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This article presents methods for the preliminary specification of distributed lags in structural
models in the absence of sufficient a priori information. It is argued that an instrumental-
variables procedure produces good results as long as the goodness of fit in the instrument
equations is satisfactory. When this is not the case, simple OLS specification is preferable to
more complex instrumental-variables methods, even though it may produce some spurious
parameters. The procedures are illustrated with a simulated two-equation system and a modef

of annual supply and price of hogs.

1. INTRODUCTION

One of the most difficult and important problems in
structural model building on time series data is the
identification or specification of distributed lag relation-
ships. This problem is approached from different angles
in the econometric and the time series literature. [We are
restricting the discussion to the time-domain literature
(i.e., excluding spectral methods).] Econometricians typ-
ically suggest that distributed lag effects be specified
from a priori considerations and estimated via clever
data transformations (e.g., Koyck, Almon) or theoreti-
cally justified (and often complicated) estimation tech-
niques. Time series analysts typically specify a lag struc-
ture from cross-correlation analysis, but offer little guid-
ance in parameter estimation beyond what is known
from econometrics. In both cases, however, the specifi-
cation part is underdeveloped: on the one hand, a priori
theory is seldom able to identify a lag structure (e.g.,
economists usually do not predict how long it takes for
supply to react to a price change), and on the other hand,
cross-correlation analysis is often unreliable in multiple-
input models, especially those with feedback relation-
ships. Since it is well known that the properties of
estimates in a model are conditional upon the model
being adequately specified, this problem merits further
attention.

Several methods for specifying lag structures have
been proposed in recent years. Restricting the discussion
to those techniques that can handle multiple-equation
models with feedback effects, two basic approaches have
emerged, albeit with several variants: pairwise cross-cor-
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relation methods on prewhitened data (e.g. Haugh and
Box 1976, Granger and Newbold 1977), and vector
ARMA methods (e.g. Jenkins and Alavi 1981: Tiao and
Box 1981). The first technique appears to be most valu-
able when the direction of causality between two vari-
ables is a priori unclear; however, it is cumbersome to
derive lag structures from cross-correlations on prewhi-
tened data, especially in k-variate models with k& > 2.
For example, Granger and Newbold’s proposed specifi-
cation technique is actually restricted to the bivariate
case (Granger and Newbold 1977, pp- 244-254). On the
other hand, the vector ARMA methods, which are ex-
tensions of the famous Box-Jenkins technique for uni-
variate analysis, are specifically designed for the k-var-
late case. Initial experience with this approach (e.g.
Jenkins and Alavi 1981, Tiao and Box 1981, Tiao and
Tsay 1983) is encouraging in the sense that it produces
dynamic reduced-form models and facilitates better un-
derstanding of the interrelationships among the vari-
ables. However, it is not directly applicable when struc-
tural-form modeling is desired, and it does not necessar-
ily lead to parsimonious models.

The present approach is different from either double
prewhitening or vector ARMA modeling and can be
used in both reduced-form and structural-form models.
We will make use of the frequently occurring case in
applied econometric modeling in which the researcher
has good a priori knowledge (usually from subject-matter
theory) about the endogenous and the exogenous vari-
ables in each equation, but poor a priori understanding
of the dynamics of the system. We propose that simpler
and more robust lag specification can be done by using




this a priori information. Practically speaking, this ap-
proach positions our method somewhere in the middle,
between “pure” time series modeling (i.e., without any
theory-driven lag specification) and “pure” econometric
modeling (i.e., without any data-driven lag specification).

The starting point for our procedure is found in earlier
work on least squares identification of multiple-input
transfer function models (Liu and Hanssens 1982). After
summarizing this method, we develop its extension in
multiple-equation situations based on instrumental-var-
iables techniques well known in econometrics, and dis-
cuss properties of the technique. Two illustrations are
provided: one based on simulated data and one on actual
data of annual hog price and supply.

