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A Iogit vector model and a logit ideal point model are presented for external analysis of
paired comparison preference judgments aggregated over a homogeneous group. The logit vector
model is hierarchically nested within the logit ideal point model so that statistical tests are avail-
able to distinguish between these two models. Generalized least squares estimation procedures are
developed to account for heteroscedastic sampling error variances and specification error vari-
ances. Two numerical illustrations deal with judgments concerning employee compensation plans
and preferences for salt and sugar in the brine of canned green beans.

Key words: multidimensional scaling, external analysis of preferences, generalized least squares
estimation.

INTRODUCTION

"External analysis of preferences" is the phrase Carroll [1972, 1980] used for the
process of relating preference judgments to a pre-existing configuration of stimuli or
choice alternatives. While internal analysis of preferences attempts to display the multidi-
mensional structure underlying preferential judgments themselves, external analysis of
preferences relates preference judgments to stimulus configurations developed by other
means. In marketing research, product maps have come from factor analysis, discriminant
analysis, cluster analysis, conjoint measurement, and multidimensional scaling of dissimi-
larity judgments, as well as physical measurement of product attributes. External analysis
of preferences allows the researcher to choose the information base for the mapping and
to integrate preference judgments into the chosen information base.

Coombs’ [1964] unidimensional unfolding model, and the multidimensional gener-
alizations of it by Bennett and Hays [1960], held that the individuals agreed on the
similarity structure underlying the objects, and individuals disagreed only on the prefer-
ence orderings of the objects. Implicit in external analysis of preferences, however, is the
flexibility to represent systematic differences in perception of the objects as well as differ-
ences in preferences. Carroll used a weighted euclidean "distance" formulation to allow
for individual variability in the importance of each dimension in accounting for the pref-
erences of each individual. With all positive weights, there could be differential shrinking
or stretching of the dimensions of a common perceptual space. Isopreference ellipsoids
displayed how preference dropped off with increasing departure from an ideal point. With
all negative weights, these same ellipsoids displayed how preferences increased with in-
creasing departure from an "anti-ideal" point. With a mixture of positive and negative
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weights, saddle points described how preferences decreased with departures in certain
directions from the ideal and increased in other directions. While the case of positive and
negative weights can provide an appealing representation of preferences, it does make it
somewhat awkward to speak of external analysis of preferences as a distance model. The
"distances" in the mixed weight case could possibly be negative (i.e., violate the mini-
mality assumption of distances), and the triangle inequality could be violated in certain
cases.

Overcoming this awkwardness is part of the rationale for Srinivasan and Shocker’s
[1973] linear programming model for external analysis of preferences. Their LINMAP
procedure allows the researcher the choice of whether or not to restrict weights to being
strictly positive. Davison’s [1976a] quadratic programming approach to Carroll’s weight-
ed unfolding model also allows the researcher the option of constraining dimensional
weights to being nonnegative.

We believe that in consumer research and possibly many other contexts the flexibility
for representing preferences in terms of saddle points is an asset. Consider d~

H

cl~ = ~ flh,(Xh,- Xh~)2, (1)
h=l

where Xhj are the known coordinates of the choice alternatives j = 1, 2 ..... m, on given
dimensions h = 1, 2 .... , H; Xhi are coordinates to be estimated of an ideal point for
individual or homogeneous group i= 1, 2, ..., I; and fin, are dimensional weights to be
estimated. This is what Carroll calls a squared distance. If the lack of an absolute origin
dissuades us from calling this a distance, there is nonetheless a great deal of interval scale
information in d~. To understand what this measure tells us about preferences one must
first specify a relation of d~ to preferences. In his linear-quadratic hierarchy of models
Carroll 1-1972, 1980] specified a method for obtaining dimensional preference weights (i.e.,
a vector preference model) and a procedure for obtaining estimates of ideal points for the
set of alternatives. The paired comparison judgments are aggregated over repeated ad-
ministrations to a single individual or homogeneous group into a matrix of choice fre-
quencies of each alternative over each other alternative. Twice the column sums of this
aggregated dominance matrix are used as preference scale values p/j. For the ideal point
model, the preference scale values are considered to be a linear function of d~.

