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In many chemical process applications, a large mix of products is produced by blending them from a much smaller set of basic grades.
The basic grades themselves are typically produced on the same process equipment and inventoried in batches. Decisions that arise in this
process include selecting the set of basic grades, determining how much of each basic grade to produce, and how to blend basic grades to
meet final product demand. We model this problem as a nonlinear mixed-integer program, which minimizes total grade inclusion, batching,
blending, and quality costs subject to meeting quality and demand constraints for these products. Heuristics and lower bounds are developed
and tested. The methods are applied to data from Europe’s leading manufacturer of wheat- and starch-based products. Our results suggest
that this model could potentially reduce annual costs by a minimum of 7%, translates to annual savings of around $5 million.

1. INTRODUCTION

In many chemical process environments, a very large set of
final products may be made available to customers where
the products differ primarily in the mix of one or more
ingredients. At the basic commodity level, there may be
just one key ingredient, and the products vary in the con-
centration of this ingredient. The products are themselves
often used by customers as feedstock or inputs to other
processes or are blended into other formulations. Examples
include products such as asphalt, coal, fertilizers, animal
feed, paint, petrochemicals, edible oils, and sugars (such as
dextrose, fructose, or glucose).

Although the number of products sold may be quite large
(in the hundreds in the case of glucose solutions, for exam-
ple), the products can be made by blending them from a
small set of “basic grades.” There are obvious cost advan-
tages to producing and storing only a small set of grades,
especially since the production processes utilized are often
semi-continuous in nature, involving very significant costs
related to batching and storage, as well as quality con-
trol and yield management. In this paper we consider the
problem of selecting basic grades to be manufactured so
as to produce a given set of products while minimizing
total grade inclusion, batching, blending, and quality costs.
“Quality” here refers to conformance to product specifica-
tions. Quality is affected by the choice of grades used to
blend a product, and hence by the set of available grades.
The costs of quality are the expected costs of correct-
ing nonconforming product. Costs of grade inclusion vary
by grade, depending on the concentration of ingredients.
Batching costs depend on the volume to be produced, since
there are economies of scale in batch production; blending
costs depend on the grade to be used in forming the final
product. We consider the class of problems where there is

just one ingredient that varies in concentration across the
grades and products. In principle, the model is capable of
extension to the case of multiple ingredients and attributes.
We also assume that the products can be made from grades
by blending them in the right proportions.

This problem is related to the traditional blending prob-
lem, in which, given a set of basic grades, the objective is to
mix these grades and form products to minimize blending
costs subject to meeting the quality and demand require-
ments of the products. This problem formulated as the
nut mix problem (Charnes et al. 1953), and the sausage-
blending problem (Steuer 1986) was one of the earliest,
simplest and most widely understood applications of lin-
ear programming. This basic model has been refined and
applied across a variety of industries. Notable applications
can be found in the petrochemical, agricultural, fertilizer,
coal, and asphalt industries.

Application in the petrochemical industry centers on the
gasoline-blending problem. Rigby et al. (1995) discuss suc-
cessful implementation of such models at Texaco. Glen
(1988) considers the blending problem in the agriculture
industry, in which crop nutrient requirements are met by
blending a pre-existing set of mixtures. Ashayeri et al.
(1994) address the formulation of the blending problem
at a chemical fertilizer plant in which fertilizers are pro-
duced by blending various types of raw materials. Candler
(1991) addresses the coal-blending problem, in which dif-
ferent grades of coal are mixed to minimize blending costs
and the probability of rejection by a customer. Finally,
Martin and Lubin (1985) address the blending problem in
the asphalt-processing industry in which a particular prod-
uct of asphalt is produced by blending a combination of a
few basic “flux” grades of asphalt.

The problem considered here differs from the prob-
lems addressed by those papers in several respects. First,
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our formulation is more general, as it considers the joint
production-blending problem, which, in addition to deter-
mining which basic grades to blend to form a product
(the blending problem), also determines how to produce
these basic grades (the production problem). This choice is
based on minimizing grade inclusion, batching, blending,
and quality costs subject to quality and demand constraints
on the products. Thus, it directly links the production prob-
lem with the blending problem. This connection is of prac-
tical importance. Second, it explicitly develops a quality
model that calculates quality costs as a function of the
blend used. Third, much of the literature to date addresses
problems that are either of small size or of a structure sim-
ple enough to be solved using commercially available math
programming software. In contrast, the problem we con-
sider here is more complex. In our computational experi-
ence, we observe that powerful commercial software tools
cannot generate feasible solutions to even small problems.
Consequently, we develop bounds and heuristics designed
to solve large-sized practical problems to near optimality.
Finally, to the best of our knowledge, this is the first investi-
gation of the applicability of these methods for the glucose-
processing industry. We validate this model using data from
a large European company.

This paper is organized as follows: In the next section
we formulate the problem of grade selection, grade produc-
tion, and assignment of grades to products as a nonlinear
mixed-integer program. In §3, expressions for product con-
formance are derived under certain realistic assumptions.
Subsequently, we derive some basic properties of the
model. A problem decomposition and lower bounds are
developed in §4. In §5, upper bounds and heuristics are
developed. We report computational results in §6. In §7,
we describe an application of this method to data from
the food-processing industry. In the concluding section, we
summarize our work and suggest future research directions.

