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To use multiplicative competitive interaction (MCI) models as part of a theory of
the evaluative process in choice, we need a method to transform interval scale
consumer judgments into positive, ratio scales. We develop a coefficient—zeta-
squared—that possesses the needed scale requirements and other theoretically
desirable properties, and report four research studies to demonstrate the diversity
of applications of multiplicative choice models using zeta-squared. We also dis-
cuss the relations of MCI models to Luce choice models to illustrate the potential
of zeta-squared for representing the effects of similarity on choice, and consider
some of the benefits of standardizing variables in MCI models or multinomial logit

models.

‘ N ] e are building a theory of the evaluative process in

choice. Our goal is to predict marketplace activity
(market shares) from the internal states (beliefs and values)
of consumers. We believe this goal is achievable if we can
represent the richness of systematic individual differences
in the evaluation of market alternatives and show how psy-
chological measures from individuals or homogeneous
groups can be used in models of market share or choice
probabilities. Of these two interrelated representational
problems, we focus first on representing psychological
measures in market share models.

In our theory, the core model for the compensatory pro-
cess in the evaluation of alternatives is an attraction model
we call a multiplicative competitive interaction (MCI)
model (Nakanishi and Cooper 1974). Such a model requires
special ratio scale properties that are not immediately avail-
able in the interval scale ratings typically collectible from
consumers. Measures of travel time to retail centers and
display space in those centers can easily be used in an MCI
model to represent the attractiveness of the centers to con-
sumers in different neighborhoods. But consumers’ judg-
ments of brand or store attributes have arbitrary origins and
units of measures. Whether the rating scale goes from 1 to
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9 or from —10 to 10 makes no difference. The properties
of the scale dictate what operations can be performed on
the numbers without distorting whatever meaning they orig-
inally possessed. For interval scale ratings, we can assume
that the differences in scale units are constant throughout
the range and thus that the ratios of differences are mean-
ingful. However, a multiplicative model requires values
which themselves form meaningful ratios. The meaning of
the original measures will be distorted unless a legitimate
transformation is employed to imbue interval scale ratings
with ratio scale properties.

While the heart of the problem is epistemological (how
can one maintain the meaning inherent in the original mea-
sures?), the necessity of solving the problem is easy to
illustrate without dealing in abstractions. The estimation of
parameters of MCI models and of many other multiplicative
models requires taking logs, and one cannot take the log
of a negative number. The meaning of interval scale judg-
ments should be unchanged by a simple linear transfor-
mation of the original scaie of measurement; but even if
estimation procedures were available, each different linear
transformation would have a different meaning in an MCI
model.

This article compares the option of exponentially trans-
forming the interval scale—which is equivalent to using a
multinomial logit model—to other options. The primary
objective is to develop the zeta-squared transformation as
an alternative; several other alternatives result as well.

We first introduce MCI models as representations of the
compensatory process in the evaluation of alternatives.
Next we develop the components of the zeta-squared trans-
formation from their foundation in physics and show how
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they represent the comparative information in a set of mea-
sures. Through an empirical comparison with Murdock’s
(1960) index of distinctiveness, we then demonstrate that
the information an observer perceives in an object is pre-
served by the components of the transformation, and de-
velop the final transformation, showing its applicability to
interval scale ratings as well as to binary measures. We
apply zeta-squared to the study of choice among political
candidates, the relation of fashion perception to fashion
choice, the study of retail patronage behavior, and as part
of the cognitive algebra used to forecast test-market per-
formance from consumers’ reactions to new product offer-
ings. We show how representing comparative contextual
information makes MCI models depart from Luce (1959)
choice models, and present some potential uses of zeta-
squared for representing the effects on choice of changes
in the composition of competitive choice sets. Finally, we
discuss the benefits of using standardized variables in mul-
tiplicative choice models for the simultaneous analysis of
several choice situations.

MULTIPLICATIVE COMPETITIVE
INTERACTION MODELS

MCI models have certain advantages over general linear
models when it comes to predicting market shares, or
choice probabilities. MCI models are logically consistent,
that is, the estimates of choice probabilities which they
produce are always between zero and one and always sum
to one over all choice alternatives. General linear models
can produce estimates of probabilities which are less than
zero or greater than one, and which do not sum to one over
all alternatives. The logical consistency of MCI models
flows from their basic structure rather than from a con-
strained optimization of some sort. MCI models can be
transformed so that they are just about as easy to estimate
as are general linear models (Nakanishi and Cooper 1982).
But transformations to simplify estimation do not eliminate
the need to transform interval scale judgments into ratio
scales.

Our desire to use MCI models in a consumer context
comes from six basic assertions we make about the com-
pensatory evaluative process in a Competitive Interaction
Theory of Choice:

1. Choice alternatives are evaluated in competitive sets (rel-
evant sets or evoked sets).

2. Choice alternatives can be represented as bundles of at-
tributes (manifest or latent attributes; psychological, so-
ciological, physical or economic attributes).

3. Individuals evaluate choice alternatives in terms of the
comparative possession of attributes in the competitive
set.

4. Attributes interact to form the attractiveness of each al-
ternative to each individual.
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5. Individuals are inclined to choose alternatives according
to their shares of the total attractiveness of the competitive
set.

