents rather than a larger population with high aver-
age performance, we chose the smaller number.
Consequently, testing each generation of strings re-
quires 8,125 50-round games (325 games per string per
generation). While in principle there are 25° (or 15,625)
niches to test, this application is symmetrical, which re-
duces the number of niches to 25 X (25% + 25)/2 or 25
X 325 or 8,125 games (lower triangular matrix including
the diagonal). For every week of the game each brand
has complete information on all previous actions, but
not on profits. The GA was set to evolve agents for 100
generations and so the final total of 50 week games was
812,500—which is equivalent to over 40 million com-
petitive interactions.® However, because the actions of
the agents are limited: we simply formed a look-up table
of the profit implications of all possible states. The GA
was set to software defaults of a per-bit crossover rate
of 13.0 and a mutation rate of 0.0001 (a rate of 0.5 would

® On a Pyramid minicomputer 100 generations of 25 individuals has a
run-time of approximately 75 minutes.
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be a random search). Crossover serves to determine
which portions of the strings are exchanged to create
offspring, while mutation serves to avoid premature
convergence by generating new strings. GA practition-
ers have justified these parameters on heuristic grounds,
following extensive experimentation, as discussed by
Goldberg (1989). The criteria used have been conver-
gence speeds to known solutions, ability to identify
global optima from many close local optima, and other
desirable characteristics.

First Experiments—Unconstrained

The first computer experiments found convergence,
with all brands using their Low price actions and not at
a collusive high price. This finding is the result of in-
cluding a model for category volume as well as market
shares. If only shares were modeled, strategies would
probably have converged on the collusive price. But his-
torically most of the sales and profits in this market have
occurred at Low prices with promotions, because of
stockpiling, forward buying, and brand switching,
rather than through increased consumption. Indeed,
Gupta (1988), in studying consumer panel data from the
same time, concluded that increased sales from coffee
promotions came more from brand switching than from
forward buying or stockpiling. Over the time horizon
of our data we can consider coffee as a mature category
with stable long-term consumption rates.

Second Experiments—Institutional Constraints

To increase realism, we added some institutional con-
straints. Chain One does an excellent job of maximizing
long-term profits while not exhausting demand. Its pol-
icy is to promote (Low) only one major brand at a time
for the duration of one week. We mimicked this policy
by saying no agent could follow one week’s Low with
another Low, and only one agent per week could pro-
mote Low. Before we play an agent against other brands,
we filter against strings that map any own-play of Low
in the previous round to own-play of Low in the next
round, and arbitrarily assign them poor profit figures.
As a result such agents will be much less likely to pass
on their characteristics to members of the next genera-
tion of agents. This is because the GA uses each string’s
performance to determine the likelihood of that string
being a parent of members of the next generation (i.e.,
passing on sub-strings). Ties of two or more strings that,
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given the state of the oligopoly as a result of past ac-
tions, would simultaneously price at Low are broken by
random choice; the loser(s) arbitrarily price at high. The
unconstrained strings are evaluated without any ad-
justments to their profit performance.

These institutional constraints resulted in an interest-
ing pattern of behavior in which brands alternated in
pricing Low, with the other two brands pricing low, high,
or High. However, these agents still priced Low and low
too frequently—resulting in saturation of demand.

Third Experiments—Demand Saturation
To make the experiments even more realistic, we intro-
duced time into the demand side by adding demand
saturation. Casper is a one-shot, brand-planning simu-
lator that does an excellent job of forecasting single-
period demand. But while this market is very volatile
in the short run, it is very stable in the long run. Similar
constraints were added to the Casper game to keep
MBAs from acting as if consumers would bathe in coffee
just because the price dropped. Here the weekly total
demand was pro-rated by the degree of over-saturation
of the past seven weeks.” To represent the observed sat-
uration of demand, we first calculated the total sales
volume per week, a function of the marketing actions
of the three strategic brands and the remaining non-
strategic brands. We then calculated the average total
sales volume over the previous seven weeks and used
this together with a figure for the historical average total
sales volume to calculate the percentage degree of sat-
uration. If this percentage was greater than 100%, the
total sales volume for the latest week was reduced by
the degree of saturation: in steady state this will mean
total sales volume equal to the historical average. Then
the profits of the brands were reduced for each of the
three competing brands. This was achieved by using
profits calculated from Casper by limiting total sales, as
if the total market had shrunk, which is a consequence
of demand saturation.

