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Abstract

We study a general model of persuasion games. Absent second-order uncertainty

about the sender’s knowledge of an uncertain state variable, we provide an algorithm

for constructing a truthful equilibrium, as well as necessary and sufficient conditions

for equilibrium uniqueness. Unlike situations where such uncertainty is absent, we

show that second-order uncertainty eliminates truth-telling as an equilibrium. Instead,

equilibrium consists of a convex interval of states where either disclosure or complete

non-disclosure occurs, depending on the relative slopes of the ideal action lines of the

sender and receiver. We apply these findings to a corporate voluntary disclosure setting

and offer novel empirical predictions.
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1 Introduction

We examine a general model of persuasion games. In these games, a sender submits a

message to a receiver who takes an action that affects the payoff of both players. The

sender is possibly knowledgeable about a payoff-relevant state variable. Thus, when

evaluating the sender’s message, the receiver might face uncertainty not just about

the state variable, but also about the sender’s knowledge of the state realization.

Regardless of the sender’s knowledge state, the sender’s message has the property

that it cannot be proved to have been false once the state variable is revealed.

An important application of persuasion models is in understanding voluntary dis-

closure behavior by corporate managers. Earnings forecasts represent a key voluntary

disclosure by management, accounting for 16% of the quarterly stock return variance

for the average firm (Beyer et al., 2010). Such forecasts may be quantitative, that is

a projected earnings per share amount, which represent 78% of all announcements,

or qualitative, which account for the remainder (Skinner, 1994). These announce-

ments have the key feature that their veracity may be checked by comparison with a

subsequent financial report (Lev and Penman 1990; Rogers and Stocken 2005). In ad-

dition, if an announcement is not offered in good faith, then the firm may be exposed

to penalties under the anti-fraud provisions of the U.S. federal securities laws. Con-

sequently, this setting fits well within a persuasion game framework as firm managers

are constrained in the messages that they choose to send.

A manager’s incentives in issuing such forecasts or releasing proprietary informa-

tion is a matter of some controversy. It is often assumed that a firm manager releases

information to induce an investor to maximize the firm’s stock price (Grossman, 1981;

Milgrom, 1981; Verrecchia, 1983; Dye, 1985). A manager, however, might not always
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have such an objective. The interests of managers and investors are often aligned,

because as Fuller and Jensen (2002) contend, an overvalued stock can be as damaging

to a firm as an undervalued stock since it often leads to dysfunctional firm behavior.

Indeed, as Warren Buffett noted in the Berkshire Hathaway 1988 Annual Report:

“We do not want to maximize the price at which Berkshire shares trade. We wish

instead for them to trade in a narrow range centered at intrinsic business value. . .

[We] are bothered as much by significant overvaluation as significant undervaluation.”

In this light, we examine a model with the flexibility to accommodate a wide range

of views concerning the alignment between the sender’s and receiver’s preferences,

unlike the extant literature that assumes one view or the other.

Despite managers’ incentives to influence investors’ behavior, managers might

not always have new proprietary information that materially influences investors’

beliefs so as to warrant disclosure. To understand voluntary disclosure behavior by

corporate managers, we first consider a setting in which it is common knowledge that

the sender knows the realized state perfectly. We then consider a setting in which

the sender is informed about the state with some probability and only the sender

knows whether he is informed. In this case, the receiver labors under second-order

uncertainty–she knows neither the realized state nor the sender’s knowledge of the

state. Accordingly, the receiver must account for a second layer of uncertainty when

evaluating the sender’s messages and forming posterior beliefs.

Our main contribution is to study how this second layer of uncertainty affects

information transmission in persuasion games. When this additional uncertainty is

present, fundamental results, such as the phenomenon of unraveling, cease to operate.

To see this, consider a setting in which a firm may have either good news or bad

news about its prospects and wishes to maximize its stock price. The firm manager,
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who knows the firm’s actual news, would like to persuade an investors that the firm

has good news. The manager is constrained, however, to making statements that

cannot be shown to be false. In these situations, it is well known that persuasion is

impossible–the firm’s news is truthfully revealed in the unique equilibrium.

But now add a second layer of uncertainty: suppose that investors are uncertain

about whether the firm has news about the commercial viability of a product that

its is developing. Now the manager can, and will, avail himself of an opportunity to

make ambiguous statements. When he knows the firm has good news, he says so;

but when he knows it has bad news, he simply remains silent, pooling with firms that

do not have any news. Whereas in the former situation, silence would be viewed as

equivalent to bad news, here silence could be taken at face value. Thus, the manager

is able to persuade the investor that a firm with bad news is not that bad, and

consequently, deserves a higher stock price.

While such an example is highly stylized, it reflects the general properties of

persuasion in the presence of second-order uncertainty: some information is always

withheld in equilibrium, and the nature of disclosure is a combination of full revelation

in some states and complete non-disclosure in others. This observation, however,

reveals little about exactly what information is disclosed under such uncertainty.

We characterize disclosure behavior for general preferences, and show how disclosure

hinges on the alignment between the sender’s and receiver’s incentives as reflected in

the relative slopes of the lines describing their ideal actions.

Our primary findings are the following: First, in situations in which second-order

uncertainty is absent, we find (a) an algorithm for constructing a fully revealing

equilibrium, (b) necessary and sufficient conditions for full revelation to be the unique

equilibrium, and (c) when multiple equilibria exist, the sender and receiver always
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disagree as to the preferred equilibrium. Second, in situations in which the sender’s

knowledge state is private, and hence, receivers face second-order uncertainty, then

full revelation is never an equilibrium. Instead, senders choose an interval or intervals

of non-disclosure interlaced with full revelation. Importantly, the exact details of

disclosure depend on the relative slopes of the “bliss” (ideal action) lines of the sender

and receiver. When the slope of the sender’s bliss line is much smaller than the

receiver’s (i.e., there is low alignment between the sender’s and receiver’s preferences),

full revelation occurs over an interval. When the reverse is true (i.e., there is high

alignment between the sender’s and receiver’s preferences), non-disclosure occurs over

an interval. By characterizing disclosure equilibrium, we identify guidelines that

firm managers might consider when disclosing information to investors, and likewise,

factors investors might recognize when using a firm’s voluntary disclosure. A key

insight of the analysis is that information disclosure does not depend directly on the

amount of disagreement between the two parties, but on the relative slopes of their

bliss lines. Indeed, points where both parties agree as to the ideal action are not

necessarily associated with full disclosure in their neighborhood.

By distinguishing between the relative slopes of the lines describing the parties’

ideal actions, this analysis offers novel testable hypotheses about firm voluntary disclo-

sure behavior. The analysis indicates that equilibrium disclosure differs significantly

when the managers’ interests are more or less aligned with those of investors com-

pared to when managers solely seek to maximize firm stock price. If a manager wishes

to maximize the firm’s stock price, then extremely bad news will be withheld whereas

moderately bad news will be disclosed. In contrast, if the interests of managers and

investors are more or less aligned, the firm will withhold moderately bad news while

disclosing extremely bad news. Our model thus makes testable predictions about
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equilibrium disclosure that would enable us to distinguish between whether man-

agers’ preferences are aligned with investors or managers solely prefer to maximize

firm stock price regardless of the true value of the firm. Furthermore, if the alignment

between the incentives of managers and investors has risen in response to changes in

the corporate governance environment, possibly in response to the enactment of the

Sarbanes-Oxley Act of 2002 and the Dodd-Frank Act of 2010, then we posit that

firms should be more likely to disclose extreme news and withhold moderate news.

This prediction awaits empirical testing.

Since the paper’s main novelty is to study persuasion under second-order uncer-

tainty, we describe the related literature mainly in that context, and offer only a

cursory review of the vast literature where it is absent. The nearest antecedents to

our work are Dye (1985), Shin (1994a), and their successors.1 They study situations

where second-order uncertainty is present but with preferences such that the receiver

seeks to match her action to the expected state and all sender types wish to convince

the receiver that the state is at its highest possible level. We derive general conditions

on preferences where equilibrium takes the form found in these articles–suppressing

bad news and revealing good news. We also show how, by changing preferences, equi-

librium no longer takes this form–instead extremes on both ends of the state space

are suppressed and only moderate states are disclosed fully. More broadly, we con-

tribute to this literature by generalizing preferences, allowing for the possibility that

the sender and receiver agree on the optimal action in some states, and characterizing

the set of equilibria.

Shin (1994b), as well as Bhattacharya and Mukherjee (2013), study situations

1See, e.g., Jung and Kwon (1988), Penno (1997), Dye (1998), Pae (2005), Shin (2006), Guttman

et al. (2014), and Hummel et al. (2016).
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of second-order uncertainty in the presence of multiple experts.2 In all cases, these

experts have “flat” bliss lines, having a most preferred action irrespective of the state.

Since we study single-sender situations, there is no direct parallel between their results

and ours.

While our main contribution is the study of persuasion games in the presence of

second-order uncertainty, we also consider situations where such uncertainty is ab-

sent, treating this as a benchmark. Milgrom (1981) and Grossman (1981) spawned a

vast literature studying persuasion under this assumption. The main finding is that,

under quite general circumstances, full revelation is an equilibrium (Seidmann and

Winter, 1997). Seidmann andWinter (1997) also offer sufficient conditions for unique-

ness. Giovannoni and Seidmann (2007) further note that, when multiple equilibria

are present, the sender might prefer a less informative equilibrium. We generalize

both results, identifying necessary and sufficient conditions for uniqueness and show-

ing that, when there are multiple equilibria, the sender and receiver always disagree

over their ranking. While initial persuasion models assumed that the sender’s mes-

sage space was binary, consisting of truthful disclosure or no disclosure whatsoever,

considerable work examines the effects of weakening these message space restrictions.3

Here too the main finding is that full revelation is a robust phenomenon.

The paper proceeds as follows: Section 2 sketches the model. Section 3 presents

findings when second-order uncertainty is absent. Section 4 characterizes equilibrium

2See also Bhattacharya et al. (2015) for further extensions of these situations.
3Okuno-Fujiwara et al. (1990) first extended the unraveling result by relaxing the message state to

allow partially informative messages. Koessler (2003) further relaxes message space restrictions while

showing that full revelation still obtains. Mathis (2008) showed how unraveling extends to situations

of partial certifiability of messages. Most recently, Hagenbach et al. (2014) offered conditions for

full revelation in -player persuasion games.
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when second-order uncertainty is present. Section 5 discusses the results within the

context of the related empirical literature. Finally, Section 6 concludes.