6. Individuals differ in largely systematic and analyzable
ways.

A mathematical representation of these principles is:
H
hI_—Il fi ) Bhsij

i~ m / H
> (H ﬁ(xhij)“‘"sij)

ji=1 \h=1

0]

The subscript i refers to choice situations, e.g., time pe-
riods, geographic areas, individuals, or homogeneous
groups: it allows one to model the systematic structure of
individual differences mentioned in point 6. Subscript j re-
fers to choice alternatives. There are m; choice alternatives
in the ith choice situation: this allows the competitive sets
mentioned in point 1 to vary over choice situations. X,;; is
the original measure of explanatory variable A, that is, a
particular attribute in the bundle mentioned in point 2 as it
relates to choice alternative j in situation i. And fi(X,,;) is
a positive, ratio scale function of the original measure.
Equation 1 is a very basic model encompassing both MCI
and multinomial logit (MNL) models, depending on the
choice of representation for fi(X,;). For this function to
satisfy point 3, it must reflect the comparative information
inherent in the set of original measures. This will make the
MCI model a non-Lucian model (to be discussed later).
Murdock’s (1960) experiments will be considered in a later
section, which demonstrates that the proposed transforma-
tion conveys the comparative information in the original
measures. 3, is a parameter to reflect the sensitivity of
choice probability ; to variable h; d; is a specification
error term which reflects the possibility that H attributes
may not include all the explanatory influences. The product
of the H terms f,-(X,,,-j)B" represents the concept that the at-
tributes interact to form the attractiveness of each alterna-
tive in the competitive set, as in point 4. This product
divided by the sum of products for all alternatives in a
competitive set reflects the ‘‘share of the pie’’ notion in
point 5.

Thus, if we can construct a legitimate transformation
which retains the comparative information in the original
measures, we have captured in Equation 1 these six basic
aspects of the compensatory evaluation in our theory. This
problem forms the focus of the next section.

REPRESENTING COMPARATIVE
INFORMATION

The H explanatory variables in Equation 1 could be
thought of as the axes of a space. Each choice alternative
would be a point in this space, as depicted in Figure A. We



98
FIGURE A
SEVEN BRANDS IN A THREE-DIMENSIONAL SPACE
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7
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>k
/ >
X3 & X|i

could imagine that each alternative is a ring held in place
not by the line tying it to the plane at the bottom of the
figure, but by invisible rods connecting the rings to each
other. Say each ring weighs eight ounces and the rods are
weightless. Imagine sticking your finger through a ring and
trying to twirl all the rings around your finger. Feel how
much easier it is to twirl all the rings from rings in the
middle (5 or 6) than from rings at the extreme (1 or 7).
Such feelings equate to the physical concepts of moments
of inertia or radii of gyration. A ring at the center of gravity
in this figure would be the easiest of all to twirl. One can
construct a two-dimensional example of this by cutting fin-
ger holes at different places in a rectangular piece of card-
board, or a one-dimensional example by drilling holes at
various places along the length of a wooden dowel.

These physical concepts have statistical counterparts, as
pointed out by Hays (1963, p. 181):

The reader acquainted with elementary physics may recog-
nize not only that the mean is the center of gravity of
a physical distribution of objects, but also that the variance
is the moment of inertia of a distribution of mass.
Furthermore, the standard deviation corresponds to the radius
of gyration of mass distribution; this is the real basis for
regarding the standard deviation as analogous to a resultant
force away from the mean. These physical conceptions and
their associated mathematical formulations have influenced
the course of theoretical statistics very strongly, and have
helped to shape the form of statistical inference as we will
encounter it._
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Let the moment of inertia about alternative j* on measure
h be denoted I

1 &
Ihij* = ; 2 (Xhij* - Xhl:i)2. (2)
ij=1
where the other symbols have the same meaning as in
Equation 1. As indicated by Hays, the central moment of
inertia, denoted I, is the variance of the distribution:

m;
Lo = l 2 (Xhij - Xhi.)2 3
m;j=1 '

The ratio of the noncentral moment of inertia to the cen-
tral moment of inertia is a comparative index with solid
foundation in physics and statistics. Note that the origin of
the space is immaterial to this index. An overall rescaling
will affect the numerator and denominator in the same way,
leading to no change in the ratio. In sum, then, a general
linear transformation of the measure does not affect this
ratio, making it an appropriate transformation of interval
scale ratings. It has a minimum value of one for choice
alternatives at the center, and increases as a particular al-
ternative gets farther away from the center. Just as the stan-
dard deviation is in the scale units of the original measures,
the square root of this ratio, which we denote:

I

ij

Dy = 7%~ @
hiO

relates to the original unit of measures rather than to squared

units. It is this ratio which we will compare to Murdock’s

(1960) index of distinctiveness.

An Empirical Comparison to Murdock’s
Index of Distinctiveness

Murdock desired ‘‘a quantitative measure of distinctive-
ness that could be derived without recourse to experimen-
tation so that the general effects of the variable could be
determined’’ (1960, p. 16). He saw a role for such a mea-
sure in understanding very diverse areas of psychology. His
research is of interest here because he validated his measure
‘“‘by determining the extent to which it can predict accuracy
of identification in the method of absolute judgments’’
(1960, p. 18). Absolute judgment tasks are tasks in which
an observer *‘of a particular stimulus identifies that stimulus
with a single name or number. He does not make a judg-
ment of whether a stimulus is greater than, less than, or the
same as another’’ (Garner and Hake 1951, p. 446). Mur-
dock reasoned that performance in such tasks would pri-
marily be a function of stimulus distinctiveness: the more
distinctive stimuli would be correctly identified relatively
often, while the less distinctive stimuli would be correctly
identified less often.

Three things need to be noted here. First, Murdock im-
plies that the information perceived by an observer is com-
parative information even in an absolute judgment task, that
is, that judgments are dependent on the comparative con-
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text. But early research indicated that ‘‘information con-
veyed by stimuli varying on a single dimension is likely to
fall between 2 and 3 bits’’ (Attneave 1959, p. 72), corre-
sponding to perfect perceptual identification of five to nine
stimuli. Increasing the number of stimuli beyond this leads
to little or no improvement in the amount of information
perceived. Second, if Murdock’s measure of distinctiveness
accurately reflects the percent correct identification in ab-
solute judgments, then it accurately reflects the information
perceived by an observer in the stimulus objects. Third, if
our index D, accurately reflects the percent correct iden-
tification_in absolute judgments, it too will reflect the in-
formation perceived. As Attneave (1959) pointed out, this
paradigm and some of the data Murdock reanalyzed form
part of the foundation of information theory in psychology.

