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ppen (1979) showed that inventory costs in a centralized system increase with the correlation between

multivariate normal product demands. Using multivariate stochastic orders, we generalize this statement
to arbitrary distributions. We then describe methods to construct models with arbitrary dependence structure,
using the copula of a multivariate distribution to capture the dependence between the components of a random
vector. For broad classes of distributions with arbitrary marginals, we confirm that centralization or pooling of
inventories is more valuable when demands are less positively dependent.
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1. Introduction

Consider a firm having to determine inventory lev-
els for the same product in many retail locations
with stochastic demand. If inventory is centralized,
as opposed to being kept at the retail outlets, the
demands from all locations are pooled, so the com-
pany will face lower aggregate demand uncertainty
and hence lower costs. Many variations of this “pool-
ing effect,” first analyzed by Eppen (1979) in inven-
tory management, exist. Intuitively, the pooling effect
becomes less valuable as demands are more posi-
tively dependent, but almost all such analysis to date,
including Eppen (1979), has had to focus on the mul-
tivariate normal case because of the intractability of
dealing with multivariate dependence under nonnor-
mal distributions.

In this paper, we show how Eppen’s original results
can be generalized to a broad class of nonnormal dis-
tributions with arbitrary marginals. Specifically, we
formalize the intuitive notion that inventory costs in
a centralized system increase as demands are more
positively dependent. We also provide examples to
illustrate how to construct nonnormal distributions
with arbitrary marginals and a wide range of depen-
dence structures, and show how statements about the
effect of dependence can still be made in more general
contexts.

351

This paper is organized as follows. In §2, we review
relevant literature in the areas of inventory pooling
and probability theory. In §3 we formally introduce
the inventory pooling problem. In §4 we define the
sum-convex order, which we then use to state the
more general version of Eppen’s (1979) result. Sec-
tion 5 provides a bivariate and a multivariate appli-
cation of this generalization, using copulae to model
the dependence structure of a multivariate distribu-
tion. Section 6 offers conclusions and future research
directions.

2. Literature Review

We first summarize relevant literature related to
inventory pooling and follow with a short review of
some recent work in probability theory. A more com-
prehensive review is provided in Corbett and Rajaram
(2004). A large body of work has grown around var-
ious manifestations of Eppen’s (1979) notion of pool-
ing of inventories, or Eppen and Schrage’s (1981)
extension that includes lead times. Federgruen and
Zipkin (1984) provide approximations for more gen-
eral versions of Eppen and Schrage’s (1981) model,
with finite horizon, other-than-normal demand distri-
butions, and nonidentical retailers. Jonsson and Silver
(1987) present an exhaustive study of the impact of
changing input parameters on system performance;
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Gerchak and Mossman (1992) show how the order
quantity and associated costs depend on the random-
ness parameter in a simple and highly interpretable
manner. Erkip et al. (1990) find that high positive cor-
relation among products and successive time periods
(around 0.7) results in significantly higher safety stock
than the no-correlation case. Alfaro and Corbett (2003)
analyze the value of pooling under suboptimal inven-
tory policies and report on numerical and empirical
experiments with nonnormal demand data. Dong and
Rudi (2004) study the impact of correlation on price
interactions under transshipment, and Netessine et al.
(2002) study the impact of correlation on flexible ser-
vice capacity under multivariate normal demand. Van
Mieghem and Rudi (2002) further extend the analysis
of pooling to “newsvendor networks.”

The benefits of delayed product differentiation or
postponement are quite similar to those of the pool-
ing effect, referring to multiple products instead of
multiple locations (Garg and Lee 1999). Groenevelt
and Rudi (2000) and Rudi (2000) have examined the
interactions between the optimal inventory policy, the
degree of component commonality, demand variabil-
ity, and correlation under bivariate distributions. Ho
and Tang (1998) and the references therein provide
further discussion of the pooling effect in the context
of product variety.