2 The Model

There are two players, a sender  and a receiver , with common knowledge as to

the distribution of some payoff relevant state variable , drawn from an atomless

distribution  () having support
£
 ̄
¤
including, possibly, the entire real line. With

some probability  ∈ (0 1), the sender is knowledgeable about the state; otherwise,
he knows no more than the receiver. He sends a message about his signal  to

the receiver. We treat the message as hard information in that it cannot be shown

to have been false once the state is revealed. Formally, a feasible message  is a

(possibly degenerate) closed subset  ⊆ £ ̄¤ that contains the true state .4 Thus,
an uninformed sender must send the message  =

£
 ̄
¤
, which we denote  =

∅, to be assured of sending a message that contains the true state. The sender’s
information as to the state is private information, so the receiver labors under second-

order uncertainty–she knows neither the realized state nor the sender’s knowledge

of the state.

After receiving the message , the receiver selects an action  ∈ R based on her

preferences. Let  ( ) denote the payoffs of player  ∈ {} when action  is

chosen in state  We assume that, for every , payoffs are continuous and single-

peaked in , with a unique payoff-maximizing action,  (), which we term ’s bliss

action. We assume  () is continuous and weakly increasing in , whereas  ()

4Examples of feasible messages include {}, [1 2], [1 2] ∪ [3 4] and
£
 ̄
¤
for any 1  4

satisfying  ≤ 1    2  3  4 ≤ ̄
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is continuous and strictly increasing in ; thus, the preferences of both parties are

(weakly) correlated with the state. When the receiver has no information,  (∅)
denotes her bliss action. Bliss actions alone are not sufficient to define preferences.

Hence, we assume that preferences also satisfy the distance property; that is, the

payoffs to each party are proportional to the distance between the chosen action and

the bliss action. Formally,

Definition 1 The preferences of agent  ∈ {} satisfy the distance property if
and only if  ( ) =  (| −  ()| ; ) for some strictly decreasing function .

The distance property implies that, when the action chosen exceeds the agent’s

bliss action by a given amount, the agent evaluates it in the same fashion as when it

falls below the bliss action by the same amount. It does not imply that losses from

errors of a given magnitude are the same across states. For instance, in state , the

sender may suffer a quadratic loss as a function of the distance of the error whereas

in state 0 he may suffer a quartic loss.

Disagreement as to the bliss action between the sender and receiver constitutes the

key barrier to information transmission. We model this by assuming that  () 6=
 () except at finitely many agreement points, which occur when the bliss lines

cross.5 Formally,

Definition 2 State 0 ∈ ¡
 ̄
¢
is an agreement point if and only if  (0) =

 (
0) and there is a neighborhood of 0,  , such that  ( ()−  ()) 6=

 ( ()−  ()) for all   ∈  satisfying   0  .

5An agreement point represents a state where the sender and receiver share a bliss action but

where this action does not represent a tangency point between their bliss lines.

9



The generic disagreement between the two parties as to the optimal action creates

an incentive for the sender to try to persuade the receiver to follow his suggestions.

The receiver, recognizing this possibility, seeks to “decode” the sender’s message to

avoid being misled. For instance, when sending the null message, the receiver must

parse out the chances that the sender is truly uninformed compared to the chances

that the sender is informed but willfully withholding information.

We use the following solution concept to characterize the results: The receiver uses

Bayes’ rule wherever possible in formulating beliefs. We further restrict beliefs such

that, if the sender sends the (possibly degenerate) message  =  then the receiver

must believe that the state lies somewhere in , even if  lies off the equilibrium path.

Given her beliefs, the receiver chooses an action maximizing expected payoffs. The

sender chooses messages optimally given the receiver’s anticipated response.6

Before proceeding, we pause to motivate the key assumption regarding the sender’s

message  as to the signal. Institutionally, if a management forecast or proprietary

information is not offered in good faith, then the firm may be exposed to penalties

under the anti-fraud provisions of Section 10(b) of the Securities Exchange Act of

1934 and the SEC promulgated Rule 10b-5. It seems reasonable, therefore, to model

the message as hard information where a feasible message  is a (possibly degenerate)

closed subset  ⊆ £ ̄¤ that contains the true state . This assumption allows for
the possibility of point forecasts (e.g., earnings are expected to be $1.00 per share),

range forecasts (e.g., earnings are expected to be between $0.90 and $1.10 per share),

lower bound forecasts (e.g., earnings are expected to be less than $1.00 per share), or

upper bound forecasts (e.g., earnings are expected to be above $1.00 per share), as is

the case in practice (see Skinner, 1994). In contrast, much of the voluntary disclosure

6Bhattacharya and Mukherjee (2013) use a similar solution concept.
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literature, such as Dye (1985) or Pae (2005), restricts the message space to feasible

messages  ∈ {∅; }; that is, firm management may either remain silent or issue a

point forecast.

3 Sender Knowledge Is Public Information

We first study situations where the knowledge state is public. This serves mainly

as a benchmark for situations where the knowledge state is private. We offer three

main results. First, while it is known that full revelation is generally an equilibrium

in these situations, we offer a novel construction of such an equilibrium. Second, full

revelation is not always the unique equilibrium. Finally, we show that when partially

revealing equilibria exist, the sender always prefers these equilibria to full revelation.

Thus, unlike the situation of pure cheap talk, where there is a Pareto ranking of

equilibria by informativeness, the sender and receiver fundamentally disagree about

the equilibrium ranking under persuasion.

When the sender is known not to be knowledgeable, the game is trivial to analyze.

Since the sender knows nothing, the receiver takes the optimal action given her prior

beliefs. The remainder of the analysis concerns the case where the sender is known

to be knowledgeable.

It is known that the unraveling argument, first introduced by Grossman (1981)

andMilgrom (1981), generalizes substantially to produce a fully revealing equilibrium.

The idea underlying the argument is that for any pooling interval some positive

measure of sender types are disadvantaged by being pooled. Since these types then

have an incentive to deviate and fully reveal, this destroys the possibility of pooling

in equilibrium. Such intuition, while powerful, depends on certain key assumptions
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to operate. The following result shows that bounded state spaces are one such key

assumption.

Proposition 1 Full revelation is never an equilibrium when:

(a) The state space is unbounded from above and  ()   () for  sufficiently

large; or

(b) The state space is unbounded from below and  ()   () for  sufficiently

small.

The unraveling intuition relies essentially on the presence of a worst sender type

following any deviation message, a type who could feasibly have sent the message but

with whom no other feasible sender type would wish to be confused. For instance,

when the sender’s bliss line lies strictly above the receiver’s, no other feasible sender

type would wish to be thought of as the lowest type that could have sent a given

deviation message. When the state space is bounded, a receiver who believes that the

worst type deviated will choose an action that is lower than full revelation for anyone

sending this message; hence, such a deviation is unprofitable for the sender.

When the state space is unbounded, such a worst type no longer exists following

certain messages. In the situation described above, for example, the null message

always represents a profitable deviation. This message will induce some action 0

that is ideal for the receiver in some state 0. Sender types just below 0, which

always exist owing to the unbounded state space, find it profitable to deviate, as

the null message induces a slightly higher action than does full revelation. More

generally, although it is well known that full revelation is the unique equilibrium

when the state space is bounded and bliss lines never intersect, Proposition 1 implies

that, for this same preference configuration (and many others), full revelation is
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never an equilibrium when the state space is unbounded. The key insight is that,

unless unraveling eventually produces a distinct worst sender type, persuasion game

restrictions on messages do not, in and of themselves, ensure full disclosure.

Proposition 1 establishes the importance of bounded state spaces for the existence

of a fully revealing equilibrium. As in the model of Seidmann and Winter (1997),

we assume the necessary boundedness conditions hold throughout the remainder of

the paper. Since, absent second-order uncertainty, the two models differ little, the

commonality in the conditions for existence is not altogether surprising.

What does differ, however, is the method of proof. Most previous existence proofs

rely on a combination of contradiction and induction to show that there exists some

set of off-equilibrium beliefs and actions such that deviating from full revelation is

never optimal.7 Instead, we offer a constructive proof of the existence of a truth-

telling equilibrium, delineating the out-of-equilibrium beliefs and actions required to

support full disclosure.

We now describe the construction. Following any singleton message,  = , the

receiver believes the state equals  with probability one and hence plays the action

 (). By contrast, for any message  = , where  is a non-degenerate subset,

the receiver forms beliefs and chooses actions according to the Bifurcation Algorithm.

This algorithm constructs an action  () following any message  =  such that all

sender types  ∈  would prefer truth-telling than  (). The Bifurcation Algorithm,

which is formally presented in the Appendix, proceeds by first identifying the sender

type who disagrees most vigorously with the receiver (i.e. the type where the gap

7The exception is Hagenbach, et al. (2014) who delineate out-of-equilibrium beliefs supporting

full revelation for a broad class of games including persuasion. Our algorithm, however, differs from

theirs.
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between bliss points is largest) in  (), the convex hull of . It then identifies a set

of receiver bliss actions, associated with states in  (), that are worse than truth-

telling for this sender type. Next, we study the subinterval of  () consisting of the

threatened actions described above and again find the sender type with the greatest

disagreement. Once more, we construct threats to induce truth-telling for this type.

This process continues until ultimately converging on a feasible threatened action

that induces all sender types in  () to tell the truth.

The following proposition shows that the sender can never profitably deviate by

sending messages that are non-degenerate intervals.

Proposition 2 If the knowledge state is public and sender preferences are bounded,

then full revelation is an equilibrium. Specifically, any message  = , where  is a

non-degenerate subset, is not a profitable deviation from full revelation when  () is

determined by the Bifurcation Algorithm.

Uniqueness and Equilibrium Selection

Although having an algorithm for constructing a fully revealing equilibrium is

useful, Proposition 2 plods familiar ground–it is known that under general persua-

sion games, full revelation is an equilibrium. Less well understood are conditions for

uniqueness and equilibrium selection in the face of multiplicity. The latter is partic-

ularly important given the emphasis on fully revealing equilibria (e.g. Hagenbach, et

al., 2014). We show, however, that fully revealing equilibria need not be unique and,

when multiple equilibria are present, the sender and receiver disagree as to which

should be played.