Rather than compressing m,(mi- 1)/2 paired comparisons into rn, preference scale
values, pq, prior to obtaining dimensional weights and ideal points, we propose two
models for estimating these parameters directly from the pairwise relative choice fre-
quencies, f/~k.

TIlE MODELS

Let J~k be the expected relative frequency of choice of alternative j over alternative k
in the paired comparison preference judgments of homogeneous group i.

J~ + J~ = 1, (j, k) = 1, 2 ..... m~; i = 1, 2 ..... L (2)

The model forJ~ is given by:

- exp (d~)eq
(3)fqt = exp (d~)ei~ exp (di*~)eik’

where d~. is defined in (1) and e,~ is a log-normally distributed, specification error term
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unique to the alternative and the homogeneous group. Although Yellott 1-1977] did not
consider ulitity functions such as d.*. in (1), we note that the function in (3) is formally~J

derivable from the generalized extreme value distribution for a random utility model I-cf.
Yellott, 1977]. Figure 1 displays the ideal distance model implied by (3). In this figure and
the two subsequent figures, the ideal point is considered to be at (0, 0) for dimensions one
and two. Since preference decreases in any direction away from the origin the preference
density on the z axis is exp (d~) where the signs of both weights flhi in (1) are negative.
Figure 2 displays the anti-ideal distance model in which the signs of both weights flhi in (1)
are positive. Figure 3 displays the saddle point which results from one negative weight
and one positive weight.

Exponential density functions were introduced into multidimensional scaling by She-
pard 11957]. The exponential of minus the interobject distance provides for rapid ex-
ponential decay in any direction away from the location of an object and is a very good
representation of stimulus generalization gradients. Shepard 1,1957] used this repre-
sentation to relate the probability of interobject confusion to interpoint distance. For
relating distance to preference we are more attracted to the exponential of minus the
squared "distance." Rather than being sharply peaked, as in Shepard’s representation,
there is a region of almost maximum preference before preference declines more rapidly.
Rather than abruptly terminating to zero preference, as in the external ideal point analy-
sis in Carroll’s linear-quadratic hierarchy of models [-Carroll & Chang, Note 1; Carroll
1972, 1980], this function tails off with increasing distance from the ideal point.

The logit ideal point model in (3) can be compared to a corresponding logit vector
model given by

exp e~j

f~k = (4)

exp (h~= lO~hi Xhj)eij q- exP (h~= lO~hi Xhk)e’ik’

-2. ~

FXGU~ 1.
Preference density, ZI, as a function of departure from an ideal point at (0, 0).
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FIGURE 2.
Preference density, ZAI, as a function of departure from an anti-ideal point at (0, 0).

where gh~ is an unknown parameter representing the influence of dimension h on prefer-
ence in group i.

For the logit ideal point model we have

log ~ = d* - (log - log e, ik). (5)
fikj ij d~ + ei.~

ZS

1 .28

I

I .B2

~.IE

-6.17

-~.

FIGURE 3.
Preference density ZS, as a function of departure from a saddle point at (0, 0).

~. 4B
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Note that
H

d~ - d~ = Z flh~[(Xh2~ -- 2Xh~Xh, + X~2,) - (X~ - 2Xh~Xh, + X2~,)]
h=l

H

= ~ fln,[X~ - X~ - 2X~(Xn~ - X~,k)]
h=l

H

where flhll is a parameter associated with the difference in known scale values for alter-
natives on axis h (flhil -- -2flhi X~), and flhi2 is a parameter associated with the difference
in the squares of known scale values on axis h (flhi2 = fl~)- These parameters, and conse-
quently the ideal points, can be estimated from sample values for the relative frequency,
f~jk, from the multiple regression equation:

H

log f/jk = ~ flhil(Xhj __ Xhk) .~ flhi2(X~j __ X~k) ~_ l’lijk’ (7)

fikj h = 1

where u~jk is a stochastic disturbance term which represents the combined influences of
specification error e~j and sampling error for the departure off/jk from J~jk" In general, the
error variance-covariance matrix will be nonspherical. Such a situation calls for the gener-
alized least squares estimation procedures presented in the next section.