2. STATISTICAL BACKGROUND

The model we advocate for the study of distributed
lags is the “rational distributed lag structural form”
(RSF), proposed by Wall (1976). Although not the most
general in its class, it is a very useful and sufficiently
flexible model, which combines the classical multiple
regression model with Box-Jenkins transfer function and
ARMA noise processes. Also, since the RSF model can
include multiple equations, it is adequate for modeling
feedback and bidirectional causality cases, which are
fairly common in the social sciences. In its most general
form the RSF is

B(L)Y. = (L)X, + u,,
u = A(L)e,,
and
e ~ N, ),

where B, T, and A are rational matrix operators for the
endogenous, exogenous, and disturbance terms, respec-
tively, A(L) is a diagonal matrix, and L is the lag
operator. The model is assumed to satisfy the conditions
of identifiability, stability, and invertibility (Wall 1975).
The conditions of identifiability are discussed in Section
3.2

Without loss of generality, we study the following
dynamic simultaneous system with two endogenous var-
iables Y, and Y- and two exogenous variables X; and X;.
We assume that the input variables for each equation are
known and that the equations can be represented as

Yie = ,B](L)Xu + Y](L) Yor + uns,
Y2 = B2o(L) Xae + v2(L) Yie + uz, 2.1

where B8:(L) and yi(L)(i = 1, 2) are polynomial or rational
parameter functions in the lag operator L. The dynamic
regression coefficients B(L) and yi(L) are also referred
to as the transfer functions between the corresponding
input and output variables. In general, the transfer func-
tion may be expressed as w(L)/8(L) where

w(l)= (w1 + wL+...+ wsLHLE,

and
dLy=1-8L - &L —... - 6L,

where all roots of the § polynomial lie outside the unit
circle. The disturbances u;, and uy each follow ARMA
processes

oi(Lyuie = 6:(L)eir, i=1, 2,

where e, and e, are vector white noise with covariance
matrix X, and

Without loss of generality, we also assume that all the
series in the system are stationary and have zero means,
possibly after a suitable stationarity-inducing transfor-
mation.

Ignoring the correlation between u;, and us,, we find
that each equation in the dynamic simultaneous system
is similar to a transfer function model except that the
random error (u;.) may be correlated with the endoge-
nous variable (Y., j % i). Thus, we could apply tech-
niques for the specification of transfer functions in each

"equation of the simultaneous system, for example the

least squares identification procedure by Liu and Hans-
sens (1982). This procedure is based largely on the fact
that each rational form transfer function w(L)/8(L) can
be expressed in linear form as

V(L)=V()+V1L+V2L2+...

by power series expansion where V(L) = w(L) has a
finite number of terms if §(L) = 1 and an infinite number
of terms if §(L) # 1. In the latter case, the function may
be approximated by a finite number of terms since all
roots of the § polynomial lie outside the unit circle. Thus,
the rational form model (2.1) can always be approxi-
mated in linear form as below:

Yie= V(L) X1 + Vio(L)Ya2r + use,
Yo = Vzl(L) Xao + V22(L) Y1 + us;. (2.2)

Liu and Hanssens’s procedure consists of two steps.
The first step obtains the estimates of the transfer func-
tion weights V(L) for each input variable by performing
OLS or GLS estimation on a linear form of the model.
After a linear transfer function is obtained, it can be
expressed in rational form if necessary, by using an
extension of the corner method (Beguin, Gourieroux,
and Monfort 1980, Liu and Hanssens 1982).

The unique problem in the application of Liu and
Hanssens’s procedure to RSF models is that the disturb-
ances u,, and us, may not be independent of Y, and Y.,
causing the OLS estimates of the transfer function
weights to be inconsistent. In the estimation literature
this problem is usually handled by instrumental-vari-
ables (IV) regression, such as two-stage least squares
(2SLS). The procedure proposed in this article is to apply
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the instrumental-variables approach to the estimation of
transfer function weights as follows:

1. We obtain an approximation of Yi, and Yz, via lag
regression over X, and Xy, using a sufficiently large
number of lags:

Y1 = mu(L) X1, + ma(L) Xoe + nue,
Yor = ma(L) X1: + mooL) Xar + nos. (2.3)

The estimates of the endogenous variables, say ¥, and
Y., are independent of u;, and us,.

2. Consequently, we can apply least squares estima-
tion (OLS or GLS, see Liu and Hanssens 1982) of
transfer function weights for (2.2) using the model

Yi. = Vu(L) X1 + V(L) Por + ul,
Yor = Vau(L) Xze + Vao(L) P10 + ute. (2.4

3. After the linear form transfer functions are appro-
priately estimated, the estimates of u;, and us, in (2.2)
may be obtained by

dyy =Y, — f}11(1--)Xu - 1712(1-) Ya,
o = Yo = Poa(L) X — Pao(L) Yo, (2.5)

We can then identify ARMA models for u;, and us,
based on 4, and ;.