In this section, we offer two results. First, we identify necessary and sufficient

conditions for the full revelation to be the unique equilibrium. Second, we show
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that, when multiple equilibria exist, senders and receivers fundamentally disagree

as to which should be played. In particular, senders always strictly prefer a less

informative to a fully revealing equilibrium.

By way of background, Seidmann and Winter (1997), among others, offer suffi-

cient conditions for full revelation to be the unique equilibrium. The degree to which

these conditions might be weakened remains an open question. However, we can re-

purpose the Bifurcation Algorithm to strengthen results on uniqueness. The required

condition, it turns out, permits an if and only if answer to the uniqueness question.

The basic idea of the proof is to operate the Bifurcation Algorithm in reverse–if

the receiver chooses a non-extreme action following a pooling message  =  under

what preferences will the sender prefer this non-extreme action to full revelation? The

key condition is “conservatism”–a sender is conservative (relative to the receiver) in

the neighborhood of an agreement point if his bliss line is much less responsive to

changes in the state, in a sense to be made precise below. For instance, suppose that

the sender’s bliss line is relatively flat and cuts the receiver’s bliss line from above at

an agreement point. Now, the gap between the sender’s bliss line and the agreement

action is smaller than the gap between bliss lines away from the agreement point.

Hence, so long as pooling near the agreement point induces an action close to the

agreement action, all senders will prefer this to full revelation. To ensure that full

revelation is the unique equilibrium, such circumstances must be ruled out, i.e. the

sender must not be conservative. Formally,

Condition 1 A sender is conservative in state  if there exists an agreement point,

0, such that  ( (
0)  )   ( ()  ). If, for every agreement point 

0 and

(almost) all states ,  ( (
0)  )   ( ()  ), a sender is not conservative.

Note that conservatism only occurs in reference to agreement points. When the
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sender and receiver always disagree as to the ideal action, full revelation is indeed the

unique equilibrium. Ironically, it is the presence of points where conflict is absent–

points where full revelation can hardly be in doubt, that create the possibility of

equilibrium information withholding. Specifically,

Proposition 3 If the sender is not conservative, then full revelation is the unique

equilibrium. However, if the sender is conservative for some positive measure of states

, then a partial pooling equilibrium exists.

We now turn to equilibrium selection when the sender is conservative. It might

seem obvious that, since full revelation is an equilibrium, both parties ought to prefer

its selection. Indeed, such an informativeness selection criterion is common in the

cheap talk literature. Crawford and Sobel (1982) first showed that, under pure cheap

talk, such a selection could be justified by an ex ante Pareto ranking–both sender

and receiver ex ante prefer the more informative equilibrium in their setting.

Persuasion games, however, do not have this structure. Instead, senders strictly

prefer a less informative equilibrium when one is present whereas receivers prefer full

revelation. To see why, note that, in such a partially revealing equilibrium, the sender

could, if desired, induce the receiver to play the actions associated with full revela-

tion merely by revealing truthfully. But, since partial revelation is an equilibrium,

the sender’s payoff from doing so must be lower than that obtained by withhold-

ing information. Therefore, senders always prefer less informative equilibria to full

revelation.

The same holds more generally when comparing equilibria with differing levels

of informativeness. Specifically, if we compare an equilibrium in which some set of

states is revealed with one in which those states are not revealed, the same argument
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implies that the sender will prefer the latter equilibrium to the former.8

Before proceeding to the formal result, it is useful to define a strict informativeness

ordering over equilibria which consist of either full revelation or no revelation in each

state. We say that an equilibrium is strictly more informative than another if, in

every situation of the latter where there is full revelation, the sender fully reveals in

the former. Furthermore, there exist some positive measure of states in the latter

where the sender offers the null message and fully reveals in the former. With this

ordering in mind, we have shown:

Proposition 4 If there are multiple equilibria strictly ordered by informativeness, the

sender strictly prefers the least informative equilibrium whereas the receiver prefers

the most informative equilibrium.

An important corollary of the proposition concerns fully revealing equilibria:

Corollary 1 The sender strictly prefers any equilibrium with partial pooling to one

with full revelation. The receiver prefers the opposite.

Proposition 4 does not imply that focusing on the receiver’s preferred equilibrium

is unreasonable, merely that it cannot be justified on Pareto grounds. The appropriate

equilibrium selection in these circumstances remains an open question.

Before proceeding to our main results, context is important. The situation where

the sender’s knowledge state is public has been much more widely studied than set-

tings where the knowledge state is private. The main findings here show the robust-

ness of full revelation. We modestly add to this collection of results by strengthening

8The limiting case of this argument implies that full pooling is the sender’s most preferred dis-

closure regime. However full pooling is generically not an equilibrium in this setting.

17



conditions for uniqueness and noting difficulties in equilibrium selection favoring full

revelation.

4 Sender Knowledge Is Private Information

We now turn to the heart of the paper, the study of situations where the sender’s

knowledge state is private. As mentioned above, such situations arise whenever there

is room for doubt as to the “expertise” of the sender. This might be due to the

possibility that a firm manager does not yet have any news about the commercial

viability of a product it is developing or for which it is awaiting regulatory approval

to bring to the market.

Equilibrium disclosure in this setting is the polar opposite of that when the knowl-

edge state is public. There it is well known that full revelation is an equilibrium. When

the knowledge state is private, however, this is never the case or, to be more precise,

for generic parameters of the model, all equilibria entail some degree of information

loss. By generic, we mean all cases save for the knife-edge situation where there is an

agreement point whose action corresponds exactly to the optimal action the receiver

would undertake given her prior beliefs.

With a private knowledge state, non-disclosure is always on the equilibrium path

since uninformed senders have no recourse but to send the null message. This, in

turn, limits the ability of the receiver to strategically respond to such a message so

as to create incentives for the informed types to disclose. To see why this wrecks full

revelation, notice that the null message produces an action that differs from the fully

revealing action. Since the sender and receiver disagree as to the ideal action, it then

follows that, by deviating to the null message, certain sender types can profitably
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shift the action in a favorable direction. Formally,

Theorem 1 If the knowledge state is private, then full revelation is generically not

an equilibrium.

Dye (1985) offered a version of this result for the special case where the receiver

chooses an action equal to the expected state, and the sender always prefers the high-

est possible action.9 Analogous to Seidmann and Winter (1997), who extended the

full revelation findings of Milgrom (1981) and Grossman (1981) to arbitrary prefer-

ences when the knowledge state is public, Theorem 1 extends the non-existence result

to a broad class of preferences when the knowledge state is private. Since one can no

longer focus on full revelation, it remains to determine the nature of equilibrium and

the degree of information loss in these settings. We do this next.

4.1 Convex Disclosure Equilibrium

Initially, we restrict attention to a type of equilibrium we label a convex disclosure

equilibrium. This is an equilibrium where the disclosure region is convex and where

complete non-disclosure occurs elsewhere. We will later show that, for a certain class

of preferences, the restriction to this type of equilibrium is without loss of generality–

all equilibria are of this form. The precise condition on preferences where this is the

case is when preferences satisfy what we term the gradual slope ordering property,

which holds when the slope of the sender’s bliss line is less than half that of the

receiver’s bliss line. Formally,

9Dye (1985) also allows for the possibility that the shareholders commit to a disclosure policy,

but assumes that this option is not exercised. See Hummel, et al. (2016) for an analysis of disclosure

with commitment.
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Definition 3 The bliss lines  () and  () satisfy the gradual slope ordering prop-

erty if for all 0  , we have  (
0)−  () 

1
2
( (

0)−  ()) 

Much of the applied literature (e.g., Dye, 1985) studies a special case of this

form of preferences, assuming that all sender types prefer the highest possible action

while receivers prefer to match the action to the state. This literature typically finds

that “good news” is revealed whereas “bad news” is suppressed. In this section, we

contribute by showing how this good news-bad news feature of equilibria generalizes

and what conditions are required for equilibria of this form.

Critical to the analysis is the receiver’s response to the null message  = ∅,
which now occurs in equilibrium. Let  (∅; = [1 2]) denote the equilibrium action

following the null message when the sender discloses over the interval [1 2]. Absent

agreement points, a sharp result is available:

Proposition 5 If there are no agreement points and the gradual slope ordering prop-

erty holds, then there is a unique equilibrium. In this equilibrium, full disclosure

occurs over some interval [1 2] and non-disclosure results otherwise. Moreover, in

this equilibrium either 1 =  or 2 = ̄ but not both.

The proof follows as a consequence of three propositions. The first shows that a

convex disclosure equilibrium exists under the gradual slope ordering property regard-

less of whether there is an agreement point. The second shows that when agreement

points are absent, there is a unique convex disclosure equilibrium. The third shows

that, in these circumstances, all equilibria are convex disclosure equilibria. We now

establish the first result:

Proposition 6 If the gradual slope ordering property holds, then there exists a convex

disclosure equilibrium.
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Figure 1: Convex Disclosure Equilibrium: If the gradual slope ordering property holds,

then a convex disclosure equilibrium exists.

Proposition 6 is illustrated in Figure 1. The notion that the two parties might

agree in certain states represents a novelty in the modeling of preferences absent

from most extant work causing equilibria to differ in fundamental ways from earlier

characterizations.10 Rather than dividing the state space into good news, which is

disclosed, and bad news, which is withheld, when preferences exhibit some agreement,

a second cutoff can arise. Each cutoff satisfies a similar indifference condition to the

more usual case, but together these cutoffs imply the suppression of “extreme” news,

consisting of both extremely high and extremely low states, rather than the simple

good versus bad news dichotomy. This leaves the receiver in the perplexing situation

that, when faced with non-disclosure, the state might be extremely high, extremely

low, or simply unknown to all. Thus, unlike the more standard situations where

10Note though that Bhattacharya and Mukherjee (2013) also allow for agreement points in their

analysis but restrict attention to flat sender bliss lines.
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agreement points are absent, a receiver’s action following non-disclosure is fraught

with considerable risk.