Murdock provided results for six experiments. The first
three involved absolute judgments of the loudness of 1,000
cycle tones that varied over a 40-decibel range. Respon-
dents used a 1 to 9 scale to label the loudness of the tones.
There were 60 presentations of a two-second tone followed
by five seconds in which to write the label for the tone.
These three loudness experiments are referred to as LI, LII,
and LIII. The fourth experiment involved judgments con-
cerning weights. There were eight weights in identical con-
tainers, ranging from one to 16 pounds. The respondents
‘had to learn the correct color name for each weight in a
paired associates learning paradigm. They lifted each
weight for five seconds, had 10 seconds to associate the
color with the weight, and then had a two-minute rest in-
terval. The criterion was one perfect trial through a ran-
domly ordered eight-weight sequence. Murdock also rean-
alyzed data from two prior studies. Eriksen and Hake
(1957) collected absolute judgments of the area of 20
squares that ranged from two millimeters on a side to 40
mm. in two millimeter steps. Bugelski (1950) had subjects
study lists of eight words, and recorded the percent correct
recall for the first word in each list, the second word in
each list, and so on up to the last word in each list (the
serial position effect, or SPE).

To understand Murdock’s index, one must realize that
he was dealing with pounds and decibels—physical mea-
sures he called ‘‘energy values.’’ He cited the Weber-Fech-
ner Law as well as Helson’s (1947) adaptation-level theory
as justification for working with the logs of the energy
values. His index is the sum of the absolute value of the
differences in the logs of the energy values from one stim-
ulus to all others. This index is expressed as a percentage
of the total sum of log differences:

'21 llog X;. — log X||
%Dy = —— ©)
<2 2, [log X;. — log X,-I)
A=

where m is the number of stimuli, X is the single measure
of “‘energy value,’” and j* is a particular stimulus from the
set. This index cannot be used with interval scale measures
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TABLE 1

CONGRUENCE COEFFICIENTS BASED ON PREDICTION OF
PERCENT CORRECT IDENTIFICATION FROM
DISTINCTIVENESS: MURDOCK'S INDEX AND D,,,

LI Lh L Weights SPE  Squares
m 9 9 9 8 8 20
Murdock 994 986  .991 .988 .987 ‘QIBS
D, 994 989  .987 .996 .969 .945

because of the problem mentioned earlier in taking the logs
of negative numbers. It also would pose difficulties in inter-
pretation if the measures fell between zero and one. Large
negative values for the logs could distort the index. But in
thé cases Murdock considered, these difficulties did not
arise.

The predictions from Murdock’s index (Equation 5), and
our index (Equation 4) are based entirely on information
available before the human judgments in these psycho-
physical experiments were collected. ‘‘Energy values’’
measure loudness in decibels for the loudness experiments
LI, LI, and LI, pounds for the weight experiment, the
length of a side in millimeters for the squares experiment,
and the log of the serial position for the SPE experiment.
Since the values from Equation 5 are ratio numbers, fit was
assessed by a congruence coefficient which. allows for re-
scaling alone (i.e., no additive constant; Tucker 1951):

m

2 0; p;
j=1

= % 6

o,
(i 2?3 p?)

j=1 7 j=1

where o; is an observed score and p; is a predicted score
for stimulus j. The results are presented in Table 1.

All of these congruence coefficients appear significant if
the simulation distributions developed by Korth and Tucker
(1975) are used as a guide. These distributions are for
matching two vector spaces, not merely two vectors. We
are safe, however, in assuming that values greater than 0.9
are significantly greater than zero. In Murdock’s original
experiments, his index of distinctiveness fits slightly better
than D,,; one out of four times, D,; fits slightly better two
out of four times, and the indices are tied once for all
practical purposes. These results provide evidence that
D,; preserves the information perceived by observers in a
set of objects.

The significant result for the SPE is interesting in that
this is one of the few well-known effects that cannot be
predicted by Landauer’s (1975) computer simulation model
for memory without organization. Using a naive memory
model with random storage and undirected retrieval, Lan-
dauer was still able to reproduce well-known learning and
forgetting curves, the effects of massed versus distributed
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practice on learning, and other results for which complex
memory models have been proposed. But his naive model
cannot account for memorability due to the comparative
position of words in serial lists. This lends further support
to the notion that our index represents something basic
about human judgments that is not easily explained by other
means.

COEFFICIENT ZETA-SQUARED

One desirable property is missing from the index D,;.
Values that are a given number of units above the mean of
the original interval scale measure X,,; are mapped into the
same D, value as are values that are a given number of
units below the mean. We can make the mapping unique,
instill a sense of direction to a coefficient, and still maintain
the ratio properties that an MCI model requires by inverting
the index D,; at the mean of the original measure. We
define:

D}, if X, = X,
Gy = ™
1D} if X,y = Xy

It might seem unusual to compress everything below the
mean of the original measure into the range from just above
zero to one, and to allow everything above the mean of the
original measure to range from one to just below infinity.
Yet this is a proper representation in multiplicative models

because every value in a multiplicative model is balanced -

by its inverse value. To understand this and other relations
between multiplicative models and additive models, it is
useful to express Equation 7 in terms of standard scores.
Since the standard deviation is I;{jo, the standard score,
z;;;, can be expressed as:

K = X,

i)

Note that:

1 m; . —
Ihij* = — 2 (Xht]* - Xhi. - X + Xhi.)2

hij
m;j=1

= (Xhij* - —X_hi.)2 + — 2 (Xhij - Xhi.)2 )

1
m;j=1

(Xhij* - Xhi.)2 + IhiO
so that:

Xy — Xu ) + I -
( hij Ihl) hiO if Xh,} > Xhi‘
G, = a0

1. —
=0 if X, = X0
Xy = Xpi)® + Lo
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In terms of z-scores we have:

1

(1 + z) ifz,;, =0 a1
Cﬁf,- = {
a+ ziu)

if z,; = (0]

The ‘‘origin’’ of a z-score is zero. In linear, additive
models, the differences in scale units below the origin must
be the same as the differences in scale units above the
origin. In multiplicative models, the ‘‘origin’’ is one. The
ratio of scale values below the origin of a multiplicative
coefficient must be the same as ratios of the scale values
above the origin. For example, the meaning of the interval
from 0.125 to 0.250 must be the same in a multiplicative
model, as the interval from 8 to 4.

