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Numerous technologies are emerging to reduce water use and pollution in China's textile industry, including
several that are promoted by the China National Textile and Apparel Council as cleaner technologies in their
five-year development guideline published in 2016. Though these technologies appear promising, the com-
plexity of the industry makes it difficult to predict and compare the environmental and economic impacts of
widespread adoption of these technologies. We draw on existing studies to estimate the potential scale of ap-

plicability of these technologies, and then estimate the potential economic and environmental benefits of en-
couraging their widespread adoption. Several of them, if implemented on a large scale, could drastically reduce
water use and pollution with a payback of less than a year. Our approach to estimating the environmental and
economic impacts of widespread adoption of promising technologies is also relevant for impact assessment in
other complex industries with a wide range of products and processes.

1. Introduction

The textile industry is a major contributor to global water con-
sumption and pollution, in particular in China, the world's largest ex-
porter of textiles (Hasanbeigi and Price, 2015), though also increasingly
in emerging economies such as Vietnam (Nayak et al., 2019). Wang
(1999) already reported that despite water shortages being critical in
China, water consumption per unit of industrial production is 5-10
times greater than in developed countries. There is a large literature on
potential technological solutions to these problems, and the China
National Textile and Apparel Council (CNTAC, 2016) selected several
such emerging technologies to be promoted as cleaner technologies for
the textile industry in their five-year development guideline published
in 2016. Although these technologies appear promising, it is sometimes
difficult to estimate the environmental and economic impacts of
adopting these solutions on a large scale, due to the complexity of the
industry.

For instance, which of these two technologies discussed in Tong
et al. (2012) has greater potential benefit: (a) cold pad-batch pre-
treatment for cotton fabric, for which they use an estimate from Chen
(2009) of potential water savings of 50%, or (b) digital printing for

cotton, chemical fiber and silk fabric, for which they use an estimate
from Gu (2002) of potential savings of 30%? For policy-makers the
answer to this question is important, as it informs them which tech-
nology they should prioritize more. An estimate, even if only highly
approximate, of the water savings potential and economic effects of
widespread adoption of these technologies is also relevant for policy-
makers, as it would provide an order-of-magnitude estimate of how
much they might consider investing in supporting these technologies.

The answer to this comparison depends on the relative contribution
of cotton fiber, chemical fiber, and silk to total water consumption in
the textile industry, and to the relative contribution of the pretreatment
stage and the dyeing and finishing stage to total water consumption
associated with each type of fabric. Although the textile industry is one
of the most common domains for water footprint studies (Aivazidou
and Tsolakis 2019), comparisons are hindered by a lack of standardi-
zation in the measures and methods used. For instance, one study may
focus on direct water withdrawals of an entire process, while another
might measure direct and indirect water consumption of the pretreat-
ment and dyeing stages only. Wang et al. (2013) point out the im-
portance of analyzing water footprints at the level of individual process
stages.
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Table 1
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Selected technologies identified by the China National Textile and Apparel Council (CNTAC) as cleaner technologies for the textile industry in their five-year

development guideline published in 2016 (CNTAC, 2016).

Technology

Process stage to which the technology applies

Reuse of cooling water
Reuse of low concentration production sewage
Reuse of steam condensate

Workers' efficiency improvement based on measurement of water and energy consumption on machine level

Cold pad-batch pretreatment for cotton and chemical fiber fabric
Cold pad-batch dyeing for cotton, chemical fiber and silk fabric
Air flow dyeing for chemical fiber fabric

Digital printing for cotton, chemical fiber and silk fabric

Common
Common
Common
Common
Pre-treatment
Dyeing/printing
Dyeing/printing
Dyeing/printing

Source: CNTAC (2016).
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Fig. 1. The system boundary of the textile industry and its production stages, as well as processes for the main textile products. (Dotted boxes indicate optional
processes, while solid-line boxes indicate required processes. Boxes in blue indicate water-intensive processes. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Moreover, to answer this comparison, one would need information
about the economic payback of the technologies in question. In their
comprehensive review of the literature, de Oliveira Neto et al. (2019)
observe that many studies do not provide information about the eco-
nomic payback, and even fewer do so while looking at individual
process stages separately. Chen et al. (2017) provide a case study il-
lustrating how a more detailed evaluation tool that takes this complex
structure into account can help manufacturers better understand the
impacts of such emerging technologies.