2. MODEL FORMULATION

Consider a manufacturing facility producing n products and
let jeJ =(1,...,n) index the set of products. These prod-
ucts are made by producing m basic grades and blending
one or more of these grades indexed by iel = (1,...,m)
to achieve a prespecified level a; of a key ingredient for
the jth product. In all other attributes, these products are
identical. For instance, in sugar solutions, this ingredient is
typically the sugar level measured by the dextrose equiv-
alence (DE) scale. To choose the basic grades and their
blending quantities, define the variables

1, if grade i is chosen as a basic grade,
Yi= .
0, otherwise,
d;; = Quantity of basic grade i used in the blending of

product j.

We are given:

K; = Fixed cost for including product i as a basic grade ($),

S; = Setup cost for producing a batch of basic grade i ($),

h; =Holding cost per unit of basic grade i ($/unit time),

C;; = Cost for blending (producing and mixing) basic grade
i to form product j ($/unit),

D; = Annual demand for product j (units).

In this model, “quality” refers to conformance to product
specifications. Quality is affected by the choice of basic
grades used to blend the product, and hence, by the set of
available grades. The costs of quality are the expected costs
of correcting nonconforming product. Define vector d; =
(dy;, dyj, ..., d,;) and 7y,(d;) a scalar function of Vector
d; representing these costs for product j when it is blended
using the basic grades and quantities represented by d;.
This function is derived in the next section, under certain
assumptions. The Basic Grade Selection Problem (BGSP)
can be represented by the following nonlinear mixed integer
program:

@mmlmw=23m+2/mm2%
i i J
+ ZZ Ct/ ij + Z y.f(d.i)
J

Subject to

dij < Dyy; Vi, j (1)
Za,d,l_a Zd Vj (2)
Y d;=D, vj 3)
d; >0 Vi, j (4a)
y; €{0, 1} Vi. (4b)

The objective function Z consists of the fixed cost of
including grades for blending, the batching costs (consist-
ing of holding and setup costs) associated with producing
these grades, the costs of blending (producing and mix-
ing) basic grades to form products, and the costs of qual-
ity for the products when they are blended using basic
grades. In deriving the batching costs, we assume that
grades are produced and inventoried in lot sizes derived
from their basic economic order quantity. Consequently,
given a set of blending choices {d;;}, we would produce
0, = \/ZS >_;d;;/h; units of grade i, resulting in holding
and setup costs of \/28,, 3 d,;.

Constraint (1) ensures that products can be blended only
from chosen basic grades. Constraint (2) enforces that the
blending procedure for each product results in its targeted
ingredient level. Constraint (3) ensures that demand for all
products are met, while nonnegativity and O-1 integrality of
decision variables are imposed by Constraints (4a) and (4b).

ProrosITION 1. BGSP is NP-hard.

Proor. The uncapacitated plant location problem can be
derived as a special instance of the BGSP by setting the



holding and setup costs for basic grade production, the
coefficients {a;}, and the conformance costs of quality
to zero. Since it is known that the plant location prob-
lem is NP-hard, the reduction establishes that BGSP is
NP-hard. O

3. ESTIMATION OF QUALITY COSTS

To estimate y;(d;), the expected costs of correcting non-
conforming product when d;; units of basic grade i is used
to blend product j, we introduce the following variables:

_ ] 1, if basic grade i is used to blend product j
v 0, otherwise,

x;=(xy;, X5 .- »X,;): The vector of basic grades
used to make product j,
d;=(dy;,dy;,...,d,;): The vector of basic grade

quantities used to make product j,
P(x;) =Pr0babrhty of non-conformance of product j as
a function of x;.

We are given:

q; = The blending batch size of product j,
R; =The rework cost per batch of product ;.

We calculate 7y,(d;), the total expected costs of non-
conformance associated with the jth product, as y;(d;) =

P;(x;)D;/q;. To calculate P;(x;), we assume that the
customer-specified product quality tolerances are specified
as a fraction ¢; of attribute level a;. Thus, the upper speci-
fication limit (USL) is a; (1+¢;), and the lower specifica-
tion limit (LSL) is a; (1 — ;). Typically, during blending,
a fixed volume g; of grade i is mixed with other grades
to form product j. Blending errors occur due to varia-
tion in composition or volumes of the grades constituting
the blend. In this problem we assume that the composi-
tion of the basic grade i is controllable and measurable.
Thus, it can be fixed at a; without composition errors. In
our application, we consider continuous flow processes in
which grades are fluids mixed to form a product. Errors
in mixing volumes can occur due to startup and shutdown
times of the mixing valves and, consequently, are additive
and independent of the volume of the blend. However, it
is conceivable that in product-blending applications involv-
ing discrete components (such as scrap steel mixing), such
errors can be multiplicative and depend on the volume of
the blend. We will consider this case in future work. We
assume that blending errors €; are normally distributed
with mean O and standard deviation o;;. Let ®(.) denote
the cumulative distribution function of the standard normal
variate.