‘The presentation of zeta-squared in Equation 11 is useful
for several other purposes. First, it emphasizes that only
interval scale properties are required of the original mea-
sures. Since z,; is invariant over linear transformations of
the original scale of measurement, zeta-squared must also
be invariant. Second, it shows that zeta-squared is easily
computed from standard scores. Third, as noted by Miet-
tinen (1970), if the original measures are normally distrib-
uted, one can use the underlying normal distribution and/or
the underlying chi-square distribution to test hypotheses of
interest. Thus the compression of half the scale information
into the range from 1.0 to just above zero does not inhibit
one’s ability to make statistical comparisons. Fourth, it
shows that zeta-squared is a kind of standardization of vari-
ables for multiplicative models.

Zeta-squared is also a very justifiable coefficient for use
with nominal scale variables. To see this, we let p,; be the
proportion of choice alternatives which possess attribute /
in choice situation i, then:

Pui = Xu. 12)
P (1 = p) = Iyo
and:
1+ (1 = p)? _1 if j possesses the
Pl — p,) P characteristic
Gy = - 13)
(= p,) ! if j does not pos-
(1 + —L> =1 — p,, sess the character-
Pl = Pu) istic

For binary variables, consider that there are m; alternatives
in choice situation i, and that c, of those alternatives possess -
the attribute. Those alternatives which possess the attribute
receive a value of m/c,, which is equal to 1/p,;, and those
who do not possess the attribute receive a value of (m; —
c,)/m;, which is equal to (1 — p,).

Three things should be noted. First, in the binary case
the value of zeta-squared comes from a legitimate operation
on a binary variable: counting the frequency of occurrence.
Second, the binary form highlights the symmetry expected
from a coefficient in a multiplicative model. Figure B plots
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FIGURE B
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the value of zeta-squared for an eight-object example. If
only one of the eight objects possesses the attribute, that
object receives a value of 8. If only one object does not
possess the attribute, that object gets a value of 1/8. If three
objects possess the attribute, each receives a value of 8/3,
and if only three objects do not possess the attribute, they
receive a value of 3/8. If seven objects possess the attribute,
they each receive a value of 8/7; if seven objects do not
possess the attribute, they receive a value of 7/8. Third,
this reconnects zeta-squared with the original definition of
the NCK distinctiveness index (Nakanishi, Cooper, and
Kassarjian 1974). For binary data, zeta-squared is the NCK
distinctiveness index. For interval scale measures, zeta-
squared is the generalization of that index, which we have
sought.!

1t is very unusual to have a single transformation that creates a mean-
ingful positive ratio scale out of either binary or interval scale measures.
The only other obvious candidate is exp(z,;), which is discussed below.
In Cooper and Nakanishi (1977), we proposed a generalization of the
NCK distinctiveness index to the case of multistep discrete scales. That
generalization possesses neither the foundation in physics nor the statistics
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Some interesting relations exist between zeta-squared and
exp(z,;). First note that if, in Equation 1, f,.(X,".j) =
exp(X,;), the well-known multinomial logit model is spec-
ified. Ifl f; (X,,,.j) = exp(z,;), a different multinomial logit
model is specified. Since MCI models using zeta-squared
and exp(z) are both multiple regression models when prop-
erly log transformed (cf. Nakanishi and Cooper 1982),
comparison can be done between z and the log of zeta-
squared. Figure C plots this relation between *4 standard
squared deviations. In this range, {? increased more slowly
than z for values near the mean. Then there is an inflection
point. So within the =3 standard deviation range the re-
lation is almost linear, with a slope of 0.77. Outside this
range, large increases in extreme values of z do not result
in proportional increases in the log of {2.

These results indicate that there will be some similarity
between an MCI model with zeta-squared and an MCI
model with exp(z)—i.e., a multinomial logit model using
z—pbut that values very close to the mean and values beyond
3 standard deviations will have less impact using zeta-
squared than using exp(z).

FOUR APPLICATIONS

This section briefly summarizes four studies using zeta-
squared. Its purpose is to reflect some of the diversity of
applications of multiplicative models using zeta-squared.

Study 1: Choice Among Political Candidates

The initial use of zeta-squared involved modeling how
voters’ choices were related to binary characteristics of the
candidates in an election with many candidates and little
information (Nakanishi et al. 1974). Five seats on the com-
munity college board of trustees were being sought by 14,
24, 7, 12, and 7 candidates, respectively. The choice al-
ternatives in each of the five choice situations were differ-
ent, but the analysis assumed that characteristics of the
candidates had the same influence in each of the situations.
Eighteen binary variables reflecting occupation, sex, reli-
gion, ballot position, campaign effort, and a variety of en-
dorsements were used. An MCI model was compared to a
multiple regression model analogous to the one proposed
by Mueller (1970) for such elections. The maximum like-
lihood solution was used to estimate parameters of the MCI
model. In calibration, both models fit extremely well, but
on cross-validation, major differences appeared. The pa-

