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W e consider the problem of determining (for a short lifecycle) retail product initial and
replenishment order quantities that minimize the cost of lost sales, back orders, and

obsolete inventory. We model this problem as a two-stage stochastic dynamic program,
propose a heuristic, establish conditions under which the heuristic finds an optimal solution,
and report results of the application of our procedure at a catalog retailer. Our procedure
improves on the existing method by enough to double profits. In addition, our method can
be used to choose the optimal reorder time, to quantify the benefit of leadtime reduction,
and to choose the best replenishment contract.
(Retailing; Inventory Replenishment; Stochastic Dynamic Programming; Heuristics)

1. Introduction
Retail inventory management is concerned with deter-
mining the amount and timing of receipts to inventory
of a particular product at a retail location. Retail in-
ventory-management problems can be usefully seg-
mented based on the ratio of the product’s lifecycle T
to the replenishment leadtime L. If T/L � 1, then only
a single receipt to inventory is possible at the start of
the sales season. This is the case considered in the
well-known newsvendor problem. At the other ex-
treme, if T/L k 1, then it’s possible to assemble suf-
ficient demand history to estimate the probability den-
sity function of demand and to apply one of several
well-known approaches such as the Q, R model.

The middle case, where T/L � 1 but is sufficiently
small to allow only a single replenishment or a small
number of replenishments, has received much less at-
tention both in the research literature and in retail
practice. As we describe in § 2, there is a small but
growing literature on limited-replenishment inven-
tory problems. Perhaps because of the lack of pub-
lished analysis tools, we have found that retailers of-
ten ignore the opportunity to replenish when T/L is

close to one and treat this case as though it were a
newsvendor problem. This is unfortunate, because, as
we show with the numeric computations in this pa-
per, planning for even a single replenishment, can, in
this case, dramatically increase profitability.

In this paper, we consider limited lifecycle retail
products in which only a single replenishment is pos-
sible. We model the problem of determining the initial
and replenishment order quantities (to minimize the
cost of lost sales, backorders, and obsolete inventory
at the end of the product’s life) as a two-stage sto-
chastic dynamic program. We show that the second-
stage cost function of this program may not be con-
vex or concave in the inventory position after the
reorder is placed, which means that simulation-based
optimization techniques (Ermoliv and Wetts 1998)
typically used to solve problems of this type are not
guaranteed to find an optimal solution. For this rea-
son, and also for computational efficiency, we for-
mulate a heuristic for this problem. We show that this
heuristic finds an optimal solution if demand subse-
quent to the time a reorder is placed is perfectly cor-
related with demand prior to this time. While perfect



FISHER, RAJARAM, AND RAMAN
Optimizing Inventory Replenishment of Retail Fashion Products

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

Vol. 3, No. 3, Summer 2001 231

correlation between early and late demand is unlike-
ly, we believe this result indicates that our heuristic
will work well if this correlation is high. Thus, in
practice, it seems reasonable to expect good perfor-
mance from this heuristic because the logical basis of
implementing replenishment based on early sales is
that demand during the later season is highly corre-
lated with early demand. In our application, the cor-
relation between early and late demand was 0.95. We
also apply simulation-based optimization techniques
(Ermoliv and Wetts 1998) and find that our heuristic
is much faster and finds solutions within 1% of the
optimization procedure if the correlation between
early and late demand is at least 60%. For lower cor-
relations, the solutions are within 1% to 5%.

We have applied this process at a catalog retailer
and find that it improved over their current process
for determining initial and replenishment quantities
by enough to essentially double profits. Remarkably,
compared to no replenishment, a single-optimized re-
plenishment improves profit by a factor of five. A key
challenge in implementing short lifecycle replenish-
ment is estimating a probability density function for
demand with no demand history. To circumvent this
problem in our application, we applied the commit-
tee-forecast process in Fisher and Raman (1996) and
found that it worked well.

The most important difference between catalog and
traditional retail management is that a catalog cus-
tomer will generally accept a backorder if an item is
stocked out. Because our application was at a catalog
retailer, our model and heuristic are given for this
version of the problem, but it is straightforward to
modify the model, heuristic, and proof of optimality
for a case where backorders are not allowed.

In § 2 of this paper, we review the literature on short
lifecycle inventory replenishment. In § 3, we formulate
the problem; in § 4, we state our heuristic and establish
optimality conditions; in § 5, we show how to modify
the process when customers may return merchandise,
and in § 6, report results of our application.

2. Literature Review
Analytical models for managing inventory for short
lifecycle products share many common features.

First, all are stochastic models, because they consider
demand uncertainty explicitly. Second, they consider
a finite selling period at the end of which unsold in-
ventory is marked down in price and sold at a loss.
In this sense, these models are similar to the classic
newsvendor model. Third, they model multiple pro-
duction commitments such that sales information is
obtained and used to update demand forecasts be-
tween planning periods. The last two characteristics,
finite-selling periods and multiple production com-
mitments, differentiate style goods inventory models
from other stochastic inventory models. Examples of
papers that consider style goods inventory problems
include Murray and Silver (1966), Hausman and Pe-
terson (1972), Bitran et al. (1986), Matsuo (1990), and
Fisher and Raman (1996). A detailed review of these
papers can be found in Raman (1999).