This instrumental-variables procedure provides initial
information about the lag structure of the transfer func-
tions for each input variable. As discussed in Section 3.1,
the least squares estimates of the transfer function
weights for model (2.2) are consistent but not necessarily
efficient since we do not use the information that u,, and
uz, may be correlated.

3. PROPERTIES OF THE METHOD

3.1 Consistency of the Transfer Function Weights

A careful use of the proposed method can be shown
to produce consistent estimates for the linear transfer
functions in model (2.2). To see this, one can view the
proposed method as the two-stage least squares method
since essentially no outside exogenous variables (i.e.,
variables absent from the structural model) are used to
create the instruments. When the u,s are independent
(not autocorrelated), the consistency property has been
proved in various econometric textbooks (e.g., Maddala
1976, pp. 475-478). Cragg (1982) also shows that consis-
tency holds when each individual u;, follows a moving-
average model, which can be easily extended to an
ARMA model.

In the two-stage least squares method, all exogenous
variables (including their lags) are used to create instru-
ments. However, the lags for the linear structural model
(2.2) are yet to be identified. To ensure the consistency
of the method and also to improve efficiency, it is
important to include all statistically significant lagged
exogenous variables in the first-stage estimation.

We limit our attention to model (2.2) in the previous
discussion of consistency. Since model (2.2) is only an
approximation of (2.1), it will contain truncation bias for
the terms with rational transfer functions. Therefore,
strictly speaking, the transfer function weights obtained
by using two-stage least squares may not be consistent
estimates for the “true” transfer function weights. How-
ever, this deficiency will not limit the application of the
proposed method since we are more interested in the
pattern of the transfer function weights than in the actual
estimates.

3.2 ldentifiability of the Model

Both the econometric and the time series literature
recognize that models are not necessarily unique in
generating the same likelihood of the data. This problem
is referred to as “identification” in econometrics, and
“model multiplicity” in time series analysis; Granger and
Newbold (1977) conveniently use the terms “E-identifi-
cation” and “TS-identification.”

Neither E-identification nor TS-identification are nec-
essarily satisfied a priori because the ultimate form of
the model is determined posterior to data analysis.
Therefore, some conditions need to be met prior to
empirical analysis. For linear form models (e.g., model
(2.2)), a complete set of identification conditions has
been given by Hannan (1971) and Hatanaka (1975).
However, conditions for the rational-form models (e.g.,
model (2.1)) are not well established. Assuming linear
form models, we can use Hatanaka’s (1975) definition of
an excluded variable as one that does not appear in
current or lagged form in an equation. We assume that
the model contains a sufficient number of excluded
variables in each equation so as to make it (over) iden-
tified. (The necessary condition is that there are (m — 1)
or more exclusions in each of the m equations. The
necessary and sufficient condition is that the matrix
formed by the columns of excluded variables in each
equation is of rank (m — ). See Granger and Newbold
(1977, pp. 219-224) and Hatanaka (1975).) In other
words, we impose a dynamic version of E-identification
on the model, which will also ensure TS-identification.
Following Hatanaka’s rule, it is easy to see that the linear
form model (2.2) is identified as long as the original
rational form model (2.1) is identified. For rational-form
models, Hatanaka’s identification conditions seem to be
stronger than necessary, so that weaker conditions may
be possible (see, e.g., Wall 1975, Kohn 1979).

Should the a priori model not be E-identified, then
one may or may not obtain a unique empirical lag
specification. In such cases, lag specification should be
done with great care, and unique results are not guar-
anteed a priori.

3.3 Improving the Fit of Instruments

It is well known that the instrumental-variables
method will not produce good second-stage estimates if




the goodness of fit (R”) for the instruments 1s poor. To

remedy this deficiency, it would appear appropriate to
model the noise in the first-stage estimation by ARMA
processes. Such a procedure will be referred to as a
“combined procedure,” which is as follows:

1. Obtain a better approximation ¥, and Ya: of Yi,
and Y, via lag regression over X, and Xz, (i.e., model
(2.3)), but with added noise represented by ARMA
models,

2. Apply least squares estimation of transfer function
weights for (2.2) using the model

Yie = Vu(L) Xie + VioL) Voo + e
Yor = Var(L) Xor + V(L) V10 + ube (3.1

where ¥, = 7, if the lag order (i.c., the power of L) is
0, and Y;, = Y., if the lag order is greater than 0.