The contribution of this paper is to provide a methodology to esti-
mate the potential economic and environmental impacts of widespread
adoption of emerging technologies, which is non-trivial due to the
complex structure of the industry and the lack of standardization
among existing studies. We focus on a set of promising technologies
already identified by CNTAC (2016) shown in Table 1, to be able to
make meaningful comparisons. However, the approach we outline is
equally applicable to other technologies, other countries and to other
complex water-intensive industries such as food processing (Klemes
et al., 2008) and others. Finally, our methodology combines water ef-
ficiency and energy savings so it could be used as a tool to “support
policy-makers and investors into more resource efficient strategies and
investment choices” (United Nations — Water Decade Programme on
Advocacy and Communication (UNW-DPAC), 2014).

2. Assessment of aggregate water use and pollution in China's
textile industry

In order to estimate the potential environmental and economic
impacts of the widespread adoption of various water-related technol-
ogies, we must first understand the overall water consumption and
pollution that is associated with China's textile industry. We must also

understand how this associated water consumption and pollution
breaks down across different process steps and different types of fabric.
To do this, we drew on several sources of information. We identified
scientific papers published in English or Chinese that provided data that
would help us determine the breakdown of total water consumption
and pollution by fiber and by process stage. In addition, we used sta-
tistical data and reports from national and international agencies, in-
cluding the World Trade Organization (WTO), various Chinese gov-
ernment agencies, the China National Textile and Apparel Council
(CNTAC), and related associations (the China Cotton Textile
Association (CCTA), the China Filament Weaving Association (CFWA),
and the China Wool Textile Association (CWTA)).

Several studies quantify the sizeable impact of the textile industry.
Li et al. (2008) find that in 2002, the textile industry was one of the five
highest water-consuming industries in China (together with thermal
power, iron and steel, paper production, and the petrochemical in-
dustry). Yin et al. (2016) conclude that among 17 major industries
between 1997 and 2007, China's textile and garment industry was one
of the eight most polluting industries. Oita et al. (2016), Yang et al.
(2016) and Zhang et al. (2013) report that textile exports from China
are a substantial cause of water pollution in China. Xu et al. (2018)
provide an overview of a wide range of textile environmental policies
that have been implemented in China, and conclude that water pollu-
tion has been the main target so far.

Fig. 1 illustrates the structure of the textile production process. It
highlights the three main production stages: fiber, yarn, and finished
fabric, for several of the main textile products, including cotton, chemical
fibers, wool, and blended textiles. Each production stage has several
processes. For processes such as pretreatment, dyeing/printing, and fin-
ishing, water is the principal medium for applying chemicals (e.g., dyes,
acids, surfactants, enzymes, stabilizers, salts, fixing and complex
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Fig. 2. Direct blue water withdrawal of cotton and wool textile production. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Sources: DBW of cotton is the average of the data from Zhang et al. (2015),
Wang et al. (2009), Yuan et al. (2013). DBW of wool is the average of the data
from Hassan and Shao (2015) and Wu and Liu (2014).

agents) that impart the desired properties to the textile product. Water
is also used to remove impurities during processes such as cotton lint
ginning, cotton fiber combing and carding, silk fiber reeling, flax fiber de-
gumming, and wool fiber scouring. Therefore, a large number of residual
chemicals and impurities enter the sewage system, which increases
pollutant loads (Brik et al., 2006). Textile sewage is characterized by its
high colour, chemical oxygen demand (COD), and salt content
(Tanapongpipat et al., 2008). All these characteristics degrade water
quality. Because our focus is on the textile manufacturing industry, we
do not consider the garment production or end-of-life stages. Muthu
et al. (2012) provide a comprehensive comparison of different fibers; in
our study, we take the fibers as given and compare ways of reducing the
impacts associated with turning them into garments.