To estimate the value of P,(x;), define g; = q;; +€;; as
the variable representing the volume distribution of basic
grade i used to blend product j. We assume that by using
appropriate topping off mechanisms, the total volume of the
product is made exactly equal to g; so that and ¢, =3, g;;-
However, as
a; = > a;Xi;4q;; _ D aixij%j’

2 4qij q;
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even a small deviation in the basic grade volume used in the
blend can induce significant variation in the composition
of the product. The resulting composition distribution of
product j can be expressed as

- D ai'xi_/’qU Diax ij€
a. =
4; 4;

J

Note that our assumption of normal errors implies that a; is
normally distributed with mean a; and standard deviation

\/Z a’x i u/q/ By definition, P;(x;) = P[a; > USL]+
P[aj LSL] - [ ./ = a/(] +11[j/)] +P[a/ < dj(l - lllj)]

Thus,
a;P;q; —a;q;
Jz%%% Jz%%%
— 2(D< —4, l’[I] q] )
N
We now establish results that simplify the problem (BGSP).
PROPOSITION 2. Let x;; = [Z—‘j], where 0 < d;; < D;. Then,
—{;a,9;
P-(d4):2CD< ] L
o Z al ij lj
is a concave function of vector d; = (d,;, dy;, ... ,d,,;).

ProOF. Let d(l) (d(l) ds) ’dr(nlj)) and d/('Z) = (dg)’

lj B 2] P
dﬁf), .. dfm)) represent two vectors of basic grade quan-
tities used to make the jth product. Define d(3) = Ad(l)

(1- /\)dj(-z) for 0 < A < 1. To establish P(d) is concave

in d;, we need to show that )\Pj(dfl)) +(1=A)P; (d(z))
P(d).
Let x; W — (xﬂ),xg),... m/) represent the vector of

basic grades used to make product j corresponding to
d;. !. Note that the ith component of x; represented by

(')_lrff0<d()

Xij
1etx (xg),xh,...,

<D ; and xfjl) = 0 otherwise. Similarly,
xf,fi)) represent the vector of basic
grades used to make product j corresponding to d(z) Here

again the ith component of x represented by x(z) =1 iff

0< d(z) D] and x(z) =0 0therw1se Now cons1der x(3) =
X1 Xy e vector of basic grades used to make
o 2? x5 th f basic grades used to mak

product j correspondmg to d( ) Itis important to recognize

that here the ith component of xﬁ ) represented by x(g) =1

iff 0 <d) <D, or0<d <D, andx()—Olffd{D—O

and d}) = 0. Thus Yox “) “> and DI P

Since a;, ¥, q;, a;, 0 > 0vi, g J, ffx(g;’fg > = f’xdi’; and
i Yij i%itiy 9ij

pia .
l/’ - V%% As the cumulative distribution func-
oy 2 Tiando;

tion of the standard normal variate ®(z) is nondecreasing

for any real ¢,
—y,a;q, —;a;q; (1)
S >20 S =P(d\")

zz/ ij l[jo-l

PdY)= 2@(
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and
3y _ _wj 4 —lﬂj 4 _ (2)
P(dj )_2®<#>22®<#>—P(dj ).
a;x; oy ax; o

Thus, AP,(d\")+(1—A)P,(d}") < P,(d}"), implying that

P(d;) is concave in d;. O

PROPOSITION 3. In the optimal solution to (BGSP), for any
J» at most two of the {d,;} will be positive.

ProoF. Note that (BGSP) can be written as
Mmzw(zdu) +E SHE T,
+ Z 'Yj(dj)
J

Subject to

Zazdu _a Zd Vj (2)

Sd, =D, vj )

d; =20 Vi, j, (4a)
where
%(Zd,-j): Ki 1T 25> 0

r 0  otherwise
—a;;q;

(d)) = R;Pi(x;)D;/q;, and P;(x;) = 20(—=s),

7/( ) ( ) ]/q./ -/( -/) ( X ajxi; u)

where x;; = [ ”]

By the previous proposition, the objective function of
this problem is concave, and the optimal solution must be
attained at an extreme point of the feasible region. Any
extreme point can have at most two d;; positive, as for a
given j, we have exactly two constraints for this problem.
Hence, the proposition follows. O

We use Proposition 3 to reformulate BGSP. First define
y; as

1
- E Z Z Qisj vvisj

where:

Qis/ Pm] ]D /q]

—V.a.qg.

Py = 2c1>(’—fq’>;s £i,Vi,s
Jaiol+aiol

P; =0, s=1,Vi,s
and
VVisj ‘xij +x3/ 7 lé] 0 s # L, Vl, s (5)
d;<Djx; Vi, j (6)
le.j <2 V) (7

x,; € {0,1}. (3)

Constraint (5) ensures that indicator variable W,
assumes the value 1 if basic grades i and s are used to
produce product j or 0 otherwise. Constraint (6) implies
that products are blended only from assigned basic grades.
Proposition 3 is enforced by Constraint (7). The 0-1 inte-
grality of x; is imposed by Constraint (8). Substituting
these costs in (BGSP), we get

(BGSP) Z:MinZKiy,-—i-Z\/Z?h >d,

1
+ Z Z Cyd;+ 5 Z Z 2. 0ii Wiy
i j i s

Subject to: (1) to (8).