Most of this literature in inventory pooling, includ-
ing this paper, focuses on the impact of pooling
on expected profits. A related, but usually more in-
tractable problem, concerns the effect of pooling on
optimal inventory levels. We do not consider that
question here, though some work, including Eppen
(1979), Erkip et al. (1990), and Van Mieghem and
Rudi (2002) do address that issue under more restric-
tive distributional assumptions than ours. So far, the
work related to pooling of inventories has gener-
ally lacked a formal mechanism for assessing the
impact of dependence on the value of pooling when
demands are nonnormal. Whenever dependence has
been explicitly included, it has generally been in the
context of bivariate or multivariate normal demands;
this paper describes mechanisms that could be used
to generalize this work to the nonnormal case.

We refer to work on multivariate stochastic orders
and on the copula where appropriate. Recent work
on multivariate orders includes Scarsini and Shaked

(1996), Shaked and Shanthikumar (1994), Scarsini
(1998), Miiller and Scarsini (2000, 2001), and Mdiller
and Stoyan (2002); Joe (1997) and Nelsen (1999) pro-
vide good overviews of theory and applications of
copulae. Clemen and Reilly (1999) introduce the mul-
tivariate normal copula and discuss its use in the con-
text of combining expert opinions. The contribution
of this paper lies in the combination and application
of these recent concepts from probability and statistics
to the inventory pooling context.

3. Pooling of Inventories

A well-known problem in inventory theory is to
decide how much inventory to carry when faced with
uncertain demand; the decision maker has to trade
off h, the per unit holding costs of excess inventory
against p, the per unit shortage costs of not meet-
ing all demand. For a single product i with stochastic
demand x; and associated cumulative demand dis-
tribution F/(x;), the decision maker’s cost function
C(g;) depends on his or her inventory level g; as
follows: C(q) = E[h(g; — x)*1 + Elp(x; — "], where
(z)* = max{0, z}. It is well known that the optimal
order quantity is q; = F'(p/(p + h)). If the firm sells
the product at multiple retail locations, demand is a
multivariate random variable X with corresponding
distribution F. It is sufficient to determine the opti-
mal inventory levels for each location independently,
regardless of dependence structure, to minimize total
expected costs.

However, the firm can also keep a central inventory
instead of local inventories (ignoring transportation
lead times), hence aggregating demand from multiple
locations into a single random variable, allowing it to
exploit “statistical economies of scale.” This is referred
to as the “pooling effect,” first characterized by Eppen
(1979). For the decentralized case (with subscript D),
the problem is to find the vector of local inventories
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and E; is the expectation with respect to the ith
marginal of the joint demand distribution. For the
centralized case this problem is to find a single aggre-
gate inventory g that solves

min E[TCc(q)],

where

N N

EITCcl] =E | hig ~ x)* | + [ p(T -0 |

i=1 i=1
Write E[TCp] and E[TC,] for the expected costs with
the optimal decentralized and centralized inventory
levels.

When needed, we will write EX[-] to denote the
expectation over a random variable X, and E"[-] for
expectations given a normal demand distribution. Let
demand follow a normal distribution N (., ¥) with
correlations p; between all products i # j. Then, as
shown in Eppen (1979), we can represent E"[TCp,] and
E"[TC.] as

E'[TC,] = KZU 3.1)
N-1 N
E"[TC:]= ZO‘ +2) Y oop, (3.2)

i=1 j=i+1

where, following Eppen’s (1979) notation,

= <h¢l<;ﬁih) Tt )R(pih»

with ¢(-) the probability density function of the
standard normal distribution, ®~!(-) the inverse of
the cumulative distribution function for the standard
normal distribution, and R(u) = [ (w — u)((e Y
V27) dw the right-hand unit normal linear-loss inte-
gral. We can now examine the effect of dependence
on total costs before and after centralization. If o, = o
Viand p;=p Vi#], then

E'[TC.]=Koy/N+pN(N —1),

so the value of pooling E"[TCp] — E*[TC(] is nonneg-
ative and decreasing in p. If p =1, then E"[TCp] =
E"[TC.); if p=0, then E"[TC.] = E*[TCp]/v/N; if p =
—1/(N — 1), then E"[TC.] = 0. We can summarize
this well-known effect of correlation on total costs as
follows:

(3.3)

ProrosiTioN 1. When demand follows a normal distri-
bution, total costs after pooling are increasing in all bivari-
ate correlation coefficients p;; (Eppen 1979).