To understand this result, it suffices to explain why non-disclosure at some moder-

ate value of  implies the sender should also not disclose for even more extreme values

of . To see this, note the gradual slope ordering property implies that for more ex-

treme values of , there will be an even larger gap between the sender’s and the

receiver’s bliss lines as there is between the sender’s bliss line and the non-disclosure

action. Thus if the sender preferred non-disclosure at a moderate value of , the

sender will also prefer non-disclosure at a more extreme value of . Any equilibrium,

therefore, must be of the form in Proposition 6.

Having identified circumstances where convex disclosure equilibria exist, the next

proposition shows that, so long as agreement points are absent, the gradual slope

ordering property also guarantees that there is a unique equilibrium cutoff supporting

a convex disclosure equilibrium. Formally,

Proposition 7 If the gradual slope ordering property holds and there are no agree-

ment points, then there is a unique convex disclosure equilibrium.

While existing work studies how the threshold for revelation varies with the chance

that the sender is informed in a model where sender bliss lines are flat, little is

known about how differing sender preferences affect disclosure. An implication of

Proposition 7 is that, when agreement points are absent and the gradual slope ordering

property holds, equilibrium information disclosure is independent of the particulars

of sender preferences. The intuition is the following: disclosure begins at the point

where the receiver’s bliss line equals the action taken following the null message. As

neither expression depends on sender preferences, equilibrium is undisturbed when

these preferences change.
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The Severity of Information Loss

The contrast between Theorem 1 and Proposition 2 suggests that second-order

uncertainty leads to entirely different disclosure regimes. When agreement points are

absent and the gradual slope ordering property holds, we can trace how equilibrium

disclosure varies in the two regimes. Specifically, the parameter  reflects the degree

of second-order uncertainty. In the limit as  → 1, where second-order uncertainty

vanishes, we show that the sequence of convex disclosure equilibria converges to full

revelation. Formally,

Proposition 8 If the gradual slope ordering property holds and there are no agree-

ment points, then the unique convex disclosure equilibrium converges to full revelation

as → 1.

Agreement Points

The presence of agreement points may create additional complexity in that, in

some cases, the equilibrium configuration must satisfy two indifference conditions

(corresponding to the endpoints of the interior disclosure interval) rather than one.

This, in turn, leads to the possibility of equilibrium multiplicity.

To see why, notice that the receiver’s response to non-disclosure is non-linear in

the parameters 1 and 2 of the disclosure region. Nonlinearities arise both from the

Bayes’ rule calculation weighing the likelihood that the sender is uninformed and from

the calculation of the conditional expectation of  under strategic non-disclosure. In

general, such non-linear two equation systems produce multiple solutions. Indeed,

even in the canonical case where bliss lines are linear and the state is uniformly

distributed, multiple equilibria can arise:

Example 1 Suppose the state is uniformly distributed on [−50 50] and the probability
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the sender is informed is  = 1
2
. The receiver’s bliss line is  () =  while the

sender’s is  () =
9
20
 + 3

16
; thus, the bliss lines satisfy the gradual slope ordering

property and there is an agreement point at  ≈ 034. Finally, suppose the receiver’s
payoffs are quadratic in the distance between the receiver’s action and the bliss action.

This specification yields exactly two convex disclosure equilibria, one in which the

sender discloses if and only if  ∈ [−258 2954] and one in which the sender discloses
if and only if  ∈ [−005 420].

The example demonstrates that the presence of agreement points destroys the

possibility of equilibrium uniqueness. It also offers two other lessons. First, much

like cheap talk games, persuasion games can also produce multiple equilibria with

very different informational characteristics. Second, it shows that the presence of

agreement points need not prevent considerable information loss.

Thus far, we have limited the search for multiple equilibria to other convex dis-

closure equilibria. Our next proposition shows that restricting the search in this way

captures all possible equilibria, provided there are no agreement points.

Proposition 9 If the gradual slope ordering property holds and there are no agree-

ment points, then every equilibrium is a convex disclosure equilibrium.

Non-Convex Disclosure

If we restrict the message space, as in Dye (1985), so that the sender can either

fully disclose or send the null message, then Proposition 9 extends to cases where

an agreement point is present–all equilibria entail a convex disclosure interval. But

relaxing this restriction on messages permits the possibility of non-convex disclosure

equilibria as the following result shows.
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Proposition 10 If the gradual slope ordering property holds and there is an agree-

ment point 0, then there exists an equilibrium characterized by cutoffs 1  01  02 

2, where 
0 ∈ (01 02), such that partial disclosure occurs when  ∈ [01 02], full dis-

closure occurs when  ∈ [1 2]  [01 02], and non-disclosure occurs when  ∈ (1 2).

Notice that, when an agreement point is present, the gradual slope ordering prop-

erty also implies that the sender is conservative in the neighborhood of the agreement

point. As was the case when the knowledge state was public, conservatism gives rise

to multiple equilibria, and fundamentally alters some features of disclosure in persua-

sion settings. Ironically, the effect of an agreement point in this situation is to reduce

disclosure by the sender. Indeed, using arguments identical to those in the public

knowledge setting for comparing equilibria, it follows that the sender strictly prefers

an equilibrium with non-convex disclosure to the convex disclosure equilibrium.

To conclude, despite the potential complexity of messaging and response strategies

when the sender is privately informed and agreement points are absent, there exist

equilibria with a simple and intuitive form–the sender hides bad news (from his

perspective) and discloses good news. Moreover, the equilibrium is unique. Adding

agreement points and enriching the message space, however, can admit radically

different types of equilibria.

4.2 Convex Non-Disclosure Equilibrium

We now study equilibria where the non-disclosure region is a convex set. Let  (∅; = [1 2])

denote the equilibrium action following the null message when the non-disclosure in-

terval is [1 2]. A sufficient condition for such equilibria to exist is that the slope of

the sender’s bliss line is more than half that of the receiver’s bliss line; we call this

the steep slope ordering property. Formally,
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Definition 4 The bliss lines  () and  () satisfy the steep slope ordering prop-

erty if for all 0  , we have  (
0)−  () 

1
2
( (

0)−  ()) 

One might wonder why a cutoff of 12 is used in defining whether the bliss lines

satisfy the gradual slope ordering property or the steep slope ordering property. The

reason is that if the slope of the sender’s bliss line is more than half that of the

receiver’s, then the difference between the sender’s bliss action and the receiver’s

bliss action changes less rapidly as a function of the state than the difference between

the sender’s bliss action and the action taken upon non-disclosure. But if the slope of

the sender’s bliss line is less than half that of the receiver’s then the opposite holds.

Hence, 12 represents the critical value dividing the two cases.

Unlike the gradual slope ordering property, under the steep slope ordering prop-

erty there may be multiple agreement points. Among other things, this property

implies that the sender is not conservative at any agreement point. Thus, our ear-

lier arguments ruling out partially informative messages when the knowledge state

is public apply here. Hence, without loss of generality, we restrict attention to full

disclosure versus no disclosure.

When preferences satisfy the steep slope ordering property, we first establish that a

convex non-disclosure equilibrium always exists and then that all equilibria are convex

non-disclosure equilibria. Therefore, restricting equilibrium search to this class is of

no consequence. One might then be tempted to conjecture that, like convex disclosure

equilibria, the absence of agreement points leads to uniqueness. Sadly, this is not the

case–regardless of the presence or absence of agreement points, multiple equilibria

can arise.

To establish equilibrium existence, the following definition and lemma are helpful.

Definition 5 Let ∅ be the state  solving  () =  (∅), where  (∅) is the receiver’s
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optimal action given her prior beliefs.

Lemma 1 Define  to be the largest agreement point 
0  ∅, if such a point exists,

and  =  otherwise. Likewise, define  to be the smallest agreement point 
00  ∅,

if such a point exists, and  = ̄ otherwise. When the steep slope ordering property

holds and  ()   () for all  ∈ ( ), there exists a non-disclosure equilibrium
[1 2] ⊆ [  ] solving

| (∅; = [1 2])−  (1)| ≤ | (1)−  (1)| (1)

 (∅; = [1 2]) =  (2) (2)

where (1) holds with equality if 1  .

We now characterize the qualitative properties of all equilibria when the steep

slope ordering property holds.

Proposition 11 If the steep slope ordering property holds, then there exists a convex

non-disclosure equilibrium. Moreover, every equilibrium is a convex non-disclosure

equilibrium.

Proposition 11 is illustrated in Figure 2. There are many plausible situations

where the steep slope ordering property arises. Perhaps the most obvious is the

canonical cheap talk specification wherein a decision maker consults a biased expert

who may report freely her views as to the state. The most explored case of this model

occurs when the bliss lines of the decision maker and expert are parallel. Comparing

the situation of cheap talk with persuasion, we see that they share in common the

inevitable loss of information, but that this loss occurs via a convex non-disclosure

interval under persuasion rather than partitional equilibria under cheap talk.

27



Figure 2: Convex Non-Disclosure Equilibrium: If the steep slope ordering property

holds, then a convex non-disclosure equilibrium exists.

Perhaps more interesting are situations where the sender’s bias switches direction;

that is, where there is an agreement point. For instance, suppose  is drawn from a

distribution with mean   0. The receiver wishes to match the state whereas the

sender prefers an action equal to , where   1. Such a setting might occur when

a policy-maker consults an expert to deliver a fact-laden report, and the expert is

more ideologically polarized than the policy maker. Proposition 11 reveals that, even

though incentives grow arbitrarily misaligned as the state becomes extreme in either

direction, the expert discloses for extreme values of . By contrast, in states over a

subset of [0 ], where there is little conflict, no disclosure occurs.

Why does the steep slope ordering property change the nature of equilibrium

disclosure so starkly compared to the gradual slope ordering property? The differing

workings of these properties are most easily seen for extreme states. Under the

gradual slope ordering property, the receiver prefers more extreme actions than the
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sender, at least near one of the endpoints. Hence, the sender resorts to non-disclosure,

which produces a moderate action in response. By contrast, under the steep slope

ordering property, preferences are not as misaligned at the extremes. Indeed, the

sender may even prefer more extreme actions than the receiver. Accordingly, the

option of moderation holds no interest and disclosure is best. The opposite is true

for moderate states, where non-disclosure itself can represent the extreme choice. As

a consequence, it offers a useful counter for senders that are relatively responsive to

the state, but not for those that are relatively unresponsive.