Note that this_procedure may not produce consistent
estimates since Y, (Y, and lagged Y..s) may be corre-
lated with u;, (j # i) due to the presence of contempor-
aneous and serial correlations of u}, and u3,.

As will be explained later, we find that this combined
procedure is inappropriate, even in cases where a sub-
stantial improvement in instrument fit over the strict
instrumental-variables method is obtained. In such cases,
it is better to accept the inconsistency of the OLS speci-
fication method.

The instrumental-variables procedure has been known
for a long time, and the combined procedure and its
variants have been suggested by Sargan (1961), Phillips
(1978), Zellner and Palm (1974), Palm and Zellner
(1980), and Perryman (1980). However, they are pro-
posed for the purpose of model estimation rather than of
model specification. In this article, we use these rather
simple and robust methods to determine the algebraic
form of each equation in a system. After the model for
a system is completely specified, we can then use more
efficient methods such as Full Information Maximum
Likelihood (FIML), to estimate the parameters. Because
of the recent development of time series computer pro-
grams (e.g., Liu et al. 1983), the computations in the
proposed specification procedure can be performed eas-

ily.
4. SIMULATED EXAMPLE

The simulation model used to illustrate the proposed
procedure is

SL
Yi.= X1

I rosE Xn T A Y+ (1= 6he,

Yor=(— .6 — 4L) Xa + L Yie+ ——— e
S e ey H S B T

120 observations were simulated, using the following

noise series:

e .21 .55
-~ N 0, )
€z .55 1.00
which implies that the contemporaneous correlation be-

tween e, and ez is .5. The exogenous variables were
simulated as

Xlt (1 - .5L)a1,,
(1 - 6L)X2t = Qg,

with the noise process:

ay, 6.76 1.79
el )
az: 1.79 5.29
so that the contemporaneous correlation between X, and
X 2 is .3.

For the purpose of evaluating various model specifi-
cation procedures, it is useful to compute the “true”
transfer function weights of the model shown in Table 1.
In the first step, the instruments Y, and ¥; are obtained
by simple OLS (see Table 2). The R*’s for these equa-
tions are .91 and .94, which is quite satisfactory. Many
of the parameters are statistically significant(*), although
one should realize that the reported parameter standard
deviations could be underestimated, as there is no guar-
antee that the residuals are white noise.

In the second step, the instruments ¥, and ¥: are used
in two polynomial lag regressions, still using OLS. The
choice of number of lags was made with the true models
in mind; in real-world situations, this choice is not critical
as long as a sufficient number of lags is used (ie.,
including all significant lags). The results are shown in
Table 3. The goodness of fit is .92 and .95. More impor-
tantly, the OLS impulse response weights are uniformly
close to the theoretical values. Limiting the analysis to
the non-trivial transfer function specification, these
weights produce the results shown in corner Tables 4
and 5. The tables suggest that the transfer functions are
(r=2s=1,b=1)and (r=1,s= 1, b = 2), respectively.

At this point, we would specify a “correct” distributed
lag model, except for the added noise terms. Using (2.5),
the residuals of this system of equations revealed an
MA(1) process on uz; and an AR(1) process on uy, as
expected.

Using a computer program developed by Liu et al
(1983) the structural model has the following FIML

Table 1. Implied Transfer Function Weights of

Simulated Models
Equation  Variable Vo v, V2 Vi V4 Vs Ve V7
1 X 0 .50 .55 .46 .34 .24 .16 .10
Y2 -.50 O 0 0 0 0 o O
2 Xz -60 -40 O O O O O O
Y, o] 0 .70 .42 .25 .15 .09 .05
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Table 2. Instrument Equations
Equation Variable 7o 7 2 #a Ta #s e 77 L
1 X, .063* 474" 512° .285* .023 —.041 -.007 .002 .005
(.028) (.030) (.030) (.030) (.030) (.030) (.030) (.029) (.025)
X .262° 257 -.092* -.174* —.044 .001 034 .019 .003
(.031) (.038) (.038) (.039) (.039) (.039) (.039) (.040) (.031)
constant .016 (.148)
2 X4 -.027 .033 .087* .408* .589* 542 .328* .118* .032
(.032) (.034) (0.35) (.035) (.035) (.034) (.034) (.034) (.029)
Xz —-.605* —-.401° .162° .309* .093* -.027 —-.061 -.019 .029
(.036) (.044) (.044) (0.45) (.045) (.045) (.046) (.046) (.036)
constant —.056 .171)
estimates: The first equation has three spurious lags, but the
500L(.016) second equation is correctly identified. The FIML esti-
Y= - - X mates of this model are
4T = 1.130L+ 33002 at m

(.033) (.030)

~ .510Y2 + (1 — .686L)ay,,
(.010) (.063)

Yo = (—.596 — .412L) Xy
(018) (.018)

J0LY019) 1
- 6I5L(016)  “ T—.600L °*’
(070)

1.593 722
2= ,
722 1.140
which confirms the originally simulated structure.