that zeta-squared displays. The discrimination ratio approach of Mahajan
and Jain (1977) and Mahajan, Jain, and Ratchford (1978) sets the value
of possession of an attribute and the value of nonpossession at values other
than one and zero, but does not generalize from the binary to the interval
scale case. What Jain and Mahajan (1979, p. 224) referred back to as a
‘“‘Likert Scale . . . transformation’’ was originally referred to as a ‘‘Se-
mantic Differential Scale Transformation”’ (Mahajan and Jain 1977, p.
322). This transformation, however, only rescales a binary variable so that
it takes on two values in the range of an interval scale variable. No
generalization was suggested.
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FIGURE C
THE RELATION BETWEEN Z AND LOG {2
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rameters of these models were developed on three of the
offices and used to predict the results in the other two of-
fices. Averaged over the 10 different ways this cross-vali-
dation can be performed, the MCI model had a squared
cross validity correlation of 0.87, compared to 0.53 for the
multiple regression model. Linear additive models have the
ability to fit well in calibration, but without the logical
consistency of the MCI and without the comparative, of-
fice-by-office standardization explicit in zeta-squared, lin-
ear models do not seem to hold up as well in actual pre-
diction. What zeta-squared reflects in this multiple office
voting example is that if several candidates possess an at-
tribute, they share whatever value possession conveys.
Zeta-squared gives a set of rules for dividing up the shares.
To the extent that these rules are accurate, this frees param-
eters to reflect the fundamental sensitivity of choice prob-
abilities to possession of the attribute. Otherwise, the pa-
rameters reflect an effect which confounds the pattern of
possession and nonpossession of the attribute in a particular
research context with the fundamental importance of the
attribute.

Study 2: Choice Among Retail Centers

In a reanalysis of data from Huff (1962) concerning how
residents from three different neighborhoods were attracted
to retail shopping centers, Nakanishi and Cooper (1982)
used only (1) distance from each neighborhood to each
center, and (2) a measure of the total space for display in
each center to forecast choice probabilities. The variables
were originally measured on ratio scales. The zeta-squared
transformation of these variables reduces the information
in them to just the comparative base. But further analysis
shows that when the parameters of the MCI model are de-
veloped on two neighborhoods and used to forecast results
for the third, the average square of the cross validity cor-
relation is 0.85 for the MCI model with explanatory vari-
ables transformed by zeta-squared, compared to 0.83 for
the MCI model on the original ratio scale measures. Zeta-
squared imposes a scale of measurement that is relative to
each choice situation. In this context, and perhaps in many
others, it seems that the comparative information conveyed
by zeta-squared relates at least as closely to the information
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used in the human judgments as the absolute information
in the original measures does.

Study 3: Choice Among Womén’s Fashions

Cooper and Midgley (1982) report an analysis in which
zeta-squared is used to link the results of an individual- and
group-differences model for multidimensional scaling of
perceptual dissimilarities to purchases of women’s fashions.
From a large sample of Australian women studied over the
course of a fashion season, a group of 57 women were
chosen. They responded on three measurement occasions
(early, middle, and late) to a set of paired comparisons
among seven examples of women’s fashions. The interval
scale dissimilarity judgments were multidimensionally
scaled using RASCAL (Cooper 1981). Three perceptual
dimensions were used to represent the comparative judg-
ments in each of four groups discovered in the analysis. A
logit model for external analysis of preferences (Cooper and
Nakanishi 1983) was used to imbed ideal points into the
perceptual space for each group. Then, using the groups to
define four choice situtations, dimension-by-dimension dis-
tances of each fashion from the ideal points were trans-
formed by zeta-squared and used as attributes in an MCI
model. Ratings of ‘‘friends’ likely reaction’’ to each fash-
ion were also transformed by zeta-squared and included as
another attribute. Each fashion’s share of wardrobe pur-
chases was the dependent measure. The logit ideal point
model fit extremely well. Adjusted R? ranged from 0.87 to
0.91, and all were statistically significant beyond the 0.001
level. The final MCI model gave a statistically significant
account of fashion purchases (R* = 0.61, F = 2.5, p <
0.05).

Study 4: The Cognitive Algebra of MCI Models

The final analysis is based on the use of Equation 1 not
as a model with parameters—f,—to be estimated, but as
a set of guidelines for the integration of attribute ratings
and importance ratings. Cooper and Finkbeiner (1982) re-
port a reanalysis of aggregate responses from 130 people
involved in the testing of a new consumer product. In es-
sence, the test group rated six existing brands and the test
brand on around two dozen product attributes. They also
rated the subjective importance of each attribute. Factor
analysis was used to select five common and two specific
factors among the attributes. Variables loading highly on
each of the five common factors were averaged to form five
scales. Including the two specific attributes, there were a
total of seven variables used to represent the aggregate test
group’s reactions to the seven brands. Each of the seven
variables was transformed to zeta-squared values. Use of
Equation 1 would be ineffectual because there are more
parameters to be estimated than the available degrees of
freedom. But the weights—f,—are attribute importances
in a sense, so that one could use some function of the
interval scale importance ratings in the place of each B,.
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In the primary model, the standardized importance ratings
(i.e., z-scores to reflect relative importance of each attrib-
ute) were used to form a composite with the zeta-squared
transformed attribute rating. The algebra of Equation 1 dic-
tated how the transformed attributes and the standardized
importances were combined. The probabilities used to cal-
ibrate the model came from a rescaling of measures of
overall brand acceptability. The composite MCI was com-
pared to several other composite models, including the tra-
ditional linear additive composite that would be formed in
this situation. The composite MCI model provided the best
fit in calibration, with a root mean squared error (RMSE)
of 0.050 between calibration probabilities and the estimated
probabilities. The traditional linear additive model had an
RMSE of 0.070. The calibrated models were used—along
with estimates provided by the sponsor of what portion of
the test market would be made familiar with the test brand
(i.e., a market penetration estimate)—to forecast the shares
of these brands during test market. The composite MCI
model had the smallest RMSE in actual prediction (RMSE
= 0.042), compared to a RMSE of 0.050 for the linear
additive model. The composite MCI model also came clos-
est in forecasting the test market share for the new brand,
being off by 1.2 share points compared to 4 share points
with the linear additive model. While this is an aggregate
analysis, it indicates that at least some of the disparity be-
tween self-report importance measures and analytically es-
timated importance weights has been due to the form of the
model used in the comparison, rather than to any inherent
problem in the meaning of importance measures.