Examples of Multiple Convex Non-Disclosure Equilibria

Unlike the situation of convex disclosure equilibria, where equilibrium was unique

in the absence of agreement points, no such property obtains for convex non-disclosure

equilibria. To illustrate this, suppose the state is uniformly distributed on [−50 50],
the receiver suffers quadratic losses in the difference between her action and the state,

and the sender is informed with probability  = 34 and has a bliss line:

 () =

⎧⎪⎨⎪⎩  + 1 if  ≥ −206
0528 41 + 0028 525 if   −206

(3)

Notice that the slope of  () is greater than half the slope of  (), and therefore,

the steep slope ordering property holds. Moreover, there are no agreement points.

It may be readily verified that non-disclosure over the interval [−206−0060] and
disclosure elsewhere comprises a convex non-disclosure equilibrium. This construction

depends only on preferences in the upper region,  ≥ −206. But there is another
non-disclosure equilibrium that has an upper bound 2 = −0061. Since a necessary
condition in any equilibrium is that  (∅; = [1 2]) =  (2), the lower bound

of the non-disclosure interval must be 1 = −20776 Equilibrium also requires that
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the sender is indifferent between disclosing and revealing when  = 1. To ensure this

relation, we identified sender preferences to satisfy this condition while maintaining

continuity. This accounts for the part of the sender’s bliss line where   −206.
The choice of 2 = −0061 was arbitrary. For any 2 slightly lower than −0061,

a similar construction of sender preferences below −206 produces a second equi-
librium without disturbing the equilibrium characterized by non-disclosure over the

interval [−206−0060]. In short, the example represents neither a knife-edge nor a
pathological case.

Although the example does not feature any agreement points, adding agreement

points in no way eliminates multiple equilibria. For instance, if we modify preferences

for sufficiently high values of  such that one or more agreement points arise (while

maintaining the steep slope ordering property), the equilibria we identified remain

undisturbed because adding agreement points does not alter the incentives to disclose.

5 Discussion

An important application of our persuasion model is in understanding voluntary

disclosure behavior by managers. This analysis establishes the disclosure equilibria

that prevail when a sender’s and receiver’s preferences are partitioned according to

whether they satisfy the gradual slope ordering property or the steep slope ordering

property. The gradual slope ordering property is consistent with a broad set of

preferences. In particular, it nests the preferences modeled in Dye (1985) and much

of the persuasion game literature (e.g., Grossman, 1981; Milgrom, 1981; Verrecchia,

1983; Penno, 1997; and Pae, 2005). Dye (1985) assumes a manager’s and investor’s

preferences are misaligned: the manager wants the investor to set the firm’s stock
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price at the highest possible value  () = ̄, whereas the investor’s preferred action

is  () = . The equilibrium under these preferences is unique and characterized by

a convex disclosure equilibrium in which the informed manager withholds extremely

bad news, but discloses moderately bad news and good news.

While a model that assumes the manager will seek to maximize a firm’s stock price

is a reasonable starting point to describe firm voluntary disclosure behavior, managers

might not always have such an objective. The interests of managers and investors

are often correlated, because as Fuller and Jensen (2002) discuss, an overvalued stock

can be as damaging to a firm as an undervalued stock since it often leads to dysfunc-

tional firm behavior. As a consequence, they argue management should promptly

inform the market when they believe market expectations cannot be met. These

preferences are descriptive of those displayed in the management forecasting setting

in which the “expectations adjustment hypothesis” prevails. This hypothesis posits

that managers issue earnings forecasts and release proprietary information voluntar-

ily to align investors’ expectations with their own (Ajinkya and Gift, 1984; Hassell

and Jennings, 1986). Managers also might want to alight investor beliefs with their

own to comply with the “disclose-or-abstain” principle when contemplating trading

in their firm’s securities. To comply with SEC Rule 10b-5 and exchange listing re-

quirements, managers must disclose their private information prior to trading in their

firm’s securities or otherwise abstain from trading (see Li, Wasley, and Zimmerman,

2016). Furthermore, Skinner (1994, 39) notes that because of the risk of lawsuits

prompted by a stock price decline in response to negative earnings announcements,

“managers behave as if they bear large costs when investors are surprised by large

negative earning news” when issuing earnings guidance, again suggesting that man-

agers prefer investors’ expectations to be relatively aligned with the true underlying

31



value of the firm rather than solely seeking to maximize the stock price.

Even when the interests of managers and investors are more or less aligned, how-

ever, managers may still want to slightly shade investors beliefs upwards. The leading

example in Crawford and Sobel (1982), where a sender aims to bias the receiver’s ac-

tion upward but by a constant amount, illustrates these type of preferences. These

preferences can be modeled formally by assuming  () =  () +  for some   0.

Under this alternative model of preferences, the sender’s preferences would satisfy

the steep slope ordering property. In this case, there exists a convex non-disclosure

equilibrium in which a firm discloses more extreme news and withholds moderate

news.

The above analysis indicates that equilibrium disclosure will differ significantly

when a manager solely seeks to maximize the firm’s stock price compared to when

the manager’s interests are more or less aligned with the investor’s. In the former

situation, the manager will withhold extremely bad news, but disclose moderately bad

news. By contrast, in the latter situation, the manager will withhold moderately bad

news while disclosing extremely bad news. Our model thus makes testable predictions

about equilibrium disclosure that would enable us to distinguish between whether

managers’ preferences are aligned with those of investors, or managers solely prefer

to maximize their firm’s stock price regardless of its intrinsic value.

Which of these equilibrium predictions is more consistent with empirical evidence?

The evidence that the empirical literature offers is largely consistent with the view

that firms are more likely to disclose extremely bad news than moderately bad news.

For example, Skinner (1994) partitions voluntary management forecasts into different

pools depending on the type of news disclosed (e.g. extremely bad news, moderately

bad news, no news, extremely good news, etc.), and finds that voluntary disclo-
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sure of extremely bad news is more common than voluntary disclosure of news that

is only moderately bad. Similarly, Kasznik and Lev (1995) find that firms facing

larger earnings disappointments are more likely to voluntarily provide quantitative

and earnings-related warnings than firms with more moderate earnings disappoint-

ments. Finally, Kothari, Shu and Wysocki (2009) find that bad news is more extreme

than good news, and accordingly, the market responds more negatively to the release

of bad news than positively to the release of good news. They rationalize this finding

by positing that firms withhold moderately bad news up to some threshold, but then

release the news if the bad news is extremely bad, again consistent with the notion

that firms are more likely to disclose extremely bad news than only moderately bad

news.11

Unlike the extant literature, which assumes one view about the relationship be-

tween managerial and shareholder incentives or the other, our model has the flexibility

to accommodate a wide range of views. Moreover, our rubric of distinguishing be-

tween gradual and steep slope ordering neatly separates the two views and offers

testable hypotheses. The empirical literature suggests that the steep slope ordering

property more faithfully describes the alignment between the preferences of managers

and investors in the voluntary disclosure environment than the gradual slope ordering

property.

The extent to which the incentives of managers and investors are correlated is a

function of the corporate governance environment. Following the financial scandals

11On this note, recently, Nintendo Co. shares experienced the largest one-day plunge since 1990

when the company disclosed that the financial benefits from the worldwide hit Pokemon Go will be

limited. The stock sank 18 percent, the maximum one-day move allowed by the Tokyo exchange,

reducing its market capitalization by $6.7 billion. See “Nintendo Slumps By Most Since 1990 on

Dashed Pokemon Go Hopes" (Bloomberg (July 24, 2016)) for more details.
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around the turn of the century, the U.S. Congress enacted the Sarbanes-Oxley Act of

2002, which established new corporate governance requirements for public firms. The

New York Stock Exchange and the NASDAQ also altered their listing requirements;

they now require, for instance, that listed companies have a majority of outside

directors (i.e., directors with no employment ties to the company) as opposed to

inside directors (i.e., directors who are employees or officers of the company). If

these changes have strengthened the alignment of preferences between managers and

investors, then our analysis predicts that firms are more likely to disclose extreme

news and withhold moderate news ceteris paribus. This prediction awaits empirical

testing.

6 Conclusion

Persuasion games have been widely studied. General models have been offered in

situations of information transmission where the receiver knows exactly how knowl-

edgeable the sender is concerning the issue of interest. Yet, in many situations, the

sender’s knowledge is unclear. Accordingly, a receiver is not only uncertain about the

realized state, but also about the degree to which the sender knows the realized state.

Our main contribution is to offer a general model of persuasion games exhibiting this

type of second-order uncertainty. We show that the presence of such uncertainty qual-

itatively changes conclusions about the degree to which hard information facilitates

information transfer.

Most notably, such uncertainty destroys the possibility that truthful revelation is

an equilibrium when the preferences of the sender and receiver conflict. Instead, equi-

librium consists of non-trivial intervals of disclosure and non-disclosure that depend
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not just on the degree of conflict, but on the relative sensitivity of the sender and

receiver bliss actions to changing information. When the sender is relatively insensi-

tive to information–incentives satisfy the gradual slope ordering property, disclosure

occurs over a convex interval and non-disclosure otherwise. When the sender’s bliss

action is relatively sensitive to the state–incentives satisfy the steep slope ordering

property, equilibria take the reverse form with the feature that non-disclosure oc-

curs over a convex interval. Thus, the equilibrium structure of the sender disclosure

behavior changes dramatically depending on the relative slopes of the bliss lines.

Our model accommodates a wide range of views concerning the relationship be-

tween managerial and shareholder incentives. By distinguishing between incentives

that satisfy the gradual and steep slope ordering property, this analysis bifurcates

these views and characterizes the associated disclosure equilibrium. Consequently, it

offers guidelines that firm managers can use when voluntarily releasing information to

investors and factors investors might consider when using a firm’s voluntary disclosure

and earnings forecasts. It also offers novel testable hypotheses.
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Appendix

Bifurcation Algorithm

This algorithm constructs an action  () following any message  =  such that

all sender types  ∈  would prefer truth-telling than  (). Formally, suppose that

the convex hull of the sender’s message,  () = [0 +1], contains exactly  ≥
0 agreement points {1 2  } where   +1. Partition the state space into

intervals  = [−1 ] for  = 1 2  + 1. Define the gap of interval  to be the

largest value | ()−  ()| for  ∈ . Let 
∗
 ∈ argmax∈ | ()−  ()|.