Using the concepts gathered in this paper we can
state a much more general version of this result,
confirm the intuition that the benefits of central-
ization decrease as the individual demands become
more positively dependent, and construct examples
of multivariate demand distributions with arbitrary
marginals and a broad range of dependence struc-
tures. We next describe the multivariate stochastic
order that is essential to generalize Proposition 1 to
multivariate nonnormal distributions with arbitrary
dependence structures.

4. Dependence and the Effect of
Pooling

In this section we first introduce the sum-convex
order, a simple but general multivariate stochastic
order that we will use to compare the effect of pool-
ing under demand portfolios with different depen-
dence structures. We then use this order to generalize
Eppen’s result to arbitrary distributions. First, recall
the well-known univariate convex order. Let X and
Y be two univariate random variables with distribu-
tions F and G, respectively, for which the expectations
E[¢(X)] and E[¥(Y)] exist for all convex functions .
We use > to denote weak dominance.

DerINITION. X >, Y if and only if E[(X)] >
E[¢(Y)] for all convex functions : 0 — N.

The multivariate version of >_ is easy to define
using multivariate convex functions but is often of
limited use, as it does not cleanly separate variabil-
ity and dependence. To overcome this limitation, var-
ious researchers have defined a range of new orders
for their specific purposes, some of which are briefly
defined in the appendix. To study inventory pooling,
we follow a similar approach to that which Miiller
and Scarsini (2001) take and define an order that we
call the sum-convex order. Let X; denote component i
in random vector X.

DEerINITION. Let random vector X and Y have di-
mensions Ny and Ny, respectively. Then X dominates
Y in the sum-convex order, written as X >, Y, if and
only if YN X; > Y1 Y,.
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One could of course dispense with the sum-convex
order by always writing 0% X; >, Y, Y;; however,
it is notationally convenient to define the sum-convex
order separately. Moreover, we can relate it to other
multivariate orders that have been defined in the
probability literature and show that >, is strictly
weaker (and hence more general) than these exist-
ing orders. The ranking of random vectors under >,
depends on the variability of aggregate value, which
in turn depends on the variability of the individ-
ual components and on the interdependence between
them.

Figure 1 places the sum-convex order in the con-
text of several existing multivariate stochastic orders,
which are defined in the appendix. More detailed
explanations of these orders and the links between
them can be found in Corbett and Rajaram (2004),
especially in the references therein. Figure 1 shows
that the positive linear-convex order (Scarsini 1998),
>piexs and the directionally convex order (see, for
instance, Miiller and Scarsini 2001), >4, imply >
Note that these are all partial orderings; i.e., there
exist pairs X and Y such that neither X >, Y nor
Y >, X holds. However, it is easy to see that both
implications are strict; i.e., the >, order is weaker
(and hence allows more general comparisons) than
>plex OF >4cx- The most obvious case is X and Y with
different dimensionality, as >, and >, are then not
well defined while > is, but examples with X and Y
with equal dimensionality are also easy to construct.
The fact that the sum-convex order allows many more
pairs of random vectors to be compared, even with
unequal dimensionality, than existing orders, is what

Figure 1 Summary of Key Relationships Between Multivariate Orders

X >
X >, Y=>{ dex Y = X, Y =P X> Y
lSll

fordnyN
for N=2
only
X> Y=PX>_,Y
{ X, > Y

X,Y have common C.I. copula C X ~gex Y

makes it useful for our purposes and likely for many
other applications in operations research and decision
theory.