Since the BGSP is NP-hard, it is unlikely that we can
solve large real problems to optimality. We confirm this in
our numerical experiments. Consequently, it is crucial that
we develop robust heuristics and efficient lower bounds.
Proposition 3 is particularly important in computing lower
bounds for this problem, a question we consider next.

4. PROBLEM DECOMPOSITION AND
LOWER BOUNDS

If basic grades for blending are chosen a priori, Proposition
3 reduces the complexity in choosing the best blending
combination for any product. To recognize this fact, con-
sider the jth product with ingredient level a;. Let k grades
have attributes greater than this level. Proposition 3 reduces
the potential blending combinations for this product from
(et — )X (4) to (n—k — 1)k. However, to
apply this proposmon this problem needs to be decom-
posable by product. While the constraints in this prob-
lem can be decomposed by product, the objective func-
tion is not separable in j due to the term ), \/ 28:h; 3 dy;.
This term can be linearized using standard techmques
(e.g., Bradley et al. 1977, pp. 602-608). However, such
techniques increase the computational complexity of this
problem, and consequently are unsuitable for application to
even small problems.

To address this problem, we replace >, \/2Sihi ;d;; by
> \/ 2S;h,B; and introduce the following constraints:

B, > d; Vi, )
J
B, <y ) D, Vi, (10)
J
> B = (11)

> D;=D.
J

Note that (3), (4a), (4b), (9), and (10) imply (1). We next
introduce w > 0, a vector of Lagrange multipliers associ-
ated with Constraints (9). Relaxing Constraints (9) decom-
poses the problem into the following subproblems:

_/"LiBi}

(OP) V() =Min Y {K.y,+ /2S5,



Subject to: (4b), (10), (11), and

B,>0 Vi (12)

(IP) W(p)= dMliUn ZZ(MF"CU)‘JU

i Wisj

+ 05 Z Z Z Qisj “IIYJ

Jooi s
Subject to: (2) to (4a), (5) to (8)
(RBGSP)  Z(un) = V(n) + W (n).

The Lagrangean dual corresponding to (RBGSP) is given
by

(DBGSP)  Z =Max V() + W (i).
w>

The Relaxed Basic Grade Selection Problem (RBGSP)
consists of an outer problem (OP) and an inner prob-
lem (IP). The outer problem can be thought of as deter-
mining the selection and production quantities for basic
grades. The inner problem then assigns grades to products
while considering blending and quality costs. Of course, the
actual solution values for the decision variables may be of
little significance. The dual variables u may be interpreted
as the variable costs of using basic grades for blending in
the inner problem, which becomes a “credit” for the outer
problem.

A variety of standard methods could be used to solve the
dual problem (DGBSP). However, we show that the opti-
mal dual vector u* can be determined a priori, and the
lower bound can be computed by solving the inner prob-
lem (IP) just once. We first note some properties of the
problems (IP) and (OP). The solution to (OP) is defined by
Proposition 4.

PROPOSITION 4. B,. = D for i*, and B, =0 for all k #
i*, where i* = argmin,_, ,  {P,D — w;D}, where P; =

Ki++/28:h;D

D

PRrROOF. Problem (OP) can be rewritten as

Minz{K,.a(B,.) +/28.hB; M,-Bi}

s..) B;=D

B, >0, Vi

1

where 6(x) is the Kronecker delta function (6(x) =0 if x =
0,8(x) =1 if x > 0). The feasible region has the extreme
points given by: {B; = D for i, and B, =0 for all k # i, for
eachi=1,2,...,n}. Since (OP) involves minimization of
a concave function, the result follows. O

PROPOSITION 5. The value W(w) of the inner problem is
nondecreasing in each w,.

Proor. Follows directly by inspection of W(u). O
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PROPOSITION 6. The solution p* to (DBGSP) must be of
the form P.D — u:D = P,D — u;D for all i, k.

PrOOF. Suppose not, then
3i,k>P,D—pu'D < P,D—u'D (a)

This implies that B, = 0. But then, u; could be increased
until equality holds in (a), since the value V(u) of (OP)
would be unchanged, while the value W(u) of (IP) would
be nondecreasing. [

PROPOSITION 7. The optimal solution to (DBGSP) is u; =
P;, and the optimal lower bound is given by LB* = W (P)

ProoF. The preceding proposition implies that the com-
ponents of u* are of the form w} = P, + m* for some
scalar m*, which does not depend on i. By substitut-
ing wf in the problems (IP) and (OP), we see that
V(u*) = —m*D, W(u*) = W(P) + m*D and therefore
LB*=V(u*)+Wu ) =w(P). O

An Alternative Lower Bound

Numerical tests show the lower bound LB to be poor
under certain circumstances. We now develop an alterna-
tive scheme based on the cost approximation that appears
in the previous bound. Note that the expression for u; is
essentially the average cost per unit for producing D units
of grade i. However, for many grades, there will never be
a reason to produce the quantity D. In addition, it can be
observed from Propositions 4 and 7 that this choice affects
the quality of the bound.