The algorithm successively bifurcates this set of intervals into ever smaller subsets

up to the point where no further bifurcation is possible. Specifically:

Step 1: Let ̄ be an interval containing the largest gap, i.e. the largest value of

| ()−  ()|.

• Branch U: If  ()   () for  ∈ ̄, we will only consider intervals  =

{+1 +2   +1}.

• Branch D: If  ()   () for  ∈ ̄, we will only consider intervals  =

{1 2  −2 −1}.

For  appropriately defined (depending on the branch), let ̄0 be the interval

containing the largest value of | ()−  ()| conditional on  ∈ 

Step 2: Consider the intervals  for Branch  . We bifurcate this interval as

follows:

• Branch UU: If  ()   () for  ∈ ̄0, we will only consider intervals  =

{0+1 0+2   +1}.
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• Branch UD: If  ()   () for  ∈ ̄0, we will only consider intervals  =

{+1 +2  0−2 0−1}.

For Branch D, let branches DU and DD be analogously defined.

Steps 3 4 : Repeat this process performing an analogous bifurcation proce-

dure. Continue until a bifurcation leads to the empty set.

Definition 6 The sequence of bifurcation intervals is ̄ =
©
̄ ̄0  ̄00  ̄()0

ª


We now specify the receiver’s choice of action following message . There are

three possibilities:

Case (I): In every instance where a bifurcation occurred,  ()   (), i.e., the

terminal branch was UUU...U.

Case (II): In every instance where a bifurcation occurred,  ()   (), i.e., the

terminal branch was DDD...D.

Case (III): There exists at least one instance of a bifurcation where  ()   ()

and at least one instance where  ()   (), i.e., the terminal branch contains at

least one U and one D.

Given these possibilities, the receiver’s beliefs and actions are as follows:

In Case (I), let the receiver hold beliefs that place probability one on state +1

and choose  () =  (+1) 

In Case (II), let the receiver hold beliefs that place probability one on state 0

and choose  () =  (0) 

In Case (III), let the receiver choose an action  () =  () where:  = ()0

if  ()   () for  ∈ ̄()0 , and  = ()0−1 if  ()   () for  ∈ ̄()0 . The

receiver holds beliefs that place probability  on state 0 and (1− ) on state +1

where  is chosen so that  () is optimal. ¥

41



Proof of Proposition 1: Suppose not. Consider case (a) in which  ()   ()

for all  ≥ ∗ for some ∗. Suppose the sender sends a message  = [∗∞) and
the receiver’s response is  () = 

³
̂
´
for some ̂ ≥ ∗. All sender types with

 ∈
³
̂ ̂ + 

´
for some small   0 prefer to send the message  rather than fully

reveal, yielding a contradiction. Case (b) is analogous. ¥

Proof of Proposition 2: Consider the following three cases:

Case I (terminal branch was UUU...U). Since  () =  (+1), for all  ∈
[0 +1] where  ()   (), we have  ()   ()   (+1). Hence, these

types have no incentive to deviate. Now consider  ∈  where  ()   ()  Since

 ∈ ̄ and ̄()0 = +1, there exists some interval  for    whose gap is at least

as large as the gap in . Thus, for  ∈ , | ()−  ()| ≤ | (∗ )−  (
∗
 )| ≤

| (+1)−  (
∗
 )|  | (+1)−  ()|. The first inequality follows because the

gap in  is at least as large as that in  The second inequality follows because

 (+1) ≥  (
∗
 ) and because, for any interval in the set of bifurcation intervals,

 ()   (). The third inequality follows because 
∗
   for all  ∈ . Therefore,

deviating to  is not profitable.

Case II (terminal branch was DDD...D). This case is analogous to Case I.

Case III (terminal branch contains at least one U and one D). Recall that  ∈©
()0−1 ()0

ª
. We prove that full revelation is an equilibrium when, for  ∈ ̄()0 ,

 ()   (), and hence  () =  (()0 ). The case where  ()   () for

 ∈ ̄()0 is analogous.

Case IIIA: Suppose    = ()0  If  ()   (), then full revelation is

incentive compatible since  ()   ()   (()0 ) =  (). It remains to show

incentive compatibility for  ∈  where  ()   (). Notice that there exists some

interval  with    ≤  with a larger gap than  and with the property that, for
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 ∈ ,  ()   ()  The reason is that at some prior bifurcation we selected an

interval  with    ≤  such that for  ∈ ,  ()   (). When  was selected

 was available but not chosen implying that the gap in  is less than that in .

For  ∈ , observe that | ()−  ()| ≤ | (∗ )−  (
∗
 )| ≤ | ()−  (

∗
 )| 

| ()−  ()|. The first inequality follows because the gap in  is at least as

large as that in  The second inequality follows because  () ≥  (
∗
 ) and

 (
∗
 )   (

∗
 ). And the third inequality follows because   ∗ for all  ∈ .

Therefore, deviating to  is not profitable.

Case IIIB: Suppose    = ()0 . The argument establishing that deviating is

not profitable is analogous to that of Case IIIA.

Since this exhausts all of the possibilities, the proof is complete. ¥

Proof of Proposition 3: We first show that if the sender is not conservative, then

full revelation is the unique equilibrium. When there are no agreement points, the

not conservative condition is satisfied vacuously. Moreover, it follows from Seidmann

and Winter (1997), Theorem 3 (part a) that the equilibrium is unique. When there

are one or more agreement points, Proposition 2 showed that full revelation is an

equilibrium. We now show that, when the sender is not conservative, no equilibrium

exists in which partial pooling of information occurs.

Suppose, contrary to the proposition, that there exists an equilibrium without full

revelation. Fix a message  = , where  consists of a non-degenerate interval [0 1].

Define a set of positive measure Θ () such that, for all  ∈ Θ (), the message  is

sent in equilibrium. Let  (Θ ()) be the convex hull of Θ (). Let 0 be the largest

agreement point in  (Θ ()) such that the set { :   0 and  ∈ Θ ()} has positive
measure if such an agreement point exists, and let 0 = inf  (Θ ()) otherwise.

Case 1: Suppose that for (almost) all   0 in  (Θ ()),  ()   (). Then,
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since the receiver believes that all types are contained in  (Θ ()) following the

equilibrium message  it then follows that  () =  (
00) for some value of 00 strictly

in the interior of  (Θ ()) and furthermore, there exist a positive measure of values

of  ∈ Θ () such that   max {0 00}  These sender types can deviate by revealing
truthfully, thus inducing an action  ()   ()  which is strictly profitable since

 ()   ()   () 

Case 2: Suppose that for (almost) all   0 in  (Θ ()),  ()   (). As in

the previous case, the putative equilibrium action  () lies strictly in the interior of

 (Θ ()). If  () ≤  (
0), then for a positive measure of types  where  ∈ Θ ()

and   0, we have  ( ()  )   ( (
0)  ) ≥  ( ()  ). Hence, they

prefer full revelation to  (
0) 

If  ()   (
0), then either there exists a positive measure of sender types 

where  ∈ Θ () and   0 or there exists a positive measure of sender types 

where  ∈ Θ () and  ∈ ¡0 −1 ( ())
¢
. In the former case,  ()   (

0)   ()

for any such types , and hence,  ( ()  )   ( (
0)  )   ( ()  ).

In the latter case,  ()   ()   () for any such sender type , and hence

 ( ()  )   ( ()  ). Thus, in either case, a positive measure of senders can

profitably deviate by revealing truthfully. Since this exhausts all possibilities, the

result follows.

We now show that if at some agreement point a positive measure of sender types

are conservative, then there exists a partial pooling equilibrium. We do this by

construction.

First, suppose that a positive measure of conservative senders lie on both sides

of agreement point 0. Let  = { :   0 and sender is conservative} and  =

{ :   0 and sender is conservative}.
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We will construct an interval  containing a positive measure of conservative

senders on both sides of 0 such that, when the message  =  is sent, in equilibrium,

the action  () =  (
0) is chosen. Formally, choose an interval  such that  ∩ 

and ∩ are of positive measure. Suppose that in equilibrium, for all  ∈ ( ∩ )∪
( ∩ ) senders send the message  =  All other senders fully reveal.

We now show that one can choose  such that, given equilibrium posterior be-

liefs, the action  () =  (
0) maximizes the receiver’s payoffs. Clearly  may be

constructed to contain a positive measure of conservative senders on both sides of

0. To show that it produces the action  (
0) in equilibrium, notice that, if  ∩ 

is sufficiently small, then the receiver will optimally choose  ()   (
0), while if

 ∩ is sufficiently small, then the receiver will optimally choose  ()   (
0). By

continuity of the receiver’s best response, there exists  containing a positive measure

of conservative senders on both sides of 0 such that  () =  (
0). Thus, such a

construction is feasible.

To see that this construction is incentive compatible, suppose that the receiver

uses the Bifurcation Algorithm to respond to out-of-equilibrium messages. For non-

conservative senders, this ensures that deviation is unprofitable. For conservative

senders where  ∈  the message  is not feasible and, by construction, they prefer

full revelation to any feasible deviation. Finally, for conservative senders such that

 ∈ , by construction, full revelation is weakly preferred to any deviation and, by the

definition of conservatism, pooling and obtaining  (
0) is strictly preferred to full

revelation. Therefore, choosing  =  is incentive compatible. Finally, the receiver

is acting optimally given beliefs on and off the equilibrium path. Thus, we have

constructed an equilibrium.

Next, suppose that a positive measure of senders are conservative on only one side
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of agreement point 0 Suppose that a positive measure of sender types below 0 are

conservative while a zero measure of senders above 0 are conservative; that is, 

is of positive measure and  of zero measure. Consider a point 00  0 but close

to it. Notice that, for  in the interval (00 00 + ] for some small   0, we have

the ordering  ()   (
00)   () since  () is strictly increasing. Therefore,

in this interval  ( (
0)  ) ≤  ( ()  )   ( (

00)  ). Moreover, since 00

is close to 0, then, by continuity, for a positive measure   0 where the sender is

conservative with respect to 0, the sender is also conservative with respect to 00. We

can then use an analogous construction to the case where senders are conservative on

both sides of an agreement point to establish a partial pooling equilibrium.