With institutional and demand constraints in place,
two patterns of competition evolved. In some cases
we got convergence to all low pricing. We speculate

° The seven-week period was chosen to approximate the average in-
terpurchase interval in this category.
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that there are likely to be additional institutional con-
straints that prevent this behavior and so we do not
present these results here. In other cases we got con-
vergence to patterns of behavior generally similar to
that observed historically in Chain One but with
higher profits. Figure 2 shows the simulated behavior
of the three strategic brands with the institutional and
demand constraints.

It is important to note that the results shown in Figure
2 are for three optimized agents competing against each
other over 50 weeks. As such, the frequency of price
competition is higher than we observe in the actual mar-
ket—Dbecause the optimized agents invariably respond
to the previous week’s actions of their competitors. For
example, the artificial agent for Folgers reduces its price
37 weeks out of 50, whereas the brand managers for
Folgers only promoted 14 weeks out of 50. Similar sta-
tistics for Maxwell House are promotions on 30 weeks
for the agent versus 11 weeks in the data, and for Chock
Full O'Nuts 37 weeks for the agent versus 17 weeks in
the data. In itself this “over-competition” is not unex-
pected, as our agents do not face the practical barriers
met by brand managers. In our “laboratory,” informa-
tion on competitor actions is received instantaneously,
and promotional responses can be implemented within
one or two weeks (subject only to the strictures that no
brand may promote Low on two consecutive weeks and
only one brand may promote Low in any one week).
Our artificial agents can therefore respond immediately
to any competitive action, whereas human brand man-
agers may face practical constraints. In these ““labora-
tory”’ tests the agents generate profits that are very
much higher than those observed in the actual market
(achieving from 353% to 970% of historical averages).

Fourth Experiments—Tests Against Historical
Actions

The final series of experiments is not concerned with
evolving better agents; rather we took the best agents
from the third series of experiments and tested each in
turn against the historical actions of their seven com-
petitors. We did this by taking an artificial agent, as-
signing it to one of the three strategic brands, and allow-
ing it to choose what actions to make week-by-week
over a 52-week period. However, the formulation of our
agents means that they only react to the historical

267



MIDGLEY, MARKS, AND COOPER
Breeding Competitive Strategies

Figure 2 Price Strategies for the Three Major Competitors
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actions of the two other strategic competitors.'” Hence,
while the historical actions of the other five nonstrategic
brands are input to profit calculations, they are not “‘rec-
ognized”’ by the agent. As the GA was set to evolve a
population of 25, we have 25 “best” agents, and so the
test can be repeated 25 times.!' Table 4 details the av-
erage profits generated by each agent over the 52
weeks—expressed as a percentage of the profits
achieved by each brand’s human managers over the
same period (computed by the Casper simulator from
historical actions).

Table 4 shows that when the artificial agents are as-
signed to either the Chock Full O'Nuts or the Folgers

1% In performing this test it is necessary to classify the historical actions
of the other major brands into Low, low, high, and High. We did this
by inspection, partitioning the price distribution into four roughly
equal levels.

"' The fact that we have 25 best solutions is also an example of the
explicit parallelism of the GA.
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brand most of them do markedly better than human
managers. Indeed for Chock Full O'Nuts only three
agents do worse than the human managers (strings 6,
20, and 22); and for Folger’s only two agents do worse
(strings 6 and 20). The best agent (string 24 in both
cases) performs, respectively, 233% and 240% better
than brand managers. For Maxwell House the results
are not so good, with only two agents out-performing
brand managers (strings 8 and 14). However, even here
the best strings do produce a 20% increase in profits.
The fact that the overall results are not as good for Max-
well House is amenable to two competing explanations.
First, it may be the penalty for breeding one population
of agents rather than separate populations for each stra-
tegic brand. If the market response to Maxwell House’s
actions is sufficiently different from the other two
brands’, then breeding separate populations of agents
might produce better performance. Second, we note that
in absolute terms Maxwell House’s profits are the high-
est of the three brands and may therefore be the hardest
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Table 4 Performance of Agents Against the Actions of Brand
Managers
Agent (String) Chock Full O'Nuts Folgers Maxwell House
1 151% 176% 79%
2 101% 106% 72%
3 120% 135% 86%
4 114% 158% 82%
5 219% 238% 91%
6 87% 96% 76%
7 217% 174% 98%
8 200% 158% 120%
9 144% 125% - 74%
10 107% 104% 77%
11 223% 226% 87%
12 187% 170% 85%
13 123% 116% 72%
14 227% 183% 116%
15 117% 112% 85%
16 111% 120% 73%
17 186% 183% 76%
18 113% 107% 76%
19 134% 108% 79%
20 89% 93% 84%
21 167% 154% 77%
22 87% 107% 75%
23 193% 148% 98%
24 233% 240% 84%
25 169% 192% 93%
Overall Mean 153% 149% 85%

The best three agents for each branch are bold.

to improve. Possibly the historical actions of Maxwell
House’s managers have been more effective than those
of the other brands. This conclusion is supported by the
fact that Maxwell House is the largest player in this
market.