We also investigated the specification error if a straight
OLS procedure is used. The estimates for the transfer
function weights are shown in Table 6, which identifies
the following model:

wi + wizl

1= Sl — 8132l

+ (w21 + Wizl + w1sL?) Yo + (1 = 611L)ay,,

Y

Y2r = (wan1 + war2l) X

_.052(.018) + .430L(.029)
T 1-L.156L + 351L2
(.037) (.034)

+ (—.472 — .074L + .049L?) Y, + (1 — .686L)ay.,

Y.

1

(024) (036) (022) (.062)
Yo = (=.597—.409L) X,
(018 .018)
708L%(.020) 1
= 603L(018) T * T =594y
(071)
[1.419 .653:]
653 1.130

The three spurious parameters are only marginally
significant and, thus, the specification bias caused by
OLS is relatively minimal. In several other unreported
simulations, we have found that OLS often provides
useful initial information about lag structures, even
though an equation with a contemporaneous endogenous
variable is not identified correctly.

The key determinant of the quality of the specification
results is the goodness of fit in the instrument equations.

2 .. . . . .
+ waa L Yo + 1 a Several additional simulations were run with different
(1 = 8221L) 1 —¢ul variances for a1, and az,, which imply different R? in the
Table 3. Lag Specification Model: IV Method
Equation Variable Vo Vs Va Va Va Vs Ve Vr Ve
1 X, .043 .488* 554" .470" .329* 217" 161+ .051*  .009
(.029) (.031) (.032) (.039) (.038) (.038) (.038) (.036) (.030)
12 —-.452* -.106 124 -.107 106 —-.034
(.052) (.087) (.106) (.107) (.085) (.047)
constant .013 (.154)
2 X2 -.650* -.406"* -.001 .011 -.012 .070
(.040) (.048) (.053) (.053) (.054) (.047)
Y, 121 -.080 .787* .405* .204* 187 .060 -.024 .133*
(.079) (.108) (.108) (.106) (.102) (.095) (.095) (.083) (.056)
constant -.069 (.173)




Table 4. Corner Table: X, in Equation 1

Table 5. Corner Table: Y, in Equation 2

first-stage regressions. Our findings can be summarized
as follows:

1. As long as the exogenous variables explain a rea-
sonable portion of the variance in the system (in our
experience an R? of .6 or better in this simulated model),
the IV method performs well; that is, it leads to a
dynamic lag structure that is consistent with the theoret-
ical structure;

2. When the instrument fit is poor, the specification
results cannot be improved by the combined method.
The combined method deteriorates rapidly as the vari-
ances in a;, and as are reduced, and thus it is an
unreliable specification tool in such circumstances. On
the other hand, when the instrument fit is good, the
combined method provides results that are essentially
the same as under the IV approach. Therefore, this
method is always dominated by the simpler, more robust
IV technique;

3. Instead of trying to improve the instrument fit by
the combined method, one should compare specification
findings under OLS and IV when the instrument R® is
low. Unless the variances in a1, and a2, are very small,
this strategy leads to mild overparameterization of the
structure, which probably will be rectified in the ultimate
estimation of the system. However, when the exogenous
variables have no explanatory power, one cannot ade-
quately assess the contemporaneous endogenous effects

Hanssens and Liu: Lag Specification in Structural Models 321

in the system under any method. Reduced-form model-
ing is probably the only viable approach in such situa-

bt+s—1 tions.
1 2 3 4
0 .08 .01 .00 00 5. RECOMMENDATIONS FOR THE PROCEDURE
12 1:88 ‘;g _:gg _:gg The various simulation experiments revealed that the
3 .85 13 .01 .00 instrumental-variables method works very well. In gen-
4 59 02 00 00 eral, this procedure will provide adequate results if the

goodness of fit for the instruments is satisfactory. When
the instrument-R? is low, the result under the combined
procedure is no better than the instrumental-variables or

b+s—1 the OLS procedure. This is because the mixture of
! 2 3 4 instruments and lagged endogenous variables causes the