The case where there are a positive measure of conservative senders above 0 and

not below is analogous. ¥

Proof of Theorem 1: Suppose to the contrary that full revelation is an equilibrium.

We will derive a contradiction by constructing a profitable deviation. Clearly there

exists a state 0 where  (0) =  (∅). Since, generically  (
0) 6=  (

0) and  ()

is continuous and strictly increasing, there is a positive measure of sender types near

0 who will prefer to report that they are uninformed and induce action  (∅), than
informed and induce action  (). Therefore, full revelation is not an equilibrium. ¥

Proof of Proposition 6: The gradual slope ordering property implies that there

is no more than one agreement point. We can assume that the sender either fully

discloses or engages in complete non-disclosure. If the sender selects a message  = 

where  is a non-degenerate interval, then this message immediately reveals the

sender’s information state. Thus, arguments analogous to those supporting Propo-

sition 2 imply that the receiver can respond in such a way that the sender prefers
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full disclosure to partial disclosure. As a result, the remainder of the proof restricts

attention to incentive compatibility of full versus no disclosure.

First, assume there are no agreement points. Suppose  ()   () for all ;

the opposite case is analogous. Define ∗ as follows: An informed sender sends the

message  = ∅ for   ∗ and sends the message  =  for  ≥ ∗. Following

the message  = ∅, the receiver’s action 
¡∅; =

£
∗ ̄

¤¢
maximizes her expected

payoff conditional on the message coming from a sender who is uninformed with

probability (1− )  (1− +  (∗)), and from a sender who is informed and where

the state is   ∗ with the remaining probability. The value of ∗ is defined to satisfy


¡∅; =

£
∗ ̄

¤¢
=  (

∗).

To establish that such a ∗ exists, notice that when ∗ →  or ∗ → ̄, the

action 
¡∅; =

£
∗ ̄

¤¢
reflects the optimal action conditional on the sender being

uninformed and, therefore, lim∗→ 
¡∅; =

£
∗ ̄

¤¢
 lim∗→  (

∗) and

lim∗→̄ 
¡∅; =

£
∗ ̄

¤¢
 lim∗→̄  (

∗). Since 
¡∅; =

£
∗ ̄

¤¢
is continuous in

∗, it follows that a value of ∗ satisfying 
¡∅; =

£
∗ ̄

¤¢
=  (

∗) exists.

Next, we show the sender can do no better than to send the message  = ∅ for
all   ∗ and  =  for all  ≥ ∗. For  ≥ ∗, notice that  ()   () ≥

¡∅; =

£
∗ ̄

¤¢
; therefore disclosure is preferred to non-disclosure by an informed

sender in this state.

For   ∗, when not disclosing, a sender earns  (| (∗)−  ()|) and when
disclosing, a sender earns  (| ()−  ()|). We claim that for all   ∗,

| ()−  ()|  | (∗)−  ()|.
Case 1:  (

∗)   (). Then | ()−  ()|  | (∗)−  ()| holds if and
only if  () −  ()   () −  (

∗) or  ()   (
∗), and since   ∗, this

condition holds.
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Case 2:  (
∗)   (). Then | ()−  ()|  | (∗)−  ()| holds if

and only if  () −  ()   (
∗) −  (). To establish this inequality, ob-

serve that  () −  ()   () −  (
∗) +  (

∗) −  ()   () −  (
∗) +

2 ( (
∗)−  ()) =  (

∗)−  ()   (
∗)−  () where the first inequality fol-

lows because  ()   () while the second inequality follows from the gradual slope

ordering property. This establishes that non-disclosure is preferred to disclosure, and

completes the proof for the case where there are no agreement points.

Next, assume there is a single agreement point occurring in state 0. Suppose

that  (∅)   (
0) (the situation where  (∅)   (

0) follows an analogous line of

proof). We will show that there is an interval [1 2] where disclosure occurs. In the

remaining states, an informed sender chooses not to disclose.

To construct [1 2], we require (1) 1  0  2, (2)  (1) =  (∅; = [1 2]),

and (3) | (2)−  (2)| ≤ | (∅; = [1 (2)  2])−  (2)| with equality if 2  ̄.

To see that such a construction is possible, fix 2  0 and find a value 1 (2) solving

condition (2) Notice that, for 1 sufficiently small,  (1)   (∅; = [1 2]) while

for 1 close to 0  (1)   (∅; = [1 2])  Therefore a solution 1 (2) exists.

Similarly, by varying 2 one can show that there exists a value of 2  0 satisfying

condition (3). Therefore, such a construction is feasible.

When   1, we claim the sender prefers non-disclosure. To establish this

claim, we show | (∅; = [1 2])−  ()| ≤ | ()−  ()|. The combination of
  0 and the gradual slope ordering property implies that  ()   (). Thus,

| ()−  ()| =  () −  () =  () −  (1) +  (1) −  ()   () −
 (1) +  (1)−  ()   ()−  (1) + 2 ( (1)−  ()) =  (1)−  () 

 (1) −  () =  (∅; = [1 2]) −  (), where the first and third inequalities

follow because  ()   () for   0 while the second inequality follows from the
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slope property.

Next, when   2, we also claim the sender prefers non-disclosure. To estab-

lish this claim, we show | (∅; = [1 2])−  ()| ≤ | ()−  ()|. In this case
 ()   () for all   0. Therefore, | ()−  ()| =  ()− () =  (2)−
 (2)+( ()−  (2))−( ()−  (2)) ≥  (2)− (2)+2 ( ()−  (2))−
( ()−  (2)) =  (2)− (2)+ ()− (2) =  (2)− (∅; = [1 (2)  2])+

 () −  (2) =  () −  (∅; = [1 (2)  2]), where the weak inequality follows

from the slope property and the penultimate equality follows from condition (3).

Finally, for  ∈ (1 2), we claim the sender prefers to reveal. To establish

this claim, we show | ()−  ()| ≤ | (∅; = [1 2])−  ()|. We consider two
cases:   0 and   0. When   0,  ()   ()   (1) =  (∅; [1 2]).
Hence, the required inequality holds. Alternatively, when   0, we know  () −
 () =  (2)−  (2)+ ( ()−  (2))− ( ()−  (2)) ≤  (2)−  (2)+

2 ( ()−  (2))−( ()−  (2)) =  (2)− (2)+ ()− (2) =  (2)−
 (∅; = [1 (2)  2]) +  () −  (2) =  () −  (∅; = [1 (2)  2]), where the

inequality follows from the gradual slope ordering property and because   2. ¥

Proof of Proposition 7: Recall that an equilibrium consists of a value of ∗ that

solves  (
∗) = 

¡∅; =
£
∗ ̄

¤¢
. We will show that, at any such solution, it must

be the case that
(

∗)
∗  

∗
¡∅; =

£
∗ ̄

¤¢
. Recall that 

¡∅; =
£
∗ ̄

¤¢
is the

argument  which maximizes

 (∗)
1− +  (∗)

1

 (∗)

Z ∗



 ( )  ()  +
1− 

1− +  (∗)

Z ̄



 ( )  () 

Our assumptions imply 
¡∅; =

£
∗ ̄

¤¢
satisfies the first-order condition, Ψ ( ∗) ≡



1− +  (∗)

Z ∗



 ( )


 ()  +

1− 

1− +  (∗)

Z ̄



 ( )


 ()  = 0
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where Ψ ( ∗)   0 since  is a maximum.

Using the Implicit Function Theorem and that
()


|=∗ = 0, we have


¡∅; =

£
∗ ̄

¤¢
∗

= −Ψ ( 
∗)

∗

Ψ ( ∗)



=
 (∗)

1− +  (∗)

⎡⎣ 
1−+ (∗)

R ∗


()


 ()  + (1−)
1−+ (∗)

R ̄


()


 () 

Ψ ( ∗) 

⎤⎦
=

 (∗)
1− +  (∗)

∙
Ψ ( ∗)

Ψ ( ∗) 

¸
= 0

Since
(

∗)
∗  0, it then follows that (

∗)
∗  

∗
¡∅; =

£
∗ ̄

¤¢
at any intersection

point. Hence, there is a unique solution, ∗. ¥

Proof of Proposition 8: To see this, suppose, without loss of generality, that the

sender’s bliss line lies above the receiver’s bliss line. In that case, the equilibrium

equation, defining the cutoff ∗ where information revelation takes place, is given by


¡∅; =

£
∗ ̄

¤¢
=  (

∗). We claim that lim→1 ∗ () = . To see this, suppose to

the contrary that lim sup→1 
∗ () = 0  . Then lim sup→1 

¡∅; =
£
∗ ()  ̄

¤¢
=

lim
→1


¡∅; =

£
0 ̄

¤¢
= (̂), where ̂  0. But this is a contradiction since, in

equilibrium lim
→1


¡∅; =

£
0 ̄

¤¢
=  (

0). Thus, the sequence of convex disclosure

equilibria converges to full revelation in the limit. ¥

Proof of Proposition 9: First, we rule out partial disclosure in any equilibrium. To

see this, suppose to the contrary that, for some set of states having positive measure,

the message  = , where  consists of an interval not including the entire state

space, is sent in equilibrium. For states where this message is sent in equilibrium, the

situation is identical to one in which the knowledge state is public. As a consequence,

our previous arguments for that case imply that some positive measure of sender
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types can profitably deviate, contradicting the notion that  is sent in equilibrium.