In deriving the alternate lower bound, we replace (10)
by a tighter constraint (13) defined as B; < B,y; Vi, where
B; represents the maximum quantity of grade i that can
conceivably be used (we compute B; by the procedure
described in the appendix). We next define problem (OP) as

(OP) V(n) =3 Vi(w),

where

V(i) = Min Ky, + /25,8, — u;B;

s.t. (4b), (12)

B; < By (13)

Note that Constraint (11) is dropped from this formula-
tion. The lower bound based on this subproblem is given by

LB(p) = V() + W (),
LB = Mfg(ﬁ([.b)

It cannot immediately be said that this formulation will
necessarily result in a higher bound than the previous one,
since the feasible set for this new subproblem is not con-
tained in the feasible set of the previous version (i.e., the
bounds are not comparable). However, we show that the
new formulation does in fact result in a tighter bound.
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PROPOSITION 8. V(u) <0

PrOOF. The solution B} to subproblem (OP) is reached at
an extreme point, since the objective function is concave.
It is given by

B — B, if Ki"‘\/zsihiBi — ;B <0,

! 0 otherwise.

Hence V,(u;) <0 and the result follows. [

—« _ Ki+a/28hB; Vi
i B3

PROPOSITION 9. Define vector p* by u' = i
Then LB" = W(ii*).

Proor. For Wi > @}, by Proposition 8, Bf =B, V() =

K, 4+ /25,h,B, — u;B; < 0, and "g(“) —B,. For u,; <

i, B =0, V(/.L) 0, and ‘W(“) = 0. For the problem (IP),
we note that the objective functlon is given by

W(M)=ZZ(Mi+Cij)d +5 ZZZQN}W

Jooi s#

= TX O+ T w5 DT 0,

joi s#i

gZZC d*+ZZM,B,+ ZZZQu;W

jooi s#
Thus,

W () <W(0)+ 3 wB;,

and also

oW (w) Y <
o, i v

i'

Hence 0 < 8%?) < B, for w; < uf, and %LB) <0 for w; > .
This implies that LB(u) is maximized at u; = ;. Applying
the same reasoning used to prove Proposition 7, we see that
LB =w(g*). O

PropoSITION 10. LB > LB*.

Prook. Follows directly from Propositions 7 and 9.
The inner problem (IP) is solved as follows:

Step 1. Consider the jth product and define sets P; =
{iel :a;, < a;} and Q; = {i€el : a; > a;}. A feasible blend-

ing pair is any two-tuple (p, ¢) such that peP; and geQ;.

Observe that we would have |P|(n —|Q]) possible pairs.
For each pair (p, g), set

d. = a,—4a; a,—4a;

pJ

D,

J

D. and dqj:

J

ap—aq a —a

and compute the associated costs c,;d,;+c ;d, ;i +Q,,;- L

Z 4+ represent the minimum of these costs achieved by
the pair (p*, ¢*). If the ingredient level for this product
does not coincide with the ingredient level of any basic
grade, blending is required. The product is assigned to be
blended from these grades in the calculated quantity. Else

go to step 2.

Step 2. If the ingredient level for the jth product cor-
responds to the ingredient level of the ith basic grade and
if we choose to produce this product directly, blending is
not required. Consequently, the cost of nonconformance
due to the blending process is 0. We set d;; = D; and
the cost of producing this product is c¢;D;. However, if
¢;D; 2 Z, ,+, we will not include this grade and produce
this product from its best blend. This procedure is repeated
across all products to solve the inner problem.

5. UPPER BOUNDS AND HEURISTIC
SOLUTIONS

In general, the solution provided by the lower bound may
not be feasible due to the violation of Constraint (1). To
achieve this feasibility, we develop a Lagrangean heuris-
tic. We also suggest alternative heuristics. These procedures
provide upper bounds on the BGSP.

The Lagrangean Heuristic

In this heuristic, we use the solution provided by the
Lagrangean dual (i.e., the lower bound) and induce feasibil-
ity. We consider the basic grades chosen by the outer prob-
lem, and include the basic grades representing the extremes
in the ingredient level if necessary. Let F represent the
index set of these grades. Consider the jth product and
define sets P; = {ieF|a; < a;} and Q; = {i€F|a; > a;}. Let
ao,; = mln{a olieP'} and a,0,; = mln{a, o,lieQ’ } Note
that from the structure of P, (x ) this choice would mini-
mize the probability of nonconformance of product j. This
structure also implies that the obvious choice of blend-
ing two ‘“closest” grades may not be optimal even from a
strictly quality perspective, as additive quantity errors imply
that the probability of nonconformance is increasing in ;.
Thus, blending with the two “closest” grades will result in
a higher probability of nonconformance than the case when
we choose two grades such that one of them has the low-
est possible a; and the other the smallest possible a; that
is greater than the product attribute level j. Product j, if
blended, would be produced by the feasible pair (s, t) in
quantities

sj

The costs of this assignment is Z, , = ¢,;d,; +c,d,; +
Q,,;- If the ingredient level of this product does not coin-
cide with the ingredient level of any basic grade, we blend
this product using this combination. If the ingredient level
coincides with the ith basic grade, we blend this product
only if ¢;D; =2 Z, ,. Otherwise, the demand for this prod-
uct is dlrectly satisfied from this basic grade. This proce-
dure is repeated across all products.