? _::g _:?i :gg :82 latter variables to explain more information than they

2 7.00 1.05 1.1 117 do if the instruments are poor. In such a situation, we

3 51 -.01 .07 07 suggest using both the instrumental-variables and the

4 26 —.04 00 01 OLS procedures to reconcile an overparameterized

model. If the system is only slightly overparameterized,
the spurious parameters will probably be rectified in the
estimation stage, as shown in the simulated example.
When the goodness of fit is small for all the instruments,
it implies that the system is not driven by the exogenous
variables. Such a system behaves almost like a closed-
loop time series model and any attempt to model contem-
poraneous relationships may not be fruitful.

When a system does not have any contemporaneous
endogenous parameters, the rational structural-form
model is an alternative parameterization of the vector
ARMA model. The OLS procedure can be considered
as a variant of the partial autoregression procedure dis-
cussed in Tiao and Box (1981). Tentative model specifi-
cation for this class of models is quite straightforward.

In the previous discussions, we assume that all the
variables are stationary. For nonstationary variables, we
may use their differenced data for the analysis. When
the entire system is near-nonstationary, the common
filtering techniques proposed in Liu and Hanssens (1982)
may be applied to all the variables in the system. This
recommendation is illustrated in the following model of
hog price and supply.

6. APPLICATION TO HOG SUPPLY AND PRICE

DATA

In his important book on multiple time series, Quen-
ouille (1957) published an interesting data set on annual

Table 6. Lag Specification Model: OLS Method

Equation Variable Vo Vs Va Va Ve Vs Ve vz Ve
1 X4 .068* 495" .655* .459* .324* .232* 157 .052 .006
(.023) (.025) (.026) (.029) (.030) (.031) (.030) (.029)  (.024)
Y2 —-.404" -.166"* .128* -.035 .018 .019
(.036) (.054) (.060) (.060) (.051) (.032)
constant .025 (.127)
2 X2 -.594"* -.410" -.023 012 -.021 .066
(.026) (.033) (.035) (.035) (.035) (.031)
Y, .018 -.005 713" .450* .178* 179 .044 -.044 .076"*
(.042) (.049) (.049) (.048) (.046) (.043) (.042) (.039) (.031)
constant -.102 (.120)
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Table 7. IV Lag Specification Modei: Hog Supply and Price

Equation Variable Vo 2 Va Va Va Vs
HS HP — .246* .045 -.023 .037 .022
(.0583) (.055) (.049) (.048) (.037)
Cs .068 .350* .029 -.057 .036 -.009
(.060) (.067) (.069) (.070) (.070) (.064)
CcP .029 .056 -.217* —.148* -.009 -.001
(.039) (.042) (.050) (.053) (.056) (.058)
constant 52.341 (50.215)
N |
HP HS -.588* -.903* —.236 —_ —_ —_
(.294) (.286) (.275) )
CcP .164* .059 .169 137 .002 -.077
(.080) (.1085) (.108) (.109) (.101) (.096)
FW .823* .402 -.339 .146 —-.254 .225
(.273) (.292) (.292) (.288) (.306) (.229)
constant 239.943 (100.557)

hog supply, price, and the related variables corn supply,
corn price, and farm wages. A fairly simple econometric
model can be postulated to underlie movements in hog
supply and hog price, but it is difficult to specify the
dynamics of such a model a priori. In addition, since the
data are annual it is reasonable to expect a contempor-
aneous relationship between price and supply. Therefore,
Quenouille’s hog data appear to be appropriate as a test
case for our specification procedure. The following anal-
ysis is given mainly for illustrative purposes. We realize
that there are several problems associated with this data
set, such as possible outliers, adjustment of the original
data, and other potential endogenous and exogenous
variables in the model.

The endogenous variables hog supply (HS and hog.
price (HP) are postulated to be affected by corn supply
(CS), corn price (CP) and farm wages (FW) as follows:

HS; = ¢; + yi(L)HP,-; + B:(L)CS, + B2AL)CP, + uy,,
HP: =Co + Y2(L)HS¢ + Bs(L)CP; + ,B4(L)FW¢ + uo;.