For the logit vector model we have

H

log ~ 4- ~Io~h~(X~j - X~k) + Uijk (8)

Hence, if fl~i2 in (7) approaches zero, then the ideal point approaches plus or minus infini-
ty and flh~ approaches ~hi" The model in (8) is hierarchically nested within the model 
(7), making comparative testing very straightforward.

For each homogeneous group i, the logit ideal point model in (7) implies a multiple
regression through the origin with two independent variables for each dimension and
mi(mi - 1) dependent measures where m~ is the number of choice alternatives considered
by homogeneous group i. Any standard multiple regression routine which allows one to
specify a model without an intercept term will provide the required OLS estimates of flhi~
and fl~2. The auxiliary information usually available with a standard statistical package
will not be useful however. The squared multiple correlation computed without an inter-
cept is like a congruence coefficient rather than what one might normally expect. The
degrees of freedom for error and regression are not properly counted. As a consequence
the F value calculated is also incorrect. All of these effects are due to the fact that half of
the observations are merely the negatives of the other half. For the ideal point model
there are 2H degrees of freedom associated with regression and (m~(mi- 1)/2)- 2H- 
degrees of freedom associated with error. This suggests a much simplified OLS procedure.
If one includes only the half of the logits in (7) which are unique (i.e. mi(mi - 1)/2 logits)
along with the corresponding independent variables and an intercept term, then the multi-
ple regression routine will produce the proper OLS estimates of fl~l and fl~i2, the proper
squared multiple correlation, degrees of freedom, mean squares and F statistic. It is possi-
ble to prove the equivalence of estimates from these two multiple regression approaches.
(N.b, the appendix in Nakanishi & Cooper, 1982, has an analogous proof.) If one be-
comes concerned about possible multicollinearity from including linear and squared terms
in a multiple regression model, one can use deviation scores for the original coordinates
of the choice alternatives to reduce the potential problem.
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Generalized Least Squares Estimation

Since the error covariance matrix will, in general, be nonspherical, we propose the
following generalized least squares (GLS) estimation procedures for the model in (7). 
proportion of individuals in group i who choose alternative j over alternative k, fok, may
be thought of as being generated by a multinomial sampling process. If we let the ex-
pected value offijk be J~k, then the variance off~k is ~jk(1 --fijk)/nl, where ni is the sample
size of group i. For a large sample size (say ni > 100), f~ is approximately normally
distributed. It is known that the asymptotic distribution of the sampling error term,
log (f~k/1 --fi~k) -- log (f~k/1 --fijk), is normal with zero mean and variance equal to

a~k = 1/n, ~jk(1 -- fijk) (9)

[Rao, 1973, p. 385].
It is clear that O’~k is a minimum for ~jk = .5 and approaches infinity as f~k ap-

proaches zero or one. Thus trek is nonspherical over different pairs (j, k) as we asserted 
calling for GLS procedures for estimating the parameters in (5) and (7).

Note that the error term, U~jk, is a sum of two error components, specification error,
log ei~- log eik , and sampling error, log (fok/(1 --f~k)) -- (fij k/(1--fijk))" Assuming
that sampling errors are uncorrelated with specification errors, we have

= O, (10)
Var (Uok) 2= ,, + (11)

Since cy~ is estimable by replacing ~jk in (9) with fo~, and since the expected sum 
2 plus ~z both summed over distinct pairssquares of OLS errors, Uijk, is equal to tr,~

one may estimate tr~ by

E 2 - E
d2 = ~’ ~ ~’ ~ (12)ei mi(mi -- 1)

2

Thus we need only premultiply both the dependent variable,

log f~ik
(1 -Aj~)’

and the independent variables, X~j, X~j, X~k, X~ (h = 1, 2 ..... H) by

1 -1/2

and re-estimate parameters in an ordinary multiple regression routine to obtain the gener-
alized least squares estimates.