3. Methods

In order to illustrate our approach to estimating the benefits of
widespread adoption, we selected the set of technologies shown in
Table 1. Some of these are already relatively widely adopted (such as
the four “common” technologies), and we can use data published in
NRDC reports by Greer and Lin (2010) and Greer et al. (2010, 2013) for
several of them. Others are more experimental (those related to pre-
treatment and dyeing and printing); to illustrate our approach for those
cases, we use data obtained from three manufacturers that we inter-
acted with. The NRDC reports do provide some estimates of water
savings and economic payback for some of those technologies too, but
they do not provide enough information about water consumption be-
fore adoption for us to be able to perform our extrapolation.

Our first interviewee is the director of the Sustainability Department
of an ISO 14001-certified large-scale manufacturer, “X”, in Suzhou,
Eastern China, that performs chemical fiber fabric pretreatment,
dyeing/printing, and finishing. The second is the production manager
of an ISO 14001—certified large-scale manufacturer, “Y”, in Hangzhou,
Eastern China, that performs pretreatment of cotton, chemical fiber,
and silk fabric as well as dyeing/printing and finishing. The third is the
production manager of a small-scale chemical fiber manufacturer, “Z”,
in Changzhou, Eastern China, that performs fabric pretreatment,
dyeing/printing, and finishing.

We do not claim that the data from these manufacturers are re-
presentative, we only use them to illustrate how one can extrapolate the
water savings and economic effects that would result from widespread
adoption of a technology when the data are limited to a case study
involving only a specific process stage and type of fabric. One can use
the same extrapolation approach to other estimates of the water savings
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and economic effects of these technologies, for instance such as those
provided by de Oliveira Neto et al. (2019).

In order to be able to extrapolate meaningfully, we need to know the
breakdown of current water withdrawals by process step and fabric
type. We found assessments for four kinds of textile: cotton (six studies),
cotton and chemical fiber blends (one study), chemical fibers (two
studies) and wool (two studies). However, it is challenging to compare
these assessments because of the variety in the recognized process steps
and indicators used. Some studies focus on water withdrawal while
others assess water consumption; some studies focus on direct water use
while others include indirect use.

In this analysis, we focus on direct water withdrawals, as that is the
metric most commonly used, but we do not mean to suggest that that is
the only metric that matters; the same approach can be used for other
metrics such as indirect water consumption or direct sewage. For
brevity we will use “DBW” (for direct blue water withdrawals). Zhang
et al. (2019) argue that focusing on blue water withdrawals is appro-
priate as it is most directly related to local water stress.

The assessments also vary in how they break down processes into
individual steps. Some assessments separately analyze yarn spinning,
fabric weaving and knitting, fabric pretreatment, fabric dyeing and
printing, and fabric finishing, while other assessments combine all these
steps into one process. Very few studies were directly comparable be-
cause of these differences.

Fig. 2 shows the breakdown that we will use later. The figure
compares cotton with wool, and shows that the largest direct water
withdrawals for cotton occur during pretreatment, while for wool the
largest withdrawals occur in the dyeing/printing stage. We use this
observation later in our extrapolation of the economic and environ-
mental impacts of emerging technologies.

The indicators we use to assess cost-effectiveness are (a) reduction
in annual DBW, (b) up-front investment cost, (c) annual net economic
benefit, and (d) payback in years (defined as up-front investment cost
divided by annual net economic benefit). Annual net economic benefit
includes cost reductions due to reductions in annual DBW, energy and
chemical materials cost, and outsourced sewage treatment cost. To be
conservative, we use the lowest cost provided by the manufacturers we
interviewed for the analyses in Section 6, shown in Table 2.

In the next section, we first assess the potential impact of wide-
spread adoption of technologies that are not process-specific. This is
relatively straightforward, though relies on several assumptions that we
explain below. Then in Section 6, we assess the potential impact of
widespread adoption of process-specific technologies. This is more
challenging as we need to account for the breakdown of total water use
across different fibers and production stages.