This test demonstrates that the “laboratory’” results
can be translated to the field. However, the historical
test is limited because each agent is competing against
“closed loop” competitors who do not learn from the
actions of the artificial agent and adapt their own be-
havior accordingly. Therefore, we consider that what is
impressive about these results is not that the agents can
outperform historical actions, but that such simple
agents can generate reasonable performance in this
‘noisier’ environment. Our agents are very simple, as
they are limited to a one-round memory and only four
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actions. We should ask what the patterns of behavior
are that lead to such performance from these simple
agents. This turns out not to be an easy question to an-
swer because of the difficulties of presenting all the data
in an understandable form. However, Figures 3 and 4
clarify the issue. Figure 3 shows the historical price ac-
tions of Folgers compared with the price actions of the
“best’” agent (string 24) faced with the same history of
plays. Figure 4 shows the same historical actions com-
pared with the “worst’” agent (string 20).

The comparison between these two figures indicates
that while the “worst” agent behaves similarly to the
human manager, the “best’”” agent is prepared to keep
the price low and promote more frequently. Although
we do not present the figures here, similar conclusions
can be drawn for Chock Full O'Nuts and Maxwell
House.

Figure 5 illustrates the operation of the GA in this
application. Three quantities are plotted in the figure:
(i) the maximum profit achieved by any of the 25 agents;
(ii) the average profit achieved across the 25 agents in
any generation; and (iii) the percentages of agents that
violate the constraints we impose.'” These quantities are
plotted against the generations of agents evolved by the
GA. The brand shown is Folgers, although again the
other brands have similar plots.

During the simulations of 100 generations, the best
string emerges around the 45th generation, and remains
unbeaten for the next 55 generations. This can be seen
by the final plateau in the maximum profit series.

Figure 5 demonstrates two key properties of the GA.
First, it selects those strings that can perform well in the
environment they face and punishes those that cannot.
Thus over the first 20 generations most of the strings
that violate institutional constraints become extinct. The
last such string becomes extinct after the 44th genera-
tion. Second, the GA progressively improves the per-
formance of the remaining strings and reduces the vari-
ance between them. This can be seen by the fact that the
plots for maximum and average performance converge

!
12 These we can identify because their fitness function is set to a stan-
dard low value by our program. We cannot necessarily identify which

constraint has been violated because we as yet do not fully understand
the genome (bit string structures).
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Figure 3 Price Strategies for Folgers—Best Agent vs. History
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around the 65th generation. The result is a population
of high-performing agents rather than a single best
agent.

Discussion

The overall conclusion we reach is that the artificial
agents price promote more frequently than do human
managers. We observe the highest level of promotion
when the optimized agents are competing with each
other in our “laboratory.” These results might be de-
fined as the maximum competition possible in this mar-
ket, with the actual market likely to show less compe-
tition. Hence, it is not surprising that placing one of
these agents back into the historical market produces a
lower frequency of promotion. This is the case for many
of the final strings, whose behavior more resembles hu-
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man managers. However, the ‘best’ agents still promote
more frequently than do their human counterparts, and
we need to speculate on the reasons for this.

One reason may be that human managers are not able
to respond to competition on a week-by-week basis.
More likely, they negotiate with the chains for a series
of promotions to occur within a defined period (often
of thirteen weeks). Major responses to competitive ac-
tions may thus occur in the next promotional period
rather than by immediate adjustments to the current
plan. Institutional constraints such as promotional periods
may serve to lower the frequency of promotion. However, as
yet we do not understand the impact of promotional
frequency on the profits of the retailer. Our current
model is of brand profit maximization, whereas in re-
ality there is negotiated profit sharing between manu-
facturers and retailers. It is currently unclear to us

MANAGEMENT SCIENCE/ Vol. 43, No. 3, March 1997



MIDGLEY, MARKS, AND COOPER
Breeding Competitive Strategies

Figure 4
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whether the institutional constraints simply serve to in-
crease chain profits and decrease brand profits, or
whether they serve to jointly maximise the profits of all
the parties. A future extension of our work might be just
such a joint model.

