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I formulate a simple and parsimonious evolutionary model that shows that because
most species face a possibility of dying because of external factors, called extrinsic
mortality in the biology literature, it can simultaneously explain (a) why we discount
the future, (b) get weaker with age, and (c) display risk-aversion. The paper suggests
that testable restrictions—across species, across time, or across genders—among time
preference, aging, and risk-aversion could be analyzed in a simple framework (JEL
A10, D90).

I. INTRODUCTION

A number of evolutionary theories have
been proposed to explain the phenomenon of
aging or senescence or why we get weak
as we get older (see the review article by
Gavrilov and Gavrilova (2002)). Economists
have also explored the biological basis of pref-
erences, such as discounting of future consump-
tion (Rogers 1994), and risk-aversion (McAfee
1984), that are usually taken as primitive (see a
comprehensive article by Robson (2002)). In this
paper, I formulate a simple and parsimonious
evolutionary model that shows that because
most species face a possibility of dying because
of external factors, called extrinsic mortality
in the biology literature, it can simultaneously
explain (a) why we discount the future, (b) get
weaker with age,1 and (c) display risk-aversion.

The central idea is as follows. I consider
an organism that in principle can live and
reproduce forever, that is, it faces no intrinsic
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1. Sozou and Symour (2003) analyze interaction
between aging and time preference. See Robson and Kaplan
(2007) for a sketch of a model of aging that is developed in
Robson and Kaplan (2006).

mortality. The organism does, however, face
external threats, such as predation, disease, and
cataclysmic events that can potentially kill the
organism because it does not possess infi-
nite amounts of resources to fight the external
threats. Possibility of death directly implies that
organism will discount the future. Moreover,
if the organism has a flexibility in allocating
some of its limited resources over time, then
following an argument proposed in the Antag-
onistic Pleiotropy Theory of Williams (1957),
the organism will disproportionately allocate
resources to when it is young at the expense
of having fewer resources when it is old. This
is because it is more important to be alive
when young, as being alive when old is pre-
conditioned on also being alive when young,
whereas the converse is not true. Thus the
implication suggesting why we are strong when
young is nicely captured in Williams (1957):

. . .natural selection will frequently maximize vigor
in youth at the expense of vigor later on and thereby
produce a declining vigor (senescence) during adult
life.

I show that the possibility of death also sug-
gests that the organism will prefer a sure endow-
ment of resources to an uncertain endowment
of resources that has the same expected value.
The intuition is that a decrease in resources
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has a disproportionately larger negative impact
compared with an equal amount of increase in
resources because the decrease is more likely
to cause the organism to die2 and thereby per-
manently forgo the possibility of producing off-
spring in the future that will contribute to its
genetic fitness. This intuition is similar to results
in models of financial distress and bankruptcy
in which firms with large amounts of intangible
assets that might disappear in bankruptcy will
tend to avoid financial distress by avoiding risky
outcomes and by hedging.

My central contribution is in demonstrating
with a simple model that although the possi-
bility of death induces preference for expending
physical body resources on maintaining health in
youth, the fact that vigor declines smoothly and
not abruptly (i.e., aging) suggests that preference
for smoothing (and perhaps risk-aversion) might
also arise endogenously and testable restric-
tions—across species, across time, or across
genders—among time preference, aging, and
risk-aversion could be analyzed in a simple
framework. Acharya and Balvers (2004) derive
not only time preference with endogenous sur-
vival but also other properties of intertemporal
preferences such as time-consistent discount-
ing, risk, intertemporal substitution, and non-
separability of utility function in an evolutionary
model similar in spirit to this paper though they
apply the model to study life-cycle consumption
choices among individuals.

II. THE MODEL

Consider a living organism that maximizes its
expected lifetime genetic contribution or genetic
fitness:

F0 ≡ max
xt

E

[∫ ∞

0
ftdt

]
,

where xt denotes the rate at which resources are
expended by the organism to produce offspring
and ft represents the consequent rate of organ-
ism’s genetic contribution at any time t ≥ 0.
I want to make sure that risk-aversion is not
induced by concavity in the production function
and therefore I posit a simplest linear produc-
tion function in which ft depends only on the
rate of expenditure xt , and is equal to the rate
of expenditure, that is,

ft = f (xt ) = xt .(1)

2. Using an evolutionary framework, this intuition is
also captured in a result in McAfee (1984).

Suppose the organism is endowed with some
initial stock of resources Z0 to allocate over
time. I do not, in this paper, analyze the mech-
anism by which the initial stock of resources is
acquired. Robson and Kaplan (2006) develop a
model in which resources are built up in early
ages and are depleted later in life. In my for-
mulation, t = 0 represents the time at which
the organism can start reproducing. Essentially,
what I am trying to formalize here is the notion
that the organism has some flexibility, induced
perhaps by genetic mutations over time, in allo-
cating some body resources over time.