The estimates of mean squared error (MSE) for the multiple regression model and
the sampling error variances must be nonnegative. But the difference between the estimate
of the MSE and the mean of the estimates of the sampling error variances (i.e., the esti-
mate of the specification error variance in (12)) could be negative. In such a case 
estimate of the specification error variance should be set to zero. This makes the GLS
procedures already outlined properly redress the heteroscedasticity of the original sam-
pling error variances.

As with the OLS results, the GLS results can be obtained in two ways. With the
complete set of m~(m~- 1) logits in each homogeneous group, a multiple regression
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through the origin is performed on the reweighted dependent and independent variables.
The simpler procedure involves using half of the reweighted logits, the corresponding half
of the reweighted explanatory variables and an intercept term which is not reweighted.
The squared multiple correlation (R2) from the OLS step should not be directly compared
to the R2 from the GLS procedure since the dependent variables differ because of this
reweighting. But the other statistical tests are applicable. A significant overall F test indi-
cates the parameter vector is statistically different from t.he null vector. When only sam-
piing error variance is considered (i.e., when 6~ is zero or is set to zero), the logit vector
model is hierarchically nested within the logit ideal point model. Standard testing pro-
cedures will indicate if the extra parameter per dimension is statistically worthwhile.
When both sampling error and specification error are present, the logit vector model is no
longer nested within the logit ideal point model. This is because the dependent measures
of these two models would be differentially reweighted when different specification error
variances are estimated.

Numerical Illustrations

This section contains two illustrations of the logit models for external analysis of
preferences using data previously analyzed by Bock and Jones [1968]. The first illustra-
tion involves employees’ preference for alternative plans for increased compensation. A
vector model should represent such data. The second illustration involves preferences for
different concentrations of salt and sugar in the brine of samples of canned green beans.
Such data should be represented by an ideal point model. In both illustrations the
"proper" model was identified by the testing procedures developed in the previous sec-
tions.

Illustration 1

Bock and Jones [1968] analyzed salaried employees’ preferences for nine alternative
plans for an increase in compensation. The data, originally collected by Dr. J. Stacy
Adams from 143 males, was used to illustrate analysis of partially balanced incompleted
paired comparison (PBIPC) designs. The alternative plans varied in amount of additional
annual salary, additional annual vacation days and additional percentage contribution to
retirement fund (cf. Bock & Jones 1968, p. 178). Rather than compute affective values for
the plans from the paired comparisons, our analysis attempts to relate the preference
judgments to the three dimensions involved in the design of the plans. The 27 angular
deviates reported by Bock and Jones [1968, p. 180] were converted back into proportions
from the PBIPC design. The OLS results reported in Table 1 were used to select the
appropriate model. While both the logit vector and logit ideal point models give a good
account of the preference judgments, the logit ideal point model is not a significant im-
provement over the logit vector model. Table 2 presents the GLS results for the logit
vector model. The R2 of .86 is the proportion of linearly accountable variance in the
logits, not in the original choice proportions. Since the scale of measurement differs for
salary, vacation time and retirement benefits, the t-values reported provide a good indica-
tion of the relative importance of each aspect of the compensation plans. As one would
expect, all the additional benefits contribute positively to preferences, and salary in-
crements were the most valued component. Figure 4 presents the plots of the logits versus
the predicted values and the logits versus the residuals. The plot of logits versus the
predicted values seems approximately linear, with perhaps a slight departure downward
at both extremes. The plot of logits versus the residuals shows no particular pattern. The
logit vector model seems to be an apt representation for these data.
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Table 1

Comparing Logit Preference Models for
Compensation Plans from Bock and Jones--OLS Results.