We also developed several other heuristics to choose
basic grades. In all these procedures, to guarantee feasibil-
ity, we first select basic grades representing the extremes
in ingredient levels. Additional grades are then selected by



the appropriate heuristic. For any given set of basic grades,
the inner problem is now solved by the method used to
compute lower bounds restricted to this set. The total costs
are recomputed with addition of each individual grade, and
the process is stopped when the increase in costs of adding
the grade is greater than the reduction in costs associ-
ated with this addition. Among the several heuristics we
tested to choose basic grades, we found that the following
approaches worked well in our computational experience
and application:

1. Demand Heuristic. We include products as basic
grades in decreasing order of total product demand D;.

2. Setup/Demand Heuristic: Products are included as
basic grades in increasing order of K;/D;.

A detailed description of the other heuristics tested,
which included grade selection in increasing order of pro-
duction setup costs, blending costs, and variance in the
blending quantity errors, can be found in Karmarkar and
Rajaram (1998). While these heuristics did not give the best
results in our application data sets, they may be of interest
in applications where a crucial parameter such as produc-
tion setup costs, blending costs, or blending errors could
be dominant.

6. COMPUTATIONAL RESULTS

We have tested all the schemes designed to calculate lower
bounds and upper bounds (described in §4 and §5) for
this problem on data provided by a manufacturer of glu-
cose. This data set consisted of all the input parameters
required for this problem for 200 kinds of glucose prod-
ucts produced at this plant. The parameters included grade
inclusion, batching (setup and holding), blending (produc-
tion and mixing) costs, product attribute levels, and annual
demand, and finally, all the parameters required to calcu-
late the costs of quality described by the model in §3.
Recall that the objective function Z of the basic grade
selection problem consists of the following costs:

1. Total cost of inclusion and batching costs of basic
grade

(o i)

2. Total cost of blending basic grades to form products
(Zi Z_;’ Cijdij)'
3. Total cost of quality due to improper blending
(% Zj i QisjVVisj)'
To analyze the relative proportions of these costs, we
defined the following measures:

200 ( (Kj+4/2h;8;D;)
Zj:1 ~— c¢bD

R _ C/»Dl- .
' 200 ’
R;
By (—)
Ry= ———~,
200
200
_ Y,
where C, = Lo !

! 200
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Here, we first calculate the ratios of grade inclusion and
batching cost to the total blending cost for each product.
We then define R, as the average of these ratios across the
200 products. Next, we calculate the ratio of unit rework
costs to the unit blending costs for each product and sim-
ilarly define R, as the average of these ratios across these
products. For the reference data set, R, =4.1 and R, =2.9.

We tested how sensitive our bounding techniques were to
the scale of these cost parameters. To perform this analysis
across the 200 products, we first scaled the grade inclu-
sion and batching cost parameters by factors 1/3, 1/2, 2,
and 3 (i.e., changing R, by these factors), then scaled the
rework cost by the same factors (i.e., changing R, by the
same factors), and finally scaled the blending costs by these
factors. Our scaling factors were chosen by roughly esti-
mating such costs across industries such as petrochemicals,
food processing, coal production, and chemical fertilizers,
based upon informal discussions with managers in these
industries. This scaling in effect ensured that the cost pro-
portions of these data were representative across this spec-
trum of industries. Note that our scaling procedure results
in 64 (i.e., 4 x 4 x 4) additional data sets of the 200-product
problem.

While we could generate feasible solutions for this prob-
lem using the heuristics we proposed and assess the qual-
ity of these solutions using the lower bounds developed,
it was important to compare these bounds with an alter-
nate set of bounds derived using existing commercial soft-
ware or any other method. This comparison is needed to
better understand whether the gaps between the heuristics
and bounds were due to the quality of the heuristics or the
lower bounds we employed. We first developed a program
to compute optimal solutions by exhaustive enumeration.
It can be shown that the number of feasible solutions is
of the order 2"0(n?). Consequently, this is not a viable
method for large problems. We also elected to use GAMS
(Brooke et al. 1992) to develop these alternate bounds. We
tried to solve the reference (200 product) problem using
the DICOPT, a nonlinear mixed-integer program solver
in GAMS to solve the problem to optimality. We found
that GAMS was unable to generate a feasible solution to
this problem. To generate lower bounds, we linearized the
square root function ), \/ 28;h;3_;d,; using standard tech-
niques (for example, see Bradley et al. 1977). To derive
an upper bound for this problem, we approximated this
function by a tangent at the point ) d;; = (3_; D;)/2. We
tried to solve the resulting mixed-integer programs using
OSL, the recommended solver for this class of problems
in GAMS. However, OSL was unable to generate feasible
solutions for the problem.