Notice that I have assumed no explicit dis-
counting of future fitness in the organism’s
objective function. However, I assume that the
organism can die at any instant when it meets
exogenous external threats (disease, predators,
cataclysmic events, etc.) that arrive randomly.
Clearly, ft = xt = 0, if the organism is dead.
The fact that the organism can die at any instant
causes the organism to discount the future.
With a linear production function posited in
Equation (1), it will be optimal for the organism
to expend all its initial resources Z0 immedi-
ately to produce offspring unless being alive in
the future conferred some additional advantage
in terms of producing offspring in the future.
I assume that in addition to the initial stock,
resources are replenished continuously at a con-
stant endowment rate of η per unit of time. Thus,
the level of resources at any given time, Zt , fol-
low the following equation:

dZt = (η − xt )dt.(2)

The idea here is that as the organism consumes
food and drink over time, it resuscitates and
repairs the body, engenders cell growth, and so
forth.

Let δdt denote the probability of death over
an infinitesimal period dt . Thus, 1 − δdt repre-
sents the probability of surviving over the next
infinitesimal period dt . I assume that δ depends
on xt . The organism is stronger if it expends
resources at a greater rate and the stronger the
organism is, the larger is the probability that it
will survive the external threat and continue to
live. Formally, I make the following assumption:

Assumption 1

δ′(xt ) < 0(3)

which implies that the organism lowers its prob-
ability of death (increases its probability of
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survival) by expending resources at a greater
rate xt .

Notice that in my formulation, a higher
expenditure xt leads not only to a higher prob-
ability of survival but also to a larger number
of offspring given the production function in
Equation (1). One might argue that there is, in
fact, a tradeoff between fertility and survival3

as in models in Shepard and Zeckhauser (1984)
and Rosen (1988). I choose a simpler formula-
tion not merely to abstract from this tradeoff but
also because there is evidence in the biomedi-
cal literature that suggests that the mechanism
that links expenditure of organism’s resources
(that cannot be transferred from one organism
to another) to production of offspring is through
better health of parents. When such resources
are spent by the organism at greater intensity,
it leads to better overall health which in turn
leads to a greater number of its offspring that
survive. In other words, healthier organisms are
more likely to reproduce and their offspring are
more likely to survive.

The organism’s maximization problem can
thus be expressed as the following dynamic
optimization problem:4

max
xs

E

[∫ ∞

t

xsds

]
≡ Ft = max

xt

(4)

xtdt + [1 − δ(xt )dt](Ft + dFt).

It is easy to see that the fitness function F
will depend on the state variable Zt and thus
Ft = F(Zt ) and5

dFt = F ′(Zt )dZt = F ′(Zt )(η − xt )dt.

Substituting in the Bellman Equation (4), we
get:

Ft = max
xt

xtdt + [1 − δ(xt )dt]

[Ft + F ′(Zt )(η − xt )dt].

3. A referee pointed out that for many organisms,
particularly mammals, this tradeoff can be substantial. For
example, in models of weaning conflict, a female’s own
survival probability improves if she weans her offspring but
the offspring’s survival probability improves if she does not
wean for a longer time.

4. A formally equivalent formulation of the problem
would be to posit the following stochastic process for Zt :

dZt = (η − xt )dt − Zt dq,

where dq represents a jump process that takes value 1 with
probability δdt and value 0 with the probability 1 − δdt .
Applying Ito’s Lemma for jump processes and solving is
formally equivalent to the formulation presented here.

5. In general, F may also depend on time t but in our
formulation the dependence on time enters only through the
state variable Zt .

Rearranging terms, we get:

Ft = max
xt

Ft + [
xt + F ′(Zt )(η − xt )

−δ(xt )F (Zt )] dt − [δ(xt )F
′(Zt )(η − xt )](dt)2

which, after canceling Ft from both sides and
ignoring the last term

[δ(xt )F
′(Zt )(η − xt )](dt)2 which is of sec-

ond order, yields

0 = max
xt

(5)

[
xt + F ′(Zt )(η − xt ) − δ(xt )F (Zt )

]
dt.

The first-order condition for an interior maxi-
mum to the maximization problem is:

1 − F ′(Zt ) − δ′(xt )F (Zt ) = 0.(6)

The second-order condition for an interior
maximum is:

−δ′′(xt )F (Zt ) < 0.