Logit Ideal Point Model Logit Vector Model Difference

R2 F p R2 F p F p

.88 24.7~ <.001 .83 36.7.. <.001 3.0 +~ NS
(.85) ? (6,20);T (.80) ? (3,23)TT (3,20)~’

?~Adjusted R2.
Degrees of freedom.

Illustration 2

Bock and Jones [1968, p. 141, ff.] reanalyzed judgments from Buck and Weckel
[1956] to determine the optimal concentrations of salt and sugar in the brine of canned
green beans. While the original study involved twenty-five samples, each containing one
combination of five levels of salt and sugar (0, 1, 2, 3, 4 grams/milliliter of brine), Bock
and Jones dealt with only the 16 samples involving the nonzero concentrations. Twenty-
five different subjects judged each pair in each order. Bock and Jones found a large order
effect indicating preference for the first sample presented to each subject. Even for a
pooled analysis the error Chi-square rejected the model.

Again we use OLS procedures to select the appropriate model and use GLS pro-
cedures to refine our parameter estimates. The regression model contains an intercept
term and a dummy variable indicating the order of presentation (giving a one to the first
order and a zero to the second order). The parameter value for the intercept compensates
for the missing half of the logits for the second order, while the sum of the parameter
value for the intercept and the parameter value for the dummy variable compensates for
the missing half of the logits for the first order. So both the logit vector model and the
logit ideal point model have an additional parameter. Table 3 presents the test results
comparing vector and ideal point models. Although both models produce R2 values
which are significantly greater than zero, the general level is lower than in the previous
examples. The logit ideal point models is a significant improvement over the logit vector
model. The significance of the order effect within the logit ideal point model is tested by

Table 2

Logit Vector Model for Compensation Plans
from Bock and Jones--GLS Results.

R2 F p Variable Weights t Value

.86 46.3~ <.001 Salary .0105 7.4
(84) ? (3,23) Vacation .3135 3.8

Retirement .8944 5.4

,~Adjusted R2.
:Degrees of freedom.
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Aptness of the logit vector model for preferences for the compensation plans from Bock and Jones.
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Table 3

Comparing Logit Preference Models for Cut
Green Beans from Bock and Jones--OLS Results.

Logit Ideal Point Model Logit Vector Model Difference

R2 F p R2 F p F p

.40 30.8 ~ <.001 .24 25.3 ~ <.001 29.8 ~ < 001
(.38) ~ (5,234)TT (23) ? (3,236)TT (2,234) TT ’

~ 2+~Adjusted R .
:’Degrees of freedom.

comparing it to a model which included the interactions of the order effect dummy vari-
able with the four variables of the logit ideal point model. Table 4 presents the results of
this test. Adding the interaction terms leads to a significant increase in the fit of the logit
ideal point model.

Table 7 presents the GLS test results and parameter estimate for the logit ideal point
model with interaction terms. It should be noted that the dummy variables are not re-
scaled when obtaining the GLS estimates. To obtain the estimates of the ideal coordinates
for the second order one divides the parameter value for the salt variable by minus two
times the parameter value for the salt-squared variable, and then divides the parameter
value for the sugar variable by minus two times the parameter value for the sugar-squared
variable. For the ideal coordinates corresponding to the first order one needs two sums.
The first sum adds together the parameter value for the salt variable with the parameter
value for the interaction of the order effect and the salt variable. The second sum adds
together the parameter value for the salt-squared variable with the parameter value for
the interaction of the salt-squared variable with the order effect. The first sum is divided
by minus two times the second sum to estimate the ideal coordinate for the salt dimension
for the first order of presentation. A parallel set of sums is formed for the sugar dimension
to estimate the ideal coordinate for the sugar concentration. A consensus or joint estimate

Table 4

Test for Significance of Order Effects--OLS Results.