Another reason human managers may promote less
than our agents relates to the level of aggregation at
which managers operate. Our data and models are for
one chain in two cities in one state of the United States.
It may be that brand and chain management structures
preclude managers from managing effectively at this
micro-level of detail. This is not a problem for our over-
all approach—which could be applied at more aggre-
gate levels—but it does raise interesting questions as to
the optimum level at which to seek to manage the pro-
motional mix.

MANAGEMENT SCIENCE/ Vol. 43, No. 3, March 1997

However, the reasons for the agents promoting more
frequently than do managers may have more to do with
the way we specified the agents. These reasons include
the choice of one-round memory and the selection of
four prices. In essence, one-round memory restricts the
agent to only being directly ““aware’” of the most recent
actions of its competitors. More rounds of memory
would allow the agent to take a more balanced ap-
proach to competitive reaction, since the agent might
then ““assess” how aggressive a competitor’s strategy
was across a greater number of instances of behavior.
For example, observing that a competitor has promoted
for two periods out of three implies greater aggression
than if that competitor has only promoted one period
out of two. In contrast, agents with one round of mem-
ory cannot distinguish these actions.
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Figure 5 Evolution of String Performance for Folgers
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As we add rounds of memory, our artificial agents
are able to make more graduated responses to compe-
tition but only at the cost of complexity—the increasing
length of our strings. A three-round memory version of
our agent for four actions and three players would im-
ply 262,144 states (4*°) and could be coded in a string
of 524,288 bits plus phantom memory. Our current
string has a length of 128 bits plus phantom memory,
and so moving to three rounds of memory results in a
string that is over 4,000 times longer. As will be dis-
cussed below, there is a less costly route to formulating
better models.

The four prices we selected may have also had an
impact on the behavior of the agents. While the choice
of four as the number of levels has some justification in
the literature (Fader and Hauser 1988), choosing the ac-
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tual prices and promotional activities for each level is
not straightforward. The procedure we used obviously
involves assumptions and judgements, and to the extent
these are incorrect so will be the behavior of our opti-
mized agents. (It can be argued, however, that even if
the actions are incorrect, the agents still perform well.)
Four levels is also a simplification in that more combi-
nations of price and promotion are observed in the mar-
ket. Again, we could elaborate our models from four to
eight or sixteen actions, but only at the cost of increasing
the length of the string. An eight-action, three-brand
agent with one round of memory implies 512 states
(8'*?%), and these can be coded in a string of 1,536 bits.
It turns out to be less costly to increase the number of
actions than to add memory. Four actions can be coded
into two bits, but only three bits are needed to code eight
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actions. In contrast, increasing the rounds of memory
acts as a power function and therefore has a dramatic
effect on the length of the strings.

Hence we have four potential explanations for the
greater competitiveness of our agents as compared to
brand managers, namely, the nature of institutional
constraints; the effectiveness of management structures;
one-round memory; and restricted price actions.

Our intuition is that the nature of institutional con-
straints is more likely to prove the correct explanation.
However, overcoming this limitation in our agents in-
volves a significant shift in perspective—from week-by-
week actions to a pattern of actions across thirteen
weeks. In essence, an action for a more sophisticated
agent would be a specific promotional plan chosen from
a set of possible plans. Moreover, as we shift perspective
to the longer time frame, it seems likely that we will
need more options for the agent to select from. This is
because providing an adequate representation of a
thirteen-week reality will require more alternatives than
a one-week perspective.

We have recently conceived of an alternative model
formulation that will potentially allow for more com-
plex behavior to be generated from strings that are not
much longer than those used here (Midgley et al. 1995).
Instead of employing external cluster analysis to parti-
tion the data into discrete “actions,”” we might en-
dogenize this partitioning of actions within the agent’s
bit string. In essence the agents would “learn’ an opti-
mal partitioning of promotional actions from previous
states of the market. Since these partitions could be con-
structed over several periods, this alternative approach
may also not require encoding several rounds of mem-
ory into the bit string. Instead the parameters of the par-
titioning function would be held in the bit string, and
quite complex functions may only require a small num-
ber of additional bits. There is a human analogy here,
since human genetic information may well set the pa-
rameters for our memory and pattern recognition al-
gorithms. However, as yet our alternative approach is
speculative. To confirm its value requires considerable
further work, and a more extensive market environment
than was available for the current study.