4. Assessing water savings and economic effects of widespread
adoption of common technologies

The first four technologies in Table 1 are labeled “common” as they
are not limited to specific process stages or fibers. The next four are
labeled “process-specific” as they only apply to specific process steps

Table 2

Cost data used to estimate economic benefits.
Input Cost
Water (DBW) CNY 2 per m®
Outsourced sewage treatment CNY 3 per m®
Electricity CNY 0.8 per kWh
Steam CNY 200 per m®
Gas CNY 2.54 per m®
Dyes CNY 80 per kg
Other chemical materials CNY 4 per kg

Source: estimates from the three manufacturers we interacted with (re-
ferred to as X, Y and Z).
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and fibers. In order to be able to compare the potential water savings
and economic effects of these technologies, we need to standardize
them. We do this by extrapolating the environmental and economic
impacts to the scenario in which they are widely adopted in China's
textile industry. Table 3 shows the results.

For the common technologies, we scale annual water withdrawals,
up-front investment cost, and annual net economic benefit up, from the
water withdrawals of a typical plant to the annual water withdrawals of
the entire Chinese textile industry in 2014, estimated at 4.095 billion
m? in China's Environmental Statistics Report 2014 (National Bureau of
Statistics of China, 2015). We use data for 2014 to be consistent with
the data contained in the five-year development guidelines from
CNTAC (2016), CCTA (2016), CFWA (2016), and CWTA (2016).

Table 3 confirms that reusing cooling water, process water, and
condensate all offer substantial potential reductions in DBW, with a
payback of months. Widespread adoption of reusing condensate could
reduce annual DBW by up to 0.089 billion m>. This is equal to the
annual domestic water withdrawal for 1.6 million Chinese individuals,
according to the estimated domestic per capita water withdrawal of
56.04 m> in 2014 (National Bureau of Statistics of China, 2015). Note
that, for consistency with our focus on water withdrawals, we also draw
the comparison to water withdrawals of Chinese individuals, rather
than water footprint (which includes indirect water use); Cai et al.
(2019) report that water footprint per capita in 2012 was 2826.5 m> per
year.

This extrapolation makes a number of significant assumptions, so it
should be considered as an illustration rather than a definitive predic-
tion. First, the extrapolation ignores economies of scale. Widespread
adoption of a technology could lead to lower costs due to learning or
other effects, or it could lead to higher costs in the case of material
shortages. Second, this extrapolation ignores possible limitations on
adoption (such as scarcity of land or availability of equipment). Third,
we treat the technologies as independent from one another; applying a
technology that reduces DBW will reduce the potential value of another
technology that further reduces DBW, as it would reduce the baseline
amount of water used by the system.

5. Assessing water savings and economic effects of widespread
adoption of process-specific technologies

Some of the other technologies identified by CNTAC as promising
are process-specific, which makes it harder to estimate the effects of
widespread adoption. Moreover, several of these technologies have not
yet been studied as much in the literature. Some estimates do exist of
the extent to which they can reduce water withdrawals, but little or no
evidence exists of their economic costs and benefits. We encountered
some of these technologies during our interactions with several textile
manufacturers, so we can use their experience to construct an initial
estimate of those economic effects to illustrate our extrapolation ap-
proach. These estimates are necessarily highly tentative, as they are
based only on data from the three manufacturers. However, in order to
assess whether they are worth investigating further, it is helpful to
compare them with the technologies discussed in the previous section.
To do this, we again must find a way to estimate the potential effects of
these technologies if they were adopted widely, as shown in Table 3.

We assess cost-effectiveness and classify technologies in the same
way as in Section 4. In order to compare these technologies with each
other and with the common and sewage technologies assessed in
Section 4, we again must standardize the associated estimates according
to how widely each technology could be adopted. This is more com-
plicated than in Section 4, because each of these process-specific
technologies can apply to a different range of processes, so we must first
determine the appropriate scale of applicability. To do so, we estimate
the proportion of total water use that can be attributed to the process in
question. Then, we extrapolate the costs and benefits, as estimated in
the corresponding study, to the level of China's textile industry as a
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whole. As before, the subsequent extrapolation is based on a number of
strong assumptions, which we mentioned previously in Section 4. In
addition, for the process-specific technologies we consider here, ex-
isting references do not provide enough assessment results for every
specific process and every kind of textile. As a result, we may not al-
locate water withdrawals accurately, and may under- or overestimate
the potential annual DBW reduction of some technologies.