Based on this experience, we used the reference data
to extract smaller problems (with n products, n < 200).
We arranged products in increasing order of attribute level
a; and always included products with the maximum and
minimum attribute levels to ensure feasibility. To choose
the remaining n —2 products, we first formed n —2 clusters,
each with around 200/(n — 2) products. A product with an



278 |/ KARMARKAR AND RAJARAM

Table 1. Percentage gaps from tightest lower bound in the reference data.
Problem Problem Problem Problem Problem Problem
Size Size Size Size Size Size
Method n=>5 n="7 n=10 n=15 n=100 n =200
Optimal
Solutions:
Exhaustive * * - - - -
Enumeration
Upper
Bounds:
1. GAMS 3.5 3.5 - - - -
2. Demand 0.2 1.0 1.2 1.5 9.4 8.2
heuristic
3. Setup/demand 0.2 1.0 1.2 1.5 8.3 4.2
heuristic
Lower
Bounds:
1. GAMS 0.2 0.2 - - - -
2. Lagrangean 1 354 28.6 24.7 18.4 5.1 3.0
3. Lagrangean 2 2.0 0.8 * * * *

*: Value chosen to be the lower bound.

—: Technique was unable to find a feasible solution.

attribute level representing the midpoint for the products in
a given cluster was then chosen to represent a given cluster.
We used this procedure to extract data corresponding to
“realistic” 5, 7, 10, 15, and 100 product problems.

Tables 1 and 2 summarize some salient results from
our computational tests. In any table, a row represents
the solution technique used. These included the exhaustive
enumeration solution, the upper bounds generated by the
GAMS, and the two heuristics and the lower bounds based
on GAMS and our two techniques. Columns in the table
represent the problem size (represented by the number of
products) of the basic grade selection problem. The num-
bers in the body of the table describe the percentage gap
of the technique from a reference point, if that technique

was successful in generating a solution for the given prob-
lem. Since the five product problem was solved to opti-
mality by exhaustive enumeration, this was used as the
reference point for this case. However, this procedure and
GAMS were unable to generate optimal solutions for prob-
lems with more than seven products. Consequently, for the
remaining problems, the tightest lower bound (i.e., the max-
imum value of the lower bounds obtained) was used as this
reference.

Our computational results have been quite encouraging.
Consider Table 1, representing percentage gaps for the ref-
erence data. When we use the demand heuristic to solve
the 200-product problem, the gap from the lower bound
was 8.2%. The corresponding gap with the setup/demand

Table 2. Average percentage gaps from tightest lower bound across 65 data sets.
Problem Problem Problem Problem Problem Problem
Size Size Size Size Size Size
Method n=>5 n=7 n=10 n=15 n=100 n =200
Optimal
Solutions:
Exhaustive * * - - - -
Enumeration
Upper
Bounds:
1. GAMS 3.3 3.5 - -
2. Demand 0.7 1.1 1.8 1.9 9.8 8.8
heuristic
3. Setup/demand 0.7 1.1 1.8 1.9 7.5 5.6
heuristic
Lower
Bounds:
1. GAMS 0.1 0.1 - - - -
2. Lagrangean 1 35.4 28.7 24.7 19.1 6.4 4.0
3. Lagrangean 2 2.0 0.7 * * * *

*: Value chosen to be the lower bound.

—: Technique was unable to find a feasible solution.



heuristic was around 4%. Across all the problems these
gaps varied from 0.2% to 15% for the demand heuristic
and 0.2% to 12% for the setup demand heuristic. Detailed
results for these cases can be found in Karmarkar and
Rajaram (1998).

We also computed the average percentage gaps for all
the computational techniques based upon the reference and
64 data sets for a problem with given number of products.
These results, summarized in Table 2, suggest that average
gaps for the demand heuristic ranged from 1.1% to 9.8%,
while the corresponding gap for the setup/demand heuristic
ranged from 0.7% to 7.5%. This suggests that these heuris-
tics provide a strong basis to address this problem.

We wanted to better understand the circumstances under
which percentage gaps increase. This could provide us with
insights to improve the heuristic and lower bounds. We
observed from our analysis of the 200-product problem
that these gaps are uniformly higher when grade inclusion
and batching or rework costs are higher, or while blend-
ing costs are lower than the reference case. Conversely,
the gaps are significantly lower when grade inclusion and
batching or rework costs are lower, or while blending costs
are higher than the reference case. It is important to note
that these gaps were reduced largely because the lower
bounds became tighter. For instance, the average solution
provided by the lower bounds increased by an average of
2%, while the average solution provided by the heuristics
decreased only slightly, by around 0.5%. This indicates
that the heuristics are fairly stable across a wide range of
parameter variation, while there could still be potential to
improve the lower bounds. This conjecture is supported
when we consider the five-product problem in the tables
and observed that, on an average, the solution provided by
both these heuristics is only 0.7% above the exhaustive enu-
meration based optimal solution, while the lower bounds
are around 2% lower than this optimal solution. In the final
analysis, the real measure of performance of the heuristics
is the quality of the decisions based on its solution, a ques-
tion we consider in the application.

7. APPLICATION

We have applied the methods in this paper to production
data from Europe’s leading manufacturer of made-to-order
wheat- and corn-based starch products, such as glucose,
sorbitol, dextrose, and gluten. These products are used
extensively as components in the food-processing indus-
tries (for example, by breweries, confectioneries, and bak-
eries), consumer product industries (for example, cosmetics
and toothpaste), and other industries such as paper, phar-
maceuticals, textiles, and specialty chemicals. Rather than
produce small runs for each customer and incur extensive
downtimes due to switchovers, a few types of basic grades
are produced across a range of product attribute levels.
Customer requirements are met by blending these basic
grades, thus enabling long production campaigns, with-
out compromising the ability to accurately meet customer
demand.
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Table 3. Percentage gaps of heuristics from tightest
lower bound and cost savings when applied
to refinery data.