The supply of hogs is expected to vary positively with
the price of hogs and the supply of corn, but negatively
with the price of corn. The price of hogs, in turn, is
negatively affected by the hog supply and positively
affected by the cost factors, corn price and farm wages.
No exact a priori information is available on the dynam-
ics of these relations, except that the current hog price
can only affect next year’s (and subsequent years’) hog
supply because of the one-year production cycle.
Quenouille’s data cover the years 1867-1948, for a

total of 82 observations; the variables are expressed in
logarithms so that the various lag coefficients can be
conveniently interpreted as elasticities. Since the entire
system appears to be near-nonstationary, all five series
are prefiltered by a common filter for the purpose of lag
specification. Following Liu and Hanssens (1982), the
choice of a filter is determined by the highest AR order
that has roots close to | in the univariate series, in this
case AR(1). Then, a filter parameter is chosen in the
neighborhood of the highest AR parameter, but not too
close to 1, for example (1 — .7L) in this case. Further-
more, as the contemporaneous effect of HP on HS is
ruled out a priori, the first equation can be specified by
simple OLS methods. The second equation, on the other
hand, will be specified by the instrumental-variables
method. The instrument is obtained by regressing HS on
up to 12 lags of CS, CP, and FW, yielding an instrument
fit of 85 percent. Then, the lag structures shown in Table
7 are found (with standard errors between brackets). For
the purpose of comparison, the OLS impulse response
weights for the second equation are shown in Table 8.
The OLS results are inferior in that they fail to indicate
an expected contemporaneous effect of hog supply on
hog price.

The empirically specified dynamics of the model are
rather simple; the only relationship that may involve a
rational transfer function is the effect of CP on HS. Its
corner table, shown in Table 9, suggests a transfer func-
tion (r =1, s = 1, b = 2), or perhaps a transfer function
(r=20,s =2, b=2) which, in final estimation, provides
similar results. In conclusion, the proposed dynamic

Table 8. OLS Lag Specification Model: Hog Price

A o) "

Equation Variable Vo 2 Va Va Va Vs
HP HS -.235 -1.059* -.149 _ - _
(.206) (.207) (.206)
cp .040 .123 151 .099 -.067 -.163*
(.064) (.081) (.083) (.084) (.082) (.074)
FwW .812* .348 -.165 .031 .069 .070
(.219) (.249) (.248) (.249) (.254) (.193)
constant 187.624 (64.203)




Table 9. Corner Table: Hog Supply

,
b+s—-1
1 2 3
0 13 .02 .00
1 .26 .20 .07
2 -1.00 1.18 -1.30
3 -.68 [ 42 -.27

structure of the model is
HS: = ¢; + winHPi-1 + 0121CS,,

w131
+————CPi2 + wye,
l —6111L t—=2 1¢

HPI =cC + 0)21)HS¢ + 0)212HS¢_1
+ we21CPy + weatFW, + uy,.

In FIML estimation (Liu et al. 1983) of this two-
equation system it was found that u.. and p.. follow
(1 = 8L*)(1 = puL)'ai, and (1 — @21L) 'as processes.
The reestimated model is:

HS,= 423.397 + .306 HP;-1+ 278 CS[—]
(58.170)  (.030) (.033)

—.278(.026) 1 + .326L%.117)

- 423L 1— 802L
(.074) (.076)

HP, = 962.578 — (.638 + 1.426 L)HS,
(177.130) (.183)  (.181)

+.011 CP, + 1.388 FW, + L.
(.058) (-101) T— 766 L
(.072)

523 97
with £ = }
97 3210

The hypothesis that the residual series di, and ds. are
white noise cannot be rejected by the conventional
Ljung-Box test.

All FIML coefficients have the expected sign and,
with the exception of w22, are highly statistically sig-
nificant. Thus, the model is consistent with prior expec-
tations, although the effect of corn price on hog price is
apparent only via hog supply. Considering that the orig-
inal variance in HS is 5886 and that of HP is 61660, it is
evident that the goodness of fit with the data is excellent.

We have placed considerable emphasis on the need to
prefilter the data prior to lag specification when the
series are near-nonstationary. As an illustration of its
importance, we report in Table 10 the specification re-
sults obtained on the original data (i.e., without prefil-
tering).

Several findings are disturbing, such as the lack of
significance of the HP effects on HS and the positive
association between HS and HP in the second equation.
However, a simple transformation by the filter (1 — .7L)

CP,—2 +

axy
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removes these problems easily.