Since F(Zt ) > 0, a sufficient condition for an
interior maximum to exist is:

δ′′(xt ) > 0(7)

at the optimal value of xt .
First suppose that an interior maximum to the

optimization problem does not exist for all val-
ues of Zt in which case it will be optimal for
the organism to expend all its initial resources
immediately and then only consume what the
organism replenishes at the rate xt = η. Clearly,
this will result in a constant rate of expendi-
ture—after the initial burst of expenditure—and
thus produce a constant probability of death δ(η)
which is inconsistent with the observed phe-
nomenon of aging or increasing mortality rate
with age.

Let us now examine the case when the
above second-order condition is satisfied and an
interior maximum to the optimization problem
does obtain for some value of Zt —perhaps after
an initial burst of expenditure that reduces initial
level of resources from Z0 to Zt .6 Let x(Zt )
represent the optimal rate of expenditure in this
case.

6. In a more complete model in which resources are first
accumulated from 0 to Z0, it might not be optimal to over-
accumulate resources in the first place only to consume them
in a burst.
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Proposition 1 The optimal rate of expenditure
x(Zt) decreases over time and the probability
of death at any instant δ(x(Zt)) increases over
time.

Proof: Since x(Zt ) denotes the optimal policy
function that satisfies the first-order condition
(6), substituting it in Equation (5), we get:

0 = x(Zt ) + [η − x(Zt )]F
′(Zt )(8)

−δ(x(Zt))F (Zt).

Differentiating Equation (8) with respect to Zt

and using the envelope theorem:

0 = [η − x(Zt )]F
′′(Zt ) − δ(x(Zt))F

′(Zt ).

(9)

Differentiating the first-order condition (6) with
respect to Zt gives the following comparative
statics result (suppressing the dependence of δ
on x(Zt ) and those of functions F on Zt for
notational clarity):

x ′(Zt ) = (−F ′′ − δ′F ′)/(δ′′F).(10)

Now,

dx/dt = x ′(Zt )(dZt/dt).

Substituting from Equations (10) and (2), we
get:

dx/dt = (−F ′′ − δ′F ′)/(δ′′F)(η − x).

Substituting for F ′′ from Equation (9), multiply-
ing and dividing the above equation by F , we
get:

dx/dt = −F ′/(δ′′F 2)[δF + (η − x)δ′F ].

Since Equation (8) can be rewritten as δF =
η − [η − x](1 − F ′), substituting it above and
simplifying, we get:

dx/dt = −F ′/(δ′′F 2)

[η − (η − x)(1 − F ′ − δ′F)].

Substituting 1 − F ′ − δ′F = 0 from the first-
order condition (6), we get:

dx/dt = −F ′/(δ′′F 2)η < 0

since F ′ is positive from Equation (6) and the
fact that δ′(xt ) < 0 from Assumption 1, and δ′′
is positive from Equation (7). As x decreases
over time, it follows that δ increases over time
because it is decreasing in x. �

The result in Proposition 1 formally shows
that it is optimal for the organism to expend

more resources when young and less resources
as it gets older. Since the level at which
resources are spent also determines the probabil-
ity of death and survival, it follows that a bias
toward greater expenditure of resources when
young also implies that the organism is health-
ier when it is young and gets weaker, in the
sense that it is more likely to succumb to exter-
nal threats and die at any instant, as it gets older.

Proposition 2 The optimal rate of expenditure
x(Zt) exceeds the rate of replenishment η:

η < x(Zt)(11)

and consequently the level of resources Zt

decreases over time.

Proof: If the rate of expenditure x(Zt ) < η,
and (from Proposition 1) it continues to fall
over time, it cannot possibly be a maximizing
strategy as it can be shown to be inferior to
a feasible strategy of choosing x(Z) = η. With
x(Zt) < η, δ(x(Zt)) will be strictly greater than
δ(η) and thus the lifetime genetic contribution
will be smaller because the rate of expenditure
x(Zt) is strictly smaller than η at all times
and the probability of death at any point is
strictly larger.7 Clearly, x(Z) = η could not
be an interior optimum either for any Zt > 0
because by expending a little more resources in
any period, the organism can increase its lifetime
production while at the same time decrease its
probability of death.

Since η < x(Zt ) it follows from Equation (2)
that Zt depletes over time. �

Since the expected life-span, and fitness at
any instant F is increasing in Zt which depletes
over time from Proposition 2, it follows that as
the organism gets older, its remaining life-span
decreases monotonically.

The derivation of the results in Propositions
1 and 2 allows me to interpret the observed
phenomenon of aging and senescence as an inte-
rior solution to a formal dynamic maximiza-
tion problem. But importantly, I now show that
the interior solution also implies an additional
restriction on preferences that can be interpreted
as risk-aversion.

Lemma 1 At the interior maximum, the fit-
ness function F(Zt ) is concave in Zt and
−(F ′′(Zt ))/(F

′(Zt )) increases over time.