Percentage gap

Refinery using setup/demand Cost Cost reduction

site Heuristic reduction (%)  (Million $)

1 2 8 0.7

2 1 9 0.8

3 1 7 0.4

4 3 8 0.5

5 4 7 0.6

6 2 8 1

7 1 10 1

We tested our model on data provided to us from refining
processes, because refined products accounted for a large
part of total profits. The data available to us included 1997
data on all the parameters needed to use our model from
seven refineries located in five countries. Note that we used
the largest data set (based on a refinery producing 200 prod-
ucts) as the reference problem in the computational analy-
sis described in the previous section.

We solved the basic grade selection problem for the
data from these seven refineries using all the heuris-
tics proposed by Karmarkar and Rajaram (1998). We
used the Lagrangean-based methods described in §4 to
compute lower bounds. The lowest gaps were provided
when we used the alternate lower bound technique, and
the setup/demand heuristic. These results, summarized in
Table 3, indicate that solutions provided by this heuristic
were within 4% of the lower bounds.

We used the solution provided by the setup/demand
heuristic at a given refinery and calculated the total grade
inclusion, batching, blending, and rework costs that would
have resulted, had the basic grades, production, and blend-
ing quantities suggested by our method been implemented.
We compared our costs with actual annual costs at these
refineries and found that our method would have reduced
total costs by at least 7% in all these sites. Had this
approach been implemented, the total annual cost savings
at all these plants would have been around $5 million.
Individual percentage and absolute cost savings for these
refineries are also summarized in Table 3. We note that our
solution had a fewer number of products as basic grades,
and they were different from those currently in use at these
processes.

8. SUMMARY AND FUTURE RESEARCH

In this paper, we consider the basic grade selection problem.
Given a set of final products, we choose a smaller set of prod-
ucts known as basic grades and blend these grades to meet
product demand. Decisions that arise in this process include
selecting products to be basic grades, determining how much
of each basic grade to produce, and how to blend basic grades
tomeet final product demand. We model this problem as anon-
linear mixed-integer program, in which these decisions are
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made to minimize total grade inclusion, batching, blending,
and quality costs subject to meeting quality and demand con-
straints for these products. Heuristics and lower bounds are
developed for this problem. Extensive computational analysis
reveals that these heuristics provide an intuitive and effective
way to solve the problem.

We applied this model to assess the validity of basic
grade selection, production, and blending procedures to
data from seven refineries of Europe’s leading manufac-
turer of wheat- and corn-based products. Had the solution
provided by the setup/demand heuristic been implemented
at these refineries, total grade inclusion, batching, blending,
and quality costs would have been reduced by at least 7%
at all these refineries, which would have resulted in annual
savings of $5 million.

Our future research will address some important exten-
sions to this problem. One such case arises when a product
is specified by a vector of attributes rather than a single
attribute. While this does not occur in our application,
multiattribute product specifications are common for petro-
chemical products. For instance, gasoline blends are usually
specified in terms of octane, viscosity, and density lev-
els. In principle, such specifications can be incorporated
in our model by redefining a,, as the pth specification of
the ith product and rewriting Constraint (2) as >, a,,d;; =
a;,>.;d; Vj, p and making the necessary changes in the
quality model. However, solving the inner problem is now
complicated as Proposition 3 is not necessarily true.

Another class of extensions arises from different quality-
cost models. In this paper, we consider the case of known
input composition and uncertainty in volumes due to addi-
tive errors. We are currently studying scrap steel blending
in which the composition of the blend is uncertain, and the
uncertainty in volumes are caused by multiplicative errors,
which are dependent on the size of the blending batch.
Finally, extensions to this model arise when different pro-
duction cost functions are used to represent the cost for
producing basic grades.

APPENDIX

Procedure for Computing B;

Let product j be produced by blending basic grades i and k.
Also, let J;={1,2, ..., n}\{i} be the set of products made
using basic grade i along with some other grade. Define
the following variables:

B; = maximum amount of grade i required to produce
_ products in J;.
D, = demand for product i.

Without loss of generality, assume that grades are indexed
in nondecreasing order of a;. Define the following index
sets:

K- ={1,2,...,j—1},
K ={j+1,j+2,....n},
Ji = {jlaj <a},

Ji={jla; > a;}.

We calculate B; using the following equation:

n a, —da:
+ > max{lk—’*dj}.
joit1 ek la, —a;l

This upper bound consists of three components. The first
term represents the demand for the product if it is used
as a basic grade and not blended. The second term of the
equation represents the maximum quantity of basic grade
i that will be used to blend product j when a; > a; calcu-
lated across set K, for which a; > a, VkeK; . This amount
is summed for all products in the set J; to calculate the
total maximum usage for basic grade i for products whose
attribute level is lower than that of this grade. In a sim-
ilar manner, the third term calculates the total maximum
usage for basic grade i for products whose attribute level
is higher than that of the ith basic grade. Thus, B; calcu-
lated by this equation represents the maximum quantity of
basic grade that would be used for blending, providing a
reasonable upper bound on B;.
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