We can now generalize Proposition 1, stating that
increased dependence reduces the value of pooling,
to much broader classes of distributions:

ProrosITION 2. Let X and Y be multivariate random
variables with Ny and N, dimensions. Then X >, Y
implies min, EX[TCc(q)] = min, EY[TCc(q)]; that is, the
cost after pooling is greater under demand X than under Y.

Proor. It is easy to verify that the centralized objec-
tive function E[TC.(X; g)] is convex in Z?ﬁ‘l X; for
given ¢, so X >, Y implies EX[TC.(g)] > EY[TCc(q)]
for any g, so also min, EX[TC¢(q)] = min, E¥[TCc(q)]-

O

If X is more positively dependent than Y under any
dependence order that implies X >, Y, for instance,
using the relationships in Figure 1, we can use Propo-
sition 2 to conclude that the costs after pooling are
greater under X than under Y, which generalizes
Proposition 1 to multivariate nonnormal distributions
with arbitrary dependence structures. Figure 1 sum-
marizes several sufficient conditions for X >, Y to
hold, and hence for costs after pooling to be greater
under X than under Y. Analogously, one can now
return to other existing work on pooling of invento-
ries, postponement of differentiation, etc., and verify
which of the orders in Figure 1 apply to the objec-
tive function considered in that work. This will then
show that many of those existing results can also
be generalized to nonnormal-dependent distributions.
As more orders are defined and more links between
them established, more sufficient conditions can be
added to the framework in Figure 1.

Proposition 2 immediately raises the question,
“When does X > Y hold for any given situation?” In
the next section, we define broad classes of multivari-
ate distributions and show how Proposition 2 can be
used to demonstrate that higher dependence leads to
higher costs in a bivariate and a multivariate example.
To do so, we need to model dependence in arbitrary
nonnormal multivariate distributions, for which we
use the copula.
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5. Examples: Multivariate
Dependence and Pooling

5.1. The Copula

A relatively recent tool for capturing dependence in
arbitrary multivariate distributions is the “copula.”
This will be useful for us in two ways. First, compar-
ing two multivariate random variables with the same
marginals is equivalent to comparing their copulae.
Second, in constructing stochastic models, the cop-
ula allows us to combine arbitrary marginals with an
arbitrary dependence structure, rather than limiting
us to the few distributions with tractable dependence
structures. We illustrate both these uses with exam-
ples at the end of this section; first, we introduce the
basic ideas behind the copula (see, for instance, Joe
1997).

DerFINTTIONS. Let F denote the Fréchet class given
a set of marginal distributions; e.g., 1-:(131, oK) is
the class of multivariate distributions with given
marginals F, ..., Fy.

For any multivariate distribution F € F (F,.... k),
the copula associated with F is a distribution function
C: [0,1]N — [0, 1] that satisfies F(x) = C(F(x;),-..,
Fy(xy)), x € WY, The copula C(uy, ..., uy) itself is a
joint distribution with uniform marginals.

Let U and V be multivariate uniform random vari-
ables with distributions C;; and Cy, respectively; we
will interchangeably write U >V and C;; > C,. Sklar’s
theorem (see, for instance, Clemen and Reilly 1999)
guarantees that a copula always exists:

SKLAR’s THEOREM. For any multivariate distribution
FeE(F,..., K, the copula as defined above exists. If the
F are all continuous, then C is unique; otherwise, C is
uniquely determined on [, Ran(F)), where Ran(E) is the
range of F.

Clemen and Reilly (1999) show that, for differen-
tiable F, and C, the joint density can be written as
f(xlr ceey xN) = Hfil fi(xi)c(Fl(xl)/ ceey FN(xN))/ where
the f;(x;) are the densities of the marginals F, and c =
INC/IF (x;) - Fy(xy), the copula density. From the
definition, it is clear that the copula is entirely general
and fully captures the dependence structure inherent
in any multivariate distribution F. Using the copula,
we can now state results for comparisons between
random vectors with equal marginals but different

dependence structures.