~ A side benefit of this analysis was the demonstration that
zeta-scores (the square root of zeta-squared) gave a better
representation of the cognitive algebra of the consumers.
In standard applications of MCI models, the use of zeta-
scores or zeta-squared will give parallel results. There will
simply be an overall rescaling of the parameter values and
the standard errors. But in forming composites we see, as
expected, that zeta-scores relate more closely to the scale
units consumers use. This is not surprising because zeta-
scores are in standard deviation units while zeta-squared is
in variance units.

These examples show the usefulness of zeta-squared and
zeta-scores in multiplicative models for relating explanatory
variables to choice probabilities at the aggregate level and
at the level of homogeneous subgroups. We now discuss
the class of probabilistic choice models formed by inte-
grating zeta-scores with MCI models.

USING ZETA-SCORES
TO REPRESENT THE EFFECTS
OF CHANGES IN CHOICE SETS

We have seen that zeta-scores are built from comparative
contextual information and that they can be thought of as
standardizations of variables for multiplicative models or
as measures of distinctiveness. Comparison, standardiza-
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tion, and distinctiveness are three constructs with overlap-
ping domains. They all deal with relating individual stimuli,
objects, or choice alternatives to the context in which judg-
ments are made. Using zeta-scores amounts to a declaration
that judgments are not context-free. This has implications
for our theory and model of choice.

Consider an MCI model in which the original measures
are on a ratio scale, and are used directly as the components
of the model:

fi(Xhij) = Xhij 14

Members of this class of MCI models are examples of Luce
(1959) choice models. But models in which:

fi(ij) = ghij (1s)

are not Luce choice models. The difference is that zeta-
scores, by representing the contextual information, explic-
itly violate the constant utility assumption of Luce choice
models.

As one would expect from the previous discussion of the
relation of zeta-squared to exp(z), the relations in Equations
14 and 15 have other parallels. If:

f;(Xh,]) = exp(Xhij) (16)
then the MCI model is a Luce choice model. If:
' Xy = exp(zyy) a7

then the MCI model is not a Luce choice model. Both of
these specifications are logically consistent versions of the
multinomial logit model. It is*again the violation of the
constant utility assumption that causes Equation 17 not to
be a Luce choice model. So if one represents the contextual
information in a choice set, one violates the constant utility
assumption. This is basically another way to understand
why the constant utility Luce choice models are criticized
for doing a poor job at representing the effects of interobject
similarity on choice probabilities. The independence from
irrelevant alternatives (ILA) assumption (Arrow 1951; Luce
1959; Luce and Raiffa 1957) is at fault. According to Luce
(1959, p. 9):

The actual gist of the idea is that alternatives which should
be irrelevant to the choice are in fact irrelevant, hence the
present term. For example, the idea states that if one is com-
paring two alternatives according to some algebraic criterion,
say preference, this comparison should be unaffected by the
addition of new alternatives or the subtraction of old ones
(different from the two under consideration). Exactly what
should be taken to be the probabilistic analogue of this idea
is not perfectly clear, but one reasonable possibility is the
requirement that the ratio of the probability of choosing one
alternative to the probability of choosing the other should not
depend upon the total set of alternatives available.

The evidence presented here concerning the comparative
nature of judgments indicates that the composition of the
competitive set does influence the ratios of choice proba-
bilities for pairs of alternatives.

THE JOURNAL OF CONSUMER RESEARCH

Luce himself supported this contention. In his 1977 Pres-
idential Address to the Psychometric Society, he reviewed
Thurstone’s (1927a, b, and c) contributions after 50 years.
It was the Thurstonian assumption most parallel to the IIA
assumption that Luce criticized most directly: ‘‘Clearly,
Thurstone’s implicit assumption of a unique representation
must go. In some sense the representation must vary with
the experimental context’’ (Luce 1977a, p. 465). Luce also
reviewed his own choice axiom after 20 years and con-
cluded (1977b, p. 229; cf. Debreu 1960, Restle 1961):

As a descriptive tool, it is surely imperfect; sometimes it
works well, other times not very well. As Debreu and Restle
made clear and as has been repeatedly demonstrated exper-
imentally, it fails to describe choice behavior when the stim-
ulus set is constructed in such a way that several alternatives
are treated as substantially the same.

According to Luce, the choice axiom survives, despite its
empirical failures (1977b, p. 229-230):

as a canon of probabilistic rationality . . . a possible under-
pinning for rational, probabilistic theories of social behavior.
Thus, in the development of economic theory based on the
assumption of probabilistic individual choice behavior, it can
play a role analogous to the algebraic rationality postulates
of traditional theory.

But preserving convenient fictions counter to the weight of
empirical evidence is not a proper role for theory.