7. The solution in which x(Zt ) < η will violate a
technical transversality condition because Zt will grow
unboundedly large over time.
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Proof: From the first-order condition (6), we
know that F ′(Zt ) > 0 which from Equation (9)
implies that

[η − x(Zt )]F
′′(Z) > 0.

From Proposition 2, since η − x(Zt ) < 0, it
follows that

F ′′(Zt ) < 0.

Rearranging Equation (9), we get:

−(F ′′(Zt ))/(F
′(Zt ))=(δ(x(Zt)))/(x(Zt ) − η).

Since δ is increasing over time and x is decreas-
ing over time from Proposition 1, it follows that
−(F ′′(Zt ))/(F

′(Zt )) increases over time. �
The intuition for this result is that an inte-

rior solution for the maximum problem obtains
because probability of death decreases at a
decreasing rate as resources are expended at a
higher rate. This implies an asymmetry—low
levels of resources are much worse than high
levels are good—resulting in concavity of the
fitness function.

The concavity of the fitness function F(Zt )
allows me to interpret that the organism will
be risk-averse. The first interpretation follows
directly in a case in which the organism faced
the choice of initial level of resources Z0. The
organism, if offered with two uncertain bundles
of Z0 with the same expected values, will prefer
the one with smaller variance. However, in the
present formulation, once Z0 is determined, the
level of resources Zt evolves deterministically
as long as the organism is alive because the
endowment is replenished at a constant rate.
I now show that allowing the replenishing
endowment process to evolve stochastically with
a process

ηdt + σdw(12)

where dw represents the standard diffusion pro-
cess, and assuming a specific death probability
function.

Assumption 2

δ(xt ) = exp(−xt )(13)

implies risk-aversion in the following formal
sense:

Proposition 3 The concavity of the fitness func-
tion F(Zt , σ2) in Zt implies that it is decreasing
in σ2, that is,

(∂F (Zt , σ2))/(∂σ2) < 0 as σ2 → 0.

Proof: We can write an equation similar to
Equation (8) for the stochastic process described
in Equation (12) as (suppressing the dependence
of the optimal expenditure function x and the
fitness function F on Zt and σ2):

δF = η − [η − x](1 − F ′) + (1/2)σ2F ′′.(14)

The first-order condition (6), using Equa-
tion (13), can be rewritten as:

1 − F ′ + δF = 0.(15)

Substituting for (1 − F ′) from Equation (15)
into Equation (14) and rearranging we get:

δF = (η + (1/2)σ2F ′′)/(1 + x − η).(16)

Taking natural logs of Equation (16) and differ-
entiating with respect to σ2, we get:

−(∂x/∂σ2) + (1/F )(∂F/∂σ2) = ((1/2)F ′′

+(1/2)σ2(∂F ′′/∂σ2))/(η + (1/2)σ2F ′′)

−1/(1 + x − η)(∂x/∂σ2).

Letting σ2 → 0, and rearranging terms, we get:

(1/F )(∂F/∂σ2) = ((1/2)F ′′)/η(17)

+ [
(x − η)/(1 + x − η)

]
(∂x/∂σ2).

It is possible to show8 that the right-hand side
(RHS) of the above equation has an upper bound
equal to ((1/2)F ′′)/x which is negative from the
concavity of the function F . �

−(F ′′(Zt ))/(F
′(Zt )) can be interpreted as

coefficient of absolute risk-aversion which we
show increases over time. One might have an
intuition that as an organism gets older, because
it has fewer resources left, it might lead to
decreasing risk-aversion as it gets older. Notice
that −Zt(F

′′(Zt ))/(F
′(Zt )), the coefficient of

relative risk-aversion may indeed decrease over
time because as the organism gets older, the
level of resources Zt decreases over time (from
Proposition 2).

III. CONCLUDING REMARKS

I proposed a simple evolutionary model in
which the possibility of death precipitated by
external causes such as predation, disease, or
cataclysmic events can simultaneously generate
time preference, senescence, and risk-aversion
and provide testable restrictions among these.

8. The complete proof is available from the author upon
request.
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The model can be exploited, using numerical
simulations perhaps, to understand variations
in time-discounting, aging, and risk-aversion,
across species at a given point in time and
variations across time for a given species, by
varying exogenous parameters of the death prob-
ability function and of the stochastic process
for endowment replenishment. Furthermore, dif-
ferences between genders could also be exam-
ined by positing different production functions.
For instance, one might conjecture that the pro-
duction function for females might be con-
cave rather than linear resulting in greater risk-
aversion and perhaps slower aging. I leave it to
future research to explore these issues in greater
detail.
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