Logit Ideal Point Model
With Interactions Differences

R2 F p F p

.44 20.1 .. <.001 4.5 <.005
(42) ? (9,230)TT (4,230)~?

?SAdjusted R2.
TDegrees of freedom.
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of ideal coordinates for both orders of presentation comes from a model which includes
the order effect dummy variables, but excludes the interaction terms. The bottom of Table
5 presents the ideal coordinates estimated from the two orders, the joint model, and the
optimal values obtained from a quadratic response surface model estimated by Bock and
Jones 11968, p. 192, ff.]. The order differences seem to have the greatest impact on the
ideal coordinate for salt concentration. The ideal coordinates listed for the joint model
came from the GLS results which excluded the interaction terms. This joint model gives
results reasonably similar to the quadratic response surface model from Bock and Jones.

The plot of the logits versus the predicted logits in Figure 5(a) shows a linear relation
with more scatter than we have witnessed in the earlier example. The plot of the predicted
logits versus the residuals in Figure 5(b) shows no systematic pattern. Even though the fit
of the model to these data is modest when heuristically compared to the R2 values of the
other example, the model seems apt.

Table 5

Order Effects Model for Canned Green Beans--GLS Results.

Logit Ideal Point Model

R2 F p

.49 24.5 i~ < 001
(47) ~ (9,230) T’ ¯

Parameter
Variable Estimate t-Value
Intercept - .155 -3.33
Salt .771 3.69
Sugar .300 1.46
Salt squared - .102 -2.52
Sugar squared - .077 -1.93
Order Effect .299 4.52
Salt*Order 1.277 4.31
Sugar*Order .261 .90
Salt squared*Order - .234 -4.08
Sugar squared*Order - .051 .89

Ideal Point Estimates

I (Salt)
Order I 3.05
Order II 3.78
Joint Model 3.22
Bock & Jones 3.27

Dimension
II (Sugar)

2.19
1.94
2.11
2.39

~ 2
,~Adjusted R .
"Degrees of freedom.
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FIGURE 5.
Aptness of logit ideal point models for preferences for canned green beans from Bock and Jones.

Discussion

Debates on the suitability of vector models versus ideal point models for scaling
preferences usually end by recognizing that neither one model nor the other is uniformly
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superior. Some domains are better represented by vector models and other domains are
better represented by ideal point models. For external analysis of preferences, researchers
select the information base to which preferences are related. Coombs (1975) and Davison
(1976b) point out that vector models may be appropriate for relating preferences to one
information base, while ideal point models may be appropriate for relating the same
preferences to another information base. Under such circumstances it is very important to
be able to distinguish between the two models.

The numerical examples illustrate that hierarchical testing procedures can distinguish
the logit vector model from the logit ideal point model for preferences. In the reanalysis of
data from Bock and Jones [1968] on preferences for additional compensation, both the
logit vector model and the logit ideal point model had statistically significant R2 values.
The hierarchical test indicated that the additional parameters associated with the logit
ideal point model were not statistically worthwhile. The incremental nature of the benefits
offered inclined us to expect a vector model would be appropriate. If there is an ideal
point for additional salary, or additional vacation day, or additional retirement contri-
bution, it is far beyond the range of benefits offered in this data set. So we feel the hier-
archical testing procedures selected the proper model. In the reanalysis of data from Buck
and Weckel [1956] we expected an ideal point representation should be appropriate.
Bock and Jones [1968] had found an optimum within the range of the salt and sugar
concentrations which were investigated. Again both of the logit models produced statis-
tically significant R2 values and the hierarchical tests also revealed the significance of the
order effects. Similar procedures could be employed to test for the systematic structure of
other sources of group differences.

Davison [1976b] reported that other formulations of the unfolding model seldom
significantly outpredict vector models, even when unfolding models prove superior in
cross-validation. Results to date make us hopeful that the logit vector and logit ideal
point models will be more readily distinguishable.
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