To see how zeta-scores help in the cases where the choice
axiom gives less than reasonable results, we have con-
structed a small example parallel to Debreu’s (1960) classic
counter-examples. We consider eight different competitive
choice sets in which we portray choice as being influenced
by a single binary attribute. We suppose, for illustration,
that in a two-alternative choice set where one possesses and
the other does not possess the desired attribute, possession
of this attribute makes that alternative four times as likely
to be chosen. This forms Case 1, the base case in Table 2.
Cases 2 and 3 have three alternatives in the competitive
choice set. In Case 2, the additional alternative does not
possess the desired attribute, while in Case 3 the additional
alternative does possess the desired attribute. Cases 4, 5,
and 6 have four alternatives in the competitive choice set,
and Cases 7 and 8 have five alternatives. The patterns of
possession of the attribute are displayed as zeroes (non-
possession) and ones (possession) in the left column of
Table 2. The theoretical probabilities in the right column
come from the notion that identical alternatives share
equally the total probability of choice established in the
base case. We compare the predictions of five models.

The first model is a basic MCI model using zeta-squared
to standardize the binary variable separately for each of the
competitive sets. The square of Equation 15 specifies this
model, where the subscript i refers to the different com-
petitive sets. The second model uses the exponential trans-
formation of zeta-squared in a way that underscores the
connection of these models to extreme value distributions
(cf. Gumbel 1958; Johnson and Kotz 1970). The equation
for this model is:
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TABLE 2
COMPARISON OF PREDICTED PROBABILITIES
Model 1. MCI—¢2 2. MCl—exp(?) 3. MCl—exp({) 4, MNL—X 5. MNL—Z
Theoretical B 1.0 4/3 log 2 2V2log 2 log 4 log 2 Theoretical
(.924) (1.961) (1.386) (.693) probability
Empirical b: .927 .817 1.869 1.386 .656
Xy
Case 1 0 217 227 211 2 212 2,
1 .783 773 .789 .8 .788 .8
Case 2 0 .166 115 133 167 .166 A
. 0 .166 115 .133 167 .166 A
1 .668 771 .735 .666 .668 .8
Case 3 0 110 162 .130 A1 A1 2
1 445 419 435 444 445 4
1 .445 419 435 444 .445 4
Case 4 0 130 .058 .088 .143 .133 .067
0 .130 .058 .088 143 .133 .067
0 .130 .058 .088 143 133 .067
1 611 .826 .735 571 .602 .8
Case 5 0 .108 114 .105 A .106 1
0 .108 114 .105 A .106 A
1 .392 .386 .395 4 .394 4
1 .392 .386 .395 4 .394 4
Case 6 0 .066 A21 .089 077 .068 2
1 311 .293 .304 .308 311 .267
1 311 .293 .304 .308 311 .267
1 311 .293 .304 311 .267 .267
Case 7 0 .075 .096 .081 .071 .074 A
0 .075 .096 .081 .071 074 A
1 283 .269 .279 .286 .284 .267
1 .283 .269 .279 .286 .284 .267
1 .283 .269 .279 .286 .284 .267
Case 8 0 .095 .080 .083 .091 .094 .067
0 .095 .080 .083 .091 .094 .067
0 .095 .080 .083 .091 .094 .067
1 .357 379 375 .364 .359 4
1 357 .379 375 .364 .359 4
R? .849 .976 .938 .852 .850
RMSE .063 .023 .036 .067 .064
F 14.7 105.9 39.4 15.1 149
P <.0001 <.0001 <.0001 <.0001 <.0001
f,-(X,,,.j) = exp({ﬁij) (18) eter value (i.e., the parameter value that would calibrate

The third model is a less extreme version using zeta-scores
instead of zeta-squared: :

FiXpy) = exp(Cpy) 19

The final two models are the constant ratio, multinomial
logit model in Equation 16 and the multinomial logit model
using z-scores in Equation 17.

A single parameter is estimated for each model over the
eight choice situations. This allows us to see how close the
empirically estimated coefficient is to the theoretical param-

each of these models to fit exactly the theoretical probabil-
ities in the two-choice-alternative base case). It also allows
us to assess overall fit of the models in terms of squared
multiple correlation and F-statistics from the log forms in
which all models are estimated. The root mean squared
error (RMSE) is the more interesting measure because it
directly matches the predicted probabilities and the theo-
retical probabilities. The resulting predictions and fits are
reported in Table 2.

Note that the Luce choice model (model 4, the multi-
nomial logit model using raw scores) has the largest RMSE.
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As Luce indicated, constant ratio models do not do very
well in this kind of example. Note that models 1 and 5—
an MCI model using zeta-squared and an MNL model using
z-scores—produce results very similar to each other. The
relations plotted in Figure C between log(zeta-squared) and
z-scores should make one guess that there would be similar
results from models comparing zeta-squared to the expo-
nential transformation of a z-score. There is a modest re-
duction in RMSE for both these models compared to the
constant ratio model 4. Models 2 and 3 give far superior
approximations to the theoretical probabilities: model 2 has
a RMSE about one third the size of the constant ratio model
4.

There.are many interesting and theoretically sound ap-
proaches to the problems created by the IIA assumption.
Currim (1982) provides an excellent presentation of his own
developments and the work of others on this multifaceted
problem. An MCI model using zeta-scores simply avoids
the IIA assumption by using a comparative representation
of the judgment/choice context instead of estimating special
parameters. We expect that MCI models and zeta-scores
will be useful ingredients in future inquiries into the effects
of similarity on choice.

SIMULTANEOUS ANALYSIS OF
MULTIPLE CHOICE SITUATIONS

Heretofore, when using multiplicative choice models, the
primary option has been to exponentially transform the in-
terval scale consumer ratings. This was done either explic-
itly with an MCI model or inevitably with a multinomial
logit (MNL) model. The virtue of the exponential transfor-
mation is that it makes numbers that add act like numbers
that multiply. Its greatest liability is the failure to represent
differences in comparative or contextual information across
choice situations. If there were only one choice situation,
the issue would not arise. A linear transformation to z-
scores in a single choice situation will not affect the param-
eters of an MNL model. But the statistical power of MCI
and MNL models comes mainly from their ability to ana-
lyze an increasing number of choice situations—the ‘"’ in
all the equations.