5.2. Comparing Random Vectors with Equal
Marginals but Different Dependence
Structures

There is an immediate link between multivariate

dependence orders and the copula. Let T: X — T(X)

be any transform of a multivariate random variable X,

where T(X) has the same dimensionality as X and

where each component T;(X) is an increasing trans-
form of the marginal X;. A multivariate stochastic
order > is said to be invariant under increasing trans-

forms if X >Y implies T(X) > T(Y) for all such T.

LemMA 1. Let X and Y be two multivariate random
variables such that X; =, Y; Vi, with distributions F and
G and corresponding copulas Cy and Cy, respectively.
Then for all orders > that are invariant under increasing
transforms, X > Y if and only if Cx > Cy (Scarsini and
Shaked 1996, Remark 5.6).

Proor. By definition, the random variable U =
(E(Xy), ..., Ey(Xy)) has distribution Cy, so that U; =
E(X;). Define the inverse F'(U;) appropriately to
ensure existence. Then Cy(U) = (FE(FY(U,)),...,
Fy(E'(Uy)) and F(X) = Cy(E (X,), .., Fy(Xy)); anal-
ogous relations hold between Y, G, V, and C,.
Both U; = F(X;) and E'(U;) are increasing in their
respective arguments, so the result follows from the
assumption of invariance under increasing transforms
of the marginals. O

Any multivariate stochastic order that compares
distributions exclusively based on their dependence
is called a multivariate positive dependence order
(MPDO). Joe (1997) lists nine axioms that any such
MPDO must satisfy. The condition of Lemma 1, of
invariance under increasing transforms, follows from
his Axioms 7 and 8 for MPDOs. This yields:

CoRoLLARY 1. The conditions of Lemma 1 are satisfied
for all multivariate positive dependence orders as defined
by Joe (1997), so for all MPDOs one can interchangeably
compare the distributions or their copulae.

The supermodular order (see, e.g.,, Miiller and
Scarsini 2000), defined in the appendix, is an MPDO,
but orders such as the convex order are not depen-
dence orders, and it is easy to find examples in which
Cx >« Cy but not X >_ Y. In light of Lemma 1, one
can model the dependence structure of a random
vector using a copula and use multivariate positive
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dependence orders to assess the effect of increasing
dependence. We illustrate this procedure in §5.3.

5.3. Constructing Multivariate Distributions with
Arbitrary Marginals

Here we present two examples of the copula of a
multivariate distribution with arbitrary marginals and
its relationship to the multivariate orders discussed
so far. Let the X; follow arbitrary univariate distri-
butions F, respectively; the F, need not come from
the same family of distributions. To model depen-
dence, we give two examples, the first using bivari-
ate Archimedean copulae, and the second using the
multivariate normal copula. For the first, we also use
the concordance order (Joe 1997), X >_.Y, which is
defined in the appendix, but which essentially means
that the elements of X “move together more closely”
than those of Y.

ProrosITION 3. Let X and Y be arbitrary bivariate ran-
dom wvariables with distributions F, G € F(F, ) and with
copulae Cy and Cy, respectively. Then Cy >. Cy implies
X>Y.

ProoF. Because the concordance ordering is an
MPDO (Joe 1997, p. 39), Cx >. Cy implies that X >_Y,
by Lemma 1. By Theorem 2.5 in Miiller and Scarsini
(2000, p. 110), we know that X > Y & X >, Y for
bivariate distributions. It is easy to verify that the
function (XN, X;) is supermodular for all convex
functions ¢, which then gives X >, Y=X>,_Y. O

This means that, presented with any two bivari-
ate demand distributions with pairwise equal (but
arbitrary) marginals, the one with the more concor-
dant copula will lead to higher costs in a central-
ized system. To see how Proposition 3 can be applied,
consider the class of bivariate Archimedean copu-
lae, which is broad (Nelsen 1999 lists 22 families on
pp- 94-97) and useful for several reasons: They can
be constructed easily, a wide variety of families of
copulae belong to this class, and they possess many
useful properties. We will not define the class in gen-
eral, but consider, for instance, the following specific
family (our example will work with many others):

Uty
(1-A—uf)(A—-ug)"?’