We believe we have demonstrated the potential value
of our overall approach. Artificial agents can be bred
which mimic the behavior of human managers and
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which play dynamic, multi-period strategies. This in it-
self is an advance in the literature and one that has been
called for (CCHM). Previous models have only pro-
vided solutions for the extreme cases of no competitive
reaction or optimal (Nash-Cournot) competitive reac-
tion. Neither of these cases is likely to be observed in
actual markets, where profits are sought over a number
of periods of a multi-period game. Our artificial agents
seek to maximize profits over a number of periods and
do so, taking account of institutional constraints, con-
sumer response to promotions and competitive reac-
tions. At a string length of 134 bits, these agents are
actually very simple and are therefore capable of con-
siderable improvement. Just as a geneticist breeds better
strains of bacteria in the laboratory, we should be able
to breed better agents in our simulations.

The evolutionary model is a powerful method for op-
timizing artificial agents to a particular competitive en-
vironment. It allows us to specify realistic agents and
then to evolve those which maximise profits in this en-
vironment. However, while our overall approach is
generalizable, here we have developed agents that are
specific to the chosen environment. That is, the coffee
agents we bred for this paper are fit to survive and pros-
per in one regional coffee market, but might not do well
in another coffee market, and would be unlikely to sur-
vive in an entirely different product class. Equally, if the
fundamental economics of coffee were to change or an-
other major player to enter the market, our agents
would not perform effectively. The evolutionary model
selects the agents to match the environmental niche—
which is both its strength and weakness."

Fortunately, where we have an appropriate model of
sales response to mix variables, and where we know the
underlying cost structures of the manufacturers, we can
specify an artificial agent. Applying a genetic algorithm
then allows us to select agents that maximize profits
over the desired time horizon. Improvements in market
modeling and the wider availability of genetic algo-

" Indeed the effectiveness of the agents we breed is entirely dependent
on the richness of the environment they are bred in. This raises im-
portant issues of how we may best construct competitive environ-
ments in the “laboratory.”” In the example we have discussed, we are
somewhat limited by having only one year’s data for one region.
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rithms will make this a practical procedure for many
market situations.

What then are the managerial applications of this ap-
proach? We believe there are three. First, agents allow
managers to check promotional plans against the likely
response of their competitors. Promotional plans can be
input for their own brand, and the competitive re-
sponses to these plans generated from the agents of the
other brands. Second, agents enable managers to test
“what-if” scenarios for their own brands and for those
of their competitors. Both these applications may help
alleviate the resistance to market modeling that is ob-
served in some companies. Part of this resistance may
stem from the static and competitively myopic nature
of other current approaches. Managers expect models
to simulate the consequences of actions planned over a
period, and for these simulations to factor in likely com-
petitive response. Third, agents may be useful in train-
ing junior brand managers. Agents might form the basis
of games where junior managers make the decisions for
one brand, and agents the decisions for competitive
brands. With appropriate agents this would inject an
element of realism into training by simulation games.

It is also possible that this approach has implica-
tions for regulatory agencies. We have suggested that
the intensity of competition observed in the ““labora-
tory” is a theoretical maximum. This maximum might
provide a benchmark by which regulatory agencies
can assess the actual intensity of competition ob-
served in any market.

In addition to the extensions of our work discussed
in this paper, there are many potential applications of
GAs to marketing. GAs provide efficient and robust op-
timization methods for situations where the objective
function is complex, nonlinear, and analytically intrac-
table. Their explicit parallelism makes them less suscep-
tible to convergence on local optima, and relatively ef-
fective at identifying complex patterns. As a conse-
quence, they allow us to contemplate more complex
objectives than we might otherwise, including hybrid
functions, incorporating algebraic formulae and deci-
sion rules. Since the optimization of complex functions
lies at the heart of many marketing applications, we can
envisage applying GAs to media and sales force allo-
cation, to modeling market and competitive response,
and to optimizing profitability under various strategic
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scenarios. Less obvious applications include our (un-
published) work on the use of a GA to identify con-
sumer choice models from scanner data, and the work
of Terano et al. (1995) on using a GA both to identify
consumer decision rules from questionnaire data and to
generate potential new products from these rules.

Of course, all of this rests on breeding more realistic
agents. Our work encourages us to think that this can
be done and that second-generation agents will produce
even more realistic behavior. This will be achieved by
conceptualizing actions over multi-period planning ho-
rizons and by endogenizing partitioning. These second-
generation agents will have longer chromosomes—but
to some degree this only costs us computing cycles. The
more challenging problem is to develop environments
that are sufficiently diverse that more complex agents
can be bred to be effective and robust competitors.'
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Resources, Inc. for providing the data used in this study and Joel
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brands. We also thank the editors and referees for their helpful sug-
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