A multitude of choice situations can come from analysis
of the systematic structure of individual differences in a
domain of choice (cf. Tucker 1958; Tucker and Messick
1963): cross-sectional differences, over-time differences,
or combinations of these. The leverage comes when indi-
vidual differences models indicate that some parameters
can be shared over choice situations. We believe that rep-
resenting the comparative, contextual information in each
choice situation can free parameters to reflect more of the
fundamental importance of an attribute across choice situ-
ations. Simply standardizing the variables by forming z-

scores in each choice situation should improve the repre-

sentation of an MNL model. The research using zeta-
squared and the relations between zeta-squared and z-scores
in Figure C support this inference. The main differences
should be observed at the extremes. In relation to z-scores,
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zeta-squared reflects a diminishing return to scale: becom-
ing increasingly more extreme compared to the remainder
of the objects has a constantly increasing impact with z-
scores in an MNL model. The impact of the same increase
for zeta-squared in an MCI model will taper off, as in
Figure C.

From the perspective of psychometrics, we are seeking
ways to understand the behavior of consumer markets from
the beliefs, values, perceptions, and preferences of con-
sumers. An econometrician’s approach to consumer behav-
ior places much more emphasis on the ‘‘objective market
environment.”’ McFadden proposed individual random util-
ity models with double exponential error and showed that
these models aggregate into Luce choice models (cf.
McFadden 1974, 1980, 1981). His writing serves to un-
derscore the differences in approaches. In a section entitled
‘‘An Econometrician’s View of Marketing,”” McFadden
states (1980, p. S14):

The core of a model of market behavior will be an equation,
consistent with the theory of the economic consumer, which
specifies the probability of choices (e.g., brand, frequency,
or volume of purchases) as a function of the objective market
environment of the consumer.

Thinking in terms of the simultaneous analysis of mul-
tiple choice situations highlights some of the liabilities of
McFadden’s emphasis on the ‘‘objective market environ-
ment.”’ The dependent measures, i.e., choice probabilities,
are relative to each choice situation; that is, they sum to
one over all the alternatives in each situation and they are
range-constrained to be between zero and one. In general,
unless the explanatory variables have scales of measure-
ments that are also relative to each choice situation, we
encounter the aggregation error of not representing ‘‘frog
pond effects’’ (Davis 1966). Let us use price as an example
and geographic regions as the multiple choice situations.
The least expensive alternative in a particular geographic
region might not be in the same relative position in the
aggregate. If objective price, rather than comparative price,
is used, the overall analysis could misconstrue the *‘true’’
influence of competitive pricing.

Focus on the ‘‘objective’’ measures might incline econ-
omists to think of the simultaneous analysis of several
choice situations merely as a matter of aggregation, rather
than in terms of the representation of systematic individual
or group differences. Friedman framed the issue in theory
(1957, p. 216):

Suppose a regression were computed for a broad group of
consumer units, say a sample of all units in the United States,
and the corresponding elasticity estimate. Suppose this broad
group were broken down into sub-groups, say by the com-
munities in which they reside, and separate regressions com-
puted for each community. An appropriately weighted av-
erage of the corresponding elasticities should then be smaller
than the elasticity for the group as a whole . . . As the
groups are more rigorously defined, the elasticity should ap-
proach zero.

Eisner (1958) provided empirical support for Friedman’s
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argument. With this theory and evidence, we can under-
stand why some researchers would be dissuaded from look-
ing for more disaggregate representations. Yet we believe
it would be improper to generalize methodological findings
based on models of demand to models of choice probabil-
ities or market shares.

As noted by Goldberger (1971), the aggregation issue
Friedman addressed has its psychometric parallel in the ef-
fects of explicit and incidental selection on regression pa-
rameters (cf. Lord and Novick 1968, pp. 140-148). We,
on the other hand, seek a disaggregation in order to rep-
resent more precisely the subjective context surrounding the
compensatory process in the evaluation of alternatives. Dif-
ferent individuals and groups consider different competitive
sets of alternatives. They systematically differ in what ben-
efits they desire from choice alternatives, and even in what
they perceive the attributes of the alternatives to be. Rep-
resenting the richness of the structure of individual differ-
ences in values and beliefs can add power to the statistical
model rather than reduce the strength of the overall relation.

Issues in aggregation (cf. Roberts and Burstein 1980) are
important. Many mistakes can be made if the issues are not
thought through. The most basic issue deals with the proper
specification of the explanatory model at the most disag-
gregate level of analysis. We wish to model the individual
choice process as close as is practical to the level at which
the phenomena occur, and then to aggregate the results to
the level of consumer markets. For models of choice prob-
abilities or market shares, we believe that multiplicative
competitive interaction models with standardized explana-
tory variables will be useful.

w5

CONCLUSION

We have tried to address the interrelated problems of
representing the systematic structure of individual differ-
ences, and representing how psychological measures can
be used in ratio scale, market share models. While the
requirements of MCI models have guided much of our de-
velopment, we anticipate our results will have wider ap-
plicability. Zeta-scores can be used for incorporating nom-
inal scale, interval scale, or ratio scale measures into any
multiplicative model. The use of zeta-scores in multinom-
inal logit models seems particularly promising. Zeta-scores
seem promising for use in any model that seeks or empha-
sizes competitive explanation. Similarly, the representation
of the systematic structure of individual differences can
benefit many models other than MCI models. Models of
the ‘‘average man’’ can be improved upon if that average
masks systematic differences. The search for structure can
reveal groups of individuals that are internally homoge-
neous with respect to the evaluative process. For such
groups, averages of explanatory variables do not system-
atically distort the representation of the process. In relating
those averages to choice probabilities, zeta-scores can play
a very useful role.

[Received May 1982. Revised March 1983.]
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