The joint distribution is given by F(X;,X,) =
Cy(E(Xy), E(Xy)). If one wishes to combine this cop-
ula with marginals that are uniform on [0, 1], then the

Co(uy, uy) = 0<0<1. (5.1)

joint distribution itself is also given by F(X;, X,) =
(X:X,)/(1— (1= X)) (1 - X9))"?; moreover, taking the
limit gives limg , Cy(uy, u,) = uyu,, the product cop-
ula, so X; and X, are independent in that case.

ProrosITION 4. Let X and Y be bivariate random vari-
ables with distributions F,G € F(F,, ) and with cop-
ulae Cy (uy, up) and Cy (uy, u,), both from the same
family, such that dCy(a,b)/00 > O for all (a,b) €
[0,1] x [0, 1]. Then 0y > 6y implies min, EX[TCc(q)] >
min, EY[TCc(q)]; that is, the cost after pooling is greater
under demand X than under Y.

Proor. Because dCy(a,b)/060 = 0, 0 > 6, also
implies that Cp (uy, u,) > Cy (uy, uy) Yuy, u, €[0,1].
By the definition of the concordance order (Nelsen
1999, p. 181), Cy (uy, up) > Cp (11, Uy) Yy, uy € [0, 1]
implies that Cy . Cy, . Proposition 3 then gives X >,
Y. By Proposition 2, X >, Y implies that the cost after
pooling is greater under X than under Y. O

The parameter 6§ in Cy(a,b) can be thought of
as the counterpart to the correlation coefficient in
a multivariate normal distribution, so the condition
dCy(a, b)/36 = 0 implies that for any pair (a,b), the
joint probability of falling within [0,a] x [0, b] is
increasing in 6; in other words, the two elements of
the joint distribution are more likely to move together
as 0 increases. Many of the bivariate Archimedian
copulae listed in Nelsen (1999), including the family
defined in (5.1), satisfy the condition dCy(a, b)/d60 >
0, so this example illustrates how higher dependence
leads to higher costs after pooling for bivariate dis-
tributions with arbitrary marginals and a range of
Archimedean copulae.

For multivariate distributions, the >_ order does not
imply the >_ order, so the construction above does
not work. Joe (1997) discusses properties of a range
of multivariate copulae, but these are usually consid-
erably more complex than are likely to be applied in
inventory control settings. However, we can still con-
struct a broad class of multivariate random variables
using the normal copula, discussed in Clemen and
Reilly (1999); this again allows arbitrary marginals
but captures dependence exactly as the multivariate
normal distribution does, using only pairwise corre-
lations. In other words, the multivariate distribution
is fully defined by the marginals F, and the covari-

1
ance matrix . For modeling multivariate product
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demands, this dependence structure seems to offer
a reasonable compromise, as the information needed
to estimate more complex copulae is rarely avail-
able, while the combination of a normal copula with
arbitrary marginals still offers substantial modeling
flexibility. This is because assuming a normal copula
is far less restrictive than requiring the entire distribu-
tion to be normal, because it allows any shape for the
marginals, including nonsymmetric, monotone, and
multimodal.

ProrosITION 5. Let X and Y be arbitrary multivariate
random variables with distributions F, G € E(F, ..., Fy)
and with normal copulae Cx and Cy, characterized by
covariance matrices Xy and X with elements oy ;
and oy ;, respectively. Then oy ; > oy ; Vi, ] implies
min, EX[TCc(q)] = min, EY[TCc(q)]; i.e., the cost after
pooling is greater under demand X than under Y.