The annual DBW of the entire Chinese textile industry is estimated
at 4.095 billion m® in 2014 (National Bureau of Statistics of China,
2015). We need to break this down by process stage and by fabric.
Table 4 summarizes how we do this and shows the estimated total
annual DBW for the specific process steps of the three main kinds of
textile.

First, recall that Fig. 2 showed the breakdown of water withdrawals
for cotton and for wool into pre-treatment, dyeing and printing, and
finishing. Because the production process for chemical fiber textiles and
cotton textiles are similar (see Fig. 1), we apply the breakdown for
cotton to chemical fiber as well. Fig. 2 only provides the breakdown per
ton of output, so we need total output for each type of textile, which we
obtain from other sources. In 2014, the total output for each main kind
of textile product was as follows: 63 billion meters of cotton fabric
(CCTA, 2016) (equal to 12.6 million tons under the assumption that the
average weight per meter of cotton fabric is 0.2kg/m (Minister of
Industry and Information Technology of China, 2010)), 42.5 billion
meters of chemical filament fabric (CFWA, 2016) (equal to 8.5 million
tons under the same assumption of an average weight of 0.2kg/m
(Minister of Industry and Information Technology of China, 2010)), and
377,100 tons of wool fabric (CWTA, 2016).

How much of the total annual DBW of 4.095 billion m® can be at-
tributed to pretreatment, dyeing/printing, and finishing? We know the
breakdown of DBW into these three steps for cotton, chemical fiber, and
wool, the three main textile products. Therefore, we use the breakdown
from aggregating those three products to determine the breakdown of
the DBW of the entire industry. One example of this process is as follows
(and explained in footnote b in Table 4): The total DBW for the pre-
treatment for cotton, chemical fiber, and wool combined is 2.1 billion
m? per year. The total DBW across all process steps for those three
fabrics is 3.89 billion m> per year. Therefore, we assume that pre-
treatment accounts for 2.1 + 3.89 = 54% of the total industry-wide
DBW, or 54% x 4.09 billion = 2.21 billion m® per year.

To explain the next step, we use the first process-specific technology
shown in Table 3 as an example: the cold pad-batch pretreatment for
cotton and chemical fabric. From Manufacturer X, we learned that their
annual DBW before adoption was 3300m®. This technology applies only
to the pretreatment of chemical fiber textiles. Table 4 shows that the
annual DBW for the pretreatment of chemical fiber textiles in China's
textile industry is 930 million m®, which is 281,818 times the annual
output of Manufacturer X (i.e., 3300 x 281,818 = 930 million). The
up-front investment cost was estimated at approximately CNY 150,000;
therefore, a simple estimate of the up-front cost to implement this
technology in the pretreatment of all cotton and chemical fiber textiles
in China would be CNY 150,000 x 281,818 = CNY 42.273 billion. This
technology yielded a reduction in annual DBW of 90% at Manufacturer
X. If it were scaled up to nationwide chemical fiber textile pretreatment,
this would correspond to an annual DBW reduction of 90% x 930
million m® = 840 million m®. Finally, the annual net economic benefits
of this technology at Manufacturer X are estimated to be CNY 94,000,
which would correspond to a nationwide net economic benefit of CNY
26.491 billion, resulting in a payback of 1.596 years.

We emphasize again that this extrapolation relies on a number of
assumptions, listed above. We do not intend these extrapolations to be
interpreted as precise estimates of the impact of nationwide adoption of
these five process-specific technologies, but rather as a first approach to
identifying which technologies are most promising and deserving of
further study.

Table 3 shows that widespread adoption of several of these process-
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L. Chen, et al.

Chen, who tragically passed away in October 2017. This work was part
of the PhD thesis that she had almost completed.
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