Quenouille’s data have recently been analyzed by Tiao
and Tsay (1983), using vector ARMA methods. A com-
parison of our findings with the hog supply and hog
price equations, (4.2a) and (4.2b), in Tiao and Tsay
reveals that the goodness of fit is similar and that the
dominating causal factors are confirmed in both cases;
thus, there is evidence of specification robustness be-
tween the methods, which is a positive result for the
applied model builder. The main difference is that the
vector ARMA method is limited to reduced- or final-
form analysis because contemporaneous endogenous re-
lations cannot be modeled. In this application, the strong
negative contemporaneous effect of hog supply on hog
price is not represented in the vector ARMA model.
Writing our structural form in reduced form provides a
basis for direct comparison with Tiao and Tsay’s results.
Many of their reported coefficients are implied by our
results, although their counterintuitive positive lagged
corn-supply-to-hog-price relation is not. The fact that
the reported vector ARMA model contains significant
coefficients for some a priori questionable economic
relations suggests that vector ARMA modeling is not
safe from spurious associations and should not be the
sole source for the interpretation of a system’s structure.
However, the vector ARMA model is a convenient and
useful tool for forecasting and control.

7. DISCUSSION AND CONCLUSION

When embarking upon an empirically oriented re-
search project, the time series model builder may have
different levels of a priori knowledge (Hanssens and
Manegold 1980):

level 0: only the information set is known.

level 1: the distinction between endogenous and ex-
ogenous variables in the information set is
known,

level 2: the functional forms and lag structures of the
relationships are known.

The procedures advanced in this article are applicable
to the level-1 case; thus they aim at moving the researcher
to level-2 knowledge, where a wide array of powerful
parameter estimation techniques is available. In contrast,
some other systematic empirical specification procedures
(such as in Tiao and Box 1981, Tiao and Tsay 1983) do
not even require a priori level-1 knowledge, but move
the user from level-0 to level-2 via an interesting set of
cross-correlation and stepwise autoregression proce-
dures.

We find Tiao and Box’s method most insightful when
ambiguities about endogenous versus exogenous vari-
ables occur—witness the current debate on money sup-
ply and interest rates in macroeconomics. However, once
level-1 knowledge is obtained (by theory or empiricism),
it is far more efficient and reliable in our opinion to use
such knowledge in the tentative specification of a model.



Journal of Business & Economic Statistics, Oétober 1983

324
Table 10. Lag Specification Without Prefiltering Hog Supply and Price
Equation Variable Vo Vi Va Va Va Vs
HS HP —_ .109 .054 -.078 .022 .078
(.064) (.077) (.076) (.070) (.047)
[oF] .065 .408* .104 —.065 -.067 -.075
(.074) (.092) (.095) (.098) (.091) (.078)
CP .024 .074 -.138 -.071 -.051 -.011
(.047) (.070) (.080) (.078) (.078) (.068)
constant 83.024 (84.785)
HP HS 77 -.739* 124 —_ —_ —_
(by IV) (.274) (.320) (.263)
cP .086 .169 241" .154 -.083 -.106
(.083) (.105) (.111) (.106) (.111) (.098)
FwW 551+ .313 -.199 126 -.023 -.052
(.272) (.415) (.416) (.418) (.424) (.231)
constant 149.744 (154.664)
HP HS .581* -1.128* .371 —_ —_ _
(by OLS) (.213) (.267) (.223
CcpP —.048 253" .233* 123 -.123 -.202*
(.068) (.084) (.087) (.086) (.088) (.072)
FW .673* .078 -.009 -.061 411 —-.263
(.226) (.349) (.361) (.368) (.355) (.195)
constant 13.505 (102.106)

Such knowledge also leads us to reduce the parameter
space drastically in the initial model estimation. For
example, vector ARMA modeling would require some
50 parameters or more for an initial ARMA(I, 1) model
in the hog case.

Summarizing our results, we find that the instrumen-
tal-variables procedure is very useful if the goodness of
fit for the instruments in an equation is not too low. In
the absence of contemporaneous endogenous relation-
ships, the OLS procedure can be applied directly. Model
identification in such cases is similar to the single-equa-
tion situation. Contrary to many statisticians’ sugges-
tions, the combined procedure and its variants do not
seem to be effective when the goodness of fit for the
instruments is low. We also find that slightly over-
parameterized models can be rectified during model
estimation.

It is important to understand that our efforts are aimed
ata preliminary model specification and that the ultimate
parameter estimation will often involve more sophisti-
cated procedures (e.g., joint equation methods such as
FIML), for which an abundant literature is available.

[Received March 1982. Revised April 1983.]
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