Next, we consider the situation where disclosure regions are non-convex as a

result of non-disclosure. Then there exist states 0 and 00 where 0  00 such

that disclosure occurs in equilibrium in each of these states, but, for some  ∈
(0 1), non-disclosure occurs in state 000 = 0 + (1− ) 00 Disclosure in states 0

and 00 implies that | (∅;)−  (
0)| ≥ | (0)−  (

0)| and | (∅;)−  (
00)| ≥

| (00)−  (
00)|, where  denotes the set of states in which disclosure occurs. To

show that non-disclosure will not occur in state 000 we show that | (∅;)−  (
000)| 

| (000)−  (
000)| cannot occur. We prove this for two separate cases:

Case 1: Suppose  ()   () for all  ∈ (0 00). Then | (∅;)−  (
000)| 

| (000)−  (
000)| can only hold if  (∅;)   (

000), and hence,  (∅;)− (000) 
 (

000)− (000), or equivalently, 2 (000)− (000)   (∅;). By the gradual slope
ordering property, this implies 2 (

0) −  (
0)   (∅;), which may be rewritten

as  (
0) −  (

0)   (∅;) −  (
0). But this contradicts our previous finding

that | (∅;)−  (
0)| ≥ | (0)−  (

0)| (regardless of whether  (∅;)   (
0))

because if  (∅;)   (
0), then we have  (

0)   (∅;)   (
0). Thus,

| (∅;)−  (
000)|  | (000)−  (

000)| cannot hold in this case.
Case 2: Suppose  ()   () for all  ∈ (0 00). The proof establishing that

| (∅;)−  (
000)|  | (000)−  (

000)| cannot hold is analogous to Case 1. ¥

Proof of Proposition 10: The proof is by construction. Let 0 be an agreement

point. Recall that there exists a convex disclosure equilibrium with disclosure interval

[1 2] satisfying 1  0 and 2  0. Consider an interval  0 = [01 
0
2], where

0 ∈ [01 02] ⊂ [1 2], and the sender sends message  =  0 in equilibrium with the

resulting action  ( 0) =  (
0). To see that such a construction is feasible, notice that,

by continuity of the receiver’s bliss line, there exists a continuum of pairs (01 
0
2) that
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induce  ( 0) =  (
0). Moreover, these pairs can be made arbitrarily close to 0 and

hence [01 
0
2] ⊂ [1 2]. Finally, since the non-disclosure region remained unchanged

by this amendment, the equilibrium conditions for (1 2) are undisturbed.

It remains to show that this strategy is incentive compatible. By our previous ar-

guments, we know that disclosure is preferred to non-disclosure in the region [1 2]

and vice-versa. Since the gradual slope ordering property implies the sender is con-

servative in the neighborhood of 0, it follows that there exists an interval sufficiently

close to 0 where the sender prefers the action  (
0) to the disclosure action. Thus

sending the message  0 in the interval [01 
0
2] is preferred to full disclosure. ¥

Proof of Lemma 1: We first show that there exists some 1 and 2 satisfying con-

ditions (1) and (2). To see this, fix 1  ∅. Since  (∅)   (∅; = [1 ∅])

and  (1)   (∅; = [1 1]), it follows from the Intermediate Value Theo-

rem that there exists some 2 ∈ (1 ∅) satisfying  (∅; = [1 2]) =  (2).

Let 2 (1) denote this value of 2. For values of 1 close to ∅, we have  (1) 

 (∅; = [1 2 (1)])   (1), and thus | (∅; = [1 2 (1)])−  (1)| 
| (1)−  (1)|. But this implies that when lim1→ | (∅; = [1 2])−  (1)|
 lim1→ | (1)−  (1)|, there exists some 1 ∈ ( ∅) such that
| (∅; = [1 2 (1)])−  (1)| = | (1)−  (1)|. Thus, there exists some 1
and 2 satisfying conditions (1) and (2).

It remains to show that for such 1 and 2, it is incentive compatible for the sender

not to disclose if and only if  ∈ [1 2]. First, consider   2. If  ()   (),

then  ()   ()   (∅; = [1 2]). It follows immediately that disclosure

is strictly preferred to non-disclosure. Conversely, if  is such that  () ≤  (),

define 00 to be the largest agreement point where 00  . (Since  ()   () in the

region [  ], then such an agreement point 
00 must exist for it to be the case that
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 () ≤  ().) For  such that   00, we have  ()−  () =  ()−  (
00)−

( () −  (
00))   () −  (

00)   () −  (∅; = [1 2]), where the first

equality follows from  (
00) =  (

00), the first inequality follows from the steep slope

ordering property, and the second inequality follows because  (∅; = [1 2]) =

 (2)   (
00) =  (

00) ≤  (). Therefore, the sender prefers disclosure in this

region. Thus, for all   2, disclosure is preferred.

Next, consider  ∈ (1 2). We claim that | (∅; = [1 2])−  ()|
 | ()−  ()|. For  close to 2,  () ≥  (∅; = [1 2])   () and hence

non-disclosure is strictly preferred to disclosure. For  close to 1,  (∅; = [1 2]) 

 ()   (). It follows that  ()−  () =  (1)−  (1) +

{( ()−  (1))− ( ()−  (1))}   (1)−  (1)− { ()−  (1)}
≥  (∅; = [1 2]) −  (1) − { ()−  (1)} =  (∅; = [1 2]) −  (),

where the inequality follows from the steep slope ordering property, and the next

substitution follows from the equilibrium properties of 1 and 2. Since this exhausts

the space of possibilities for  ∈ (1 2), we have shown that the sender prefers
non-disclosure to disclosure in this region.

For   1, if  ()   (), a similar argument shows  ()−  ()

=  (1) −  (1) + {( ()−  (1))− ( ()−  (1))}   (1) −  (1) −
{ ()−  (1)} =  (∅; = [1 2])−  (1)− { ()−  (1)}
=  (∅; = [1 2]) −  (), so disclosure is preferred to non-disclosure in this

region. Conversely, if  () ≤  (), then  () ≤  ()   (∅; = [1 2]), and

thus disclosure is preferred. ¥

Proof of Proposition 11: The proof has two parts: first, we establish the existence

of a convex non-disclosure equilibrium, and second, we prove that every equilibrium

is a convex non-disclosure equilibrium.
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When there are no agreement points and  ()   (), existence follows from

Lemma 1. The case where  ()   () is analogous. When there is one agreement

point, 0, where for   0,  ()   () and  (∅)   (
0), then, setting  = 0

and  = ̄, we can invoke Lemma 1 to show existence. The case where  (∅)   (
0)

is analogous. Conversely, when for   0,  ()   () and  (∅)   (
0), then,

setting  =  and  = 0, we can invoke Lemma 1. The case where  (∅)   (
0) is

analogous. Where there are multiple agreement points, define 0 and 00 to be adjacent

agreement points relative to  (∅) as set out in Lemma 1. When  ()   () in

(0 00)  the result follows immediately. An analogous argument shows existence when

 ()   () in (
0 00).

Next we prove that every equilibrium is a convex non-disclosure equilibrium. Sup-

pose, to the contrary, that non-disclosure regions are non-convex. Then there exist

states 0 and 00 where 0  00 such that non-disclosure occurs in equilibrium in each

of these states, but, for some  ∈ (0 1)  disclosure occurs in state 000 = 0+(1− ) 00.

Non-disclosure in state 0 and 00 implies that | (∅;)−  (
0)| ≤ | (0)−  (

0)|
and | (∅;)−  (

00)| ≤ | (00)−  (
00)|, where  denotes the set of states

in which there is non-disclosure. To show that non-disclosure occurs in 000, we show

that | (∅;)−  (
000)|  | (000)−  (

000)| cannot occur. We prove this for three
separate cases.

Case 1: Suppose that for all  ∈ (0 00),  ()   (). This implies that

 (
0) ≤  (∅;) and  (

00) ≤  (∅;), since if either of these inequalities were

reversed, we would have  ()   ()   (∅;), implying the sender would

prefer to disclose. It follows that  (
000)   (∅;) since  (

000)   (
00).

Non-disclosure at 0 implies that  (∅;)−  (
0) ≤  (

0)−  (
0) or, equiv-

alently 2 (
0) −  (

0) ≥  (∅;). And disclosure at 000 implies  (∅;) −
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 (
000) ≥  (

000) −  (
000) or, equivalently 2 (000) −  (

000) ≤  (∅;). How-

ever, by the steep slope ordering property, 2 (
000) −  (

000)  2 (
0) −  (

0) ≥
 (∅;). Thus, | (∅;)−  (

000)|  | (000)−  (
000)| cannot hold.

Case 2: Suppose that, for all  ∈ (0 00)   ()   ()  The proof of this case

is analogous to that of Case 1.

Case 3: Suppose that some 000 ∈ (0 00) is an agreement point (possibly one of
many). We will show that in equilibrium there cannot exist non-disclosure intervals

[0 
00
] and [

0
  

00
 ] such that 

00
  000  0 . Suppose to the contrary that such

intervals exist. There are four cases to consider.

Case 3(a): Suppose that, for all  ∈ [0 00] ∪ [0  00 ],  ()   (). Then it

must be that | (∅;)−  (
0
)| ≤ | (0)−  (

0
)| and | (∅;)−  (

00
)| ≤

| (00)−  (
00
)|.

When  (
000)   (∅;), it follows that, since  (

000) =  (
000)   (∅;),

then for  ∈ [0  00 ], we have that  ()   ()   (∅;) and hence disclosure

is strictly preferred in the interval [0  
00
 ], which is a contradiction.

Conversely, when  (
000) ≤  (∅;), then  (∅;) −  (

000)   (
000) −

 (
000) or, equivalently, 2 (000) −  (

000)   (∅;). From the steep slope or-

dering property, it follows that 2 () −  ()   (∅;) for  ∈ [0 00]. Hence
| ()−  ()|  | (∅;)−  ()| and disclosure is strictly preferred in states
 ∈ [0 00], which is a contradiction
Case 3(b): Suppose that  ()   () for all  ∈ [0 00] ∪ [0  00 ]. A proof

analogous to Case 3(a) establishes a contradiction.

Case 3(c): Suppose that  ()   () for  ∈ [0 00]while  ()   () for  ∈
[0  

00
 ]. When  (

000)   (∅;), it then follows immediately that, since  (
000) =

 (
000)   (∅;), then ()   ()   (∅;) for  ∈ [0  00 ], and therefore,
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disclosure is strictly preferred in the interval [0  
00
 ], which is a contradiction. In

contrast, when  (
000) ≤  (∅;), then, since  (

000) =  (
000) ≤  (∅;), it

follows that  ()   ()   (∅;) for  ∈ [0 00]. Consequently, disclosure is
strictly preferred in the interval [0 

00
], which is a contradiction.

Case 3(d): Suppose that  ()   () for  ∈ [0 00] while  ()   () for

 ∈ [0  00 ]  The proof is analogous to the proof where in Case 3(c).
Since this exhausts all of the possibilities, the proof is complete. ¥

56