Proor. Let X and X' be multivariate random vari-
ables with copula Cyx, and let Y and Y’ have copula
Cy. Then X' > Y & Cx >, Cy © X >, Y because
the supermodular order is a dependence order. Now
let X’ and Y’ be multivariate normal random vari-
ables; then Theorem 4.2 in Miiller and Scarsini (2000,
p- 117) shows that the conditions in the proposition
imply X' >, Y, so also X >, Y, from which the rest
follows from Figure 1 and Proposition 2. [

Proposition 5 illustrates how higher pairwise de-
pendence leads to higher costs after pooling for mul-
tivariate distributions with arbitrary marginals and
a normal copula. For instance, one can construct
marginal demand distributions for individual prod-
ucts or collections of products at individual locations
based on choice models, such as the multinomial logit
model or the latest class demand structure; assume
a multivariate normal copula for the dependence
between product demands across locations; and sim-
ply check the pairwise correlation condition to verify
the effect of inventory pooling in those settings.

Comparing Proposition 5 with expression (3.2) for
normal distributions clearly highlights the trade-off
inherent in working with normal distributions. With
normal distributions, 3_; oy ; > 3 ; 0y ; is sufficient
for the costs after pooling to increase; but if only the
copula is assumed to be normal but not the marginals,
we must have oy ; > oy ; for all i, j to be able to

show that costs after pooling increase. It is possi-
ble that tighter conditions than this can be found,
though we are not aware of any. In addition, note
that Proposition 5 allows any existing result related
to pooling with a bivariate normal distribution to be
generalized to arbitrary bivariate distributions with
normal copula: Inventory costs in a centralized sys-
tem with arbitrary marginals and a normal copula
are increasing in the correlation coefficient p, as one
would expect.

6. Conclusions

In this paper we have generalized Eppen’s (1979)
result, on how inventory costs after pooling increase
with dependence between the individual demands, to
near-arbitrary multivariate-dependent demand distri-
butions, and we have also illustrated how to construct
such distributions. In doing so, we have provided a
basis to extend the large literature that has sprung
from that principle to more general demand distri-
butions. Altogether, this paper shows how one can
address problems of pooling of inventories without
needing to resort to assumptions of independence or
multivariate normality. There are many other poten-
tial areas of application of these concepts—in decision
theory, risk assessment, reliability, portfolio compar-
ison, and inventory theory. We hope that this paper
will stimulate more work in these areas.
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Appendix. Definitions

Following Miiller and Scarsini (2001), define the difference
operator A?i(X) := (X + ;) — f(X), where v is the ith unit
vector in MY and & > 0. The orders shown in Figure 1 are
defined as follows:

1. A function ¢: RN — R is supermodular if AfA?l//(X) >0
forall Xe N, 1<i<j<N,i#], and all &, 8> 0. X domi-
nates Y in the supermodular order, written as X >, Y, if and
only if E[¢(X)] > E[s(Y)] for all supermodular functions .
(See Miiller and Scarsini 2001.)
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2. A function ¢: RN — N is directionally convex if
A‘;‘A}SIIJ(X) >0 forall Xe NN, 1<4i,j<N, and all &, 8 > 0.
X dominates Y in the directionally convex order, written as
X >4 Y, if and only if E[(X)] > E[¢(Y)] for all direction-
ally convex functions . (See Miiller and Scarsini 2001.)

3. A function ¢: RN — N is componentwise convex if
ASA%H(X) >0 for all Xe RN, 1 <i<N, and all £,8 >0. X
dominates Y in the componentwise convex order, written as
X > Y, if and only if E[¢(X)] > E[¢(Y)] for all compo-
nentwise convex functions . (See Shaked and Shathikumar
1994.)

4. X dominates Y in the positive linear-convex order, writ-
ten as X >, Y, if and only if a'X > a'Y for all a" € %Y.
(See Scarsini 1998.)

5. The surovival function F corresponding to the multivari-
ate distribution function F of a random vector Z is defined
by F(z) =Pr{Z; > z; Vi=1,...,N}. X is more positive lower
orthant dependent than Y, written as X >, Y, if and only if
F(z) > G(z) Yz € RN. X is more positive upper orthant depen-
dent than Y, written as X >puo Y if and only if f(z) >
G(z) Vz e RN, (See Joe 1997.)

6. X is more concordant than Y, written as X >_Y, if and
only if X >, Y and X >, Y. (See Joe 1997.)
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