Recent work that deals specifically with the retail-
er’s inventory-management problem for short lifecy-
cle products includes Bradford and Sugrue (1990),
Eppen and Iyer (1997a), and Eppen and Iyer (1997b).
Bradford and Sugrue model a decision that is similar
to the one we study, but they do not consider the
impact of replenishment leadtimes. In addition, their
solution procedure consists of complete enumeration,
which works efficiently for smaller problems but
could be difficult to implement in larger, practical-
sized problems. Eppen and Iyer (1997a) consider a
problem that is substantially different from ours.
Even though their model allows the retailer to ‘‘buy’’
and ‘‘dump’’ at the beginning of each period, the so-
lution method they propose applies only when no
‘‘buy’’ decisions are permitted after the first period.

Eppen and Iyer (1997b) model a backup agreement
in place at a catalog retailer. A backup agreement is
one of the mechanisms by which a retailer achieves
replenishment of branded merchandise supplied by a
manufacturer to several retailers. In a backup agree-
ment, a retailer places an initial order before the start
of the sales season and commits to reorder a certain
quantity during the season. After assessing sales dur-
ing the early part of the season, if the retailer chooses
to reorder less than this commitment, there is a pen-
alty cost assessed for each unit not ordered. In this
model, replenishment leadtimes are assumed to be
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zero, which is reasonable because the manufacturer
would typically have produced the product and held
it in inventory for this and other retailers. Because the
replenishment leadtime is zero, it is not necessary for
the retailer to accept backorders from consumers.

In this paper, we consider the case where replen-
ishment is achieved without backup agreements. Af-
ter receiving an updated order, the manufacturer pro-
duces and delivers products to the retailer after a
significant leadtime. The retailer is not required to
commit to any of the reorders. To compensate for the
long leadtime, consumer backorders are accepted by
the retailer. This case occurs when the manufacturers
are either captive suppliers or wholly owned by the
retailer and the retailer sources from several such
manufacturers. Thus, in this case, it is crucial to mod-
el the impact of leadtimes and backorders, although
this significantly complicates the analysis leading to
a nonconvex optimization model. In addition to in-
corporating replenishment leadtimes and backorders,
our work differs from all these papers in the process
that we use to estimate demand densities and to com-
pare our method to actual practice.

3. Model
We model the supply decisions faced by a catalog re-
tailer for a product with random demand over a sales
season of fixed length. The retailer must determine
an initial order Q1 available at the start of the sales
season. At a fixed time t during the season, the re-
tailer updates the demand forecast, based on ob-
served sales, and places a reorder quantity Q2 that
arrives after a fixed leadtime L at time t � L.

Price is fixed throughout the season. Inventory left
over at the end of the season is sold at a salvage price
below cost. Customers who encounter a stockout will
backorder if there will be sufficient supply at some
point in the future to satisfy the backorder. Specifi-
cally, the opportunity to backorder is not offered to a
customer once the total supply quantity (Q1 � Q2)
has been committed through sales or prior backor-
ders. A lost sale is incurred when an item requested
by a customer is not in stock or not backordered.

We first model this problem and formulate a solu-

tion heuristic assuming that the reorder time t is
fixed. Then, we determine an optimal reorder time t
empirically for a given data set by parametrically
solving this problem with varying t. We are given:

Cu � Cost per unit of lost sale. This is set to the
difference between the per-unit sales price
and cost of the product.

Co � Cost per unit of leftover inventory. This is
set to the difference between the per unit
cost and the salvage price of the product.

Cb � Cost per unit of backorders. This is set to
the additional costs incurred in procure-
ment and distribution when an order is
backlogged, plus an estimate of the cost of
customer ill will.

L � Length of replenishment leadtime.

Define the following variables:

X � Random variable representing total de-
mand until the reorder is placed.

Y � Random variable representing total de-
mand during the replenishment leadtime.

W � Random variable representing total de-
mand after the reorder arrives until the end
of the season.

R � Random variable representing total de-
mand after the reorder is placed until the
end of the season, where R � Y � W.

Q1 � Initial-order quantity.

Q2 � Reorder quantity.
I � Inventory position after reorder is placed.

I � Q1 � Q2 � x.

For the given reorder time t, the decision process
involves choosing Q1, observing x, and then deter-
mining the inventory position I for the remainder of
the season to minimize total backorder, understock,
and overstock costs. This sequence of decisions is
shown in Figure 1.

We consider random variables � and � with joint
density function f (�, 	). Let g(�) be the marginal den-
sity on � defined by f (�, 	) and h(	 � �) be the con-
ditional density on 	 given � defined by f (�, 	). We
define E�/�(
(	)) � # 
(	)h(	 � �) �	 and E�(
(�)) ��

0

# 
(�)g(�) ��, where 
( ) is any real-valued scalar�
0
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Figure 1 The Replenishment Planning Process

function. Let (a)� � max(a, 0). We model this problem
by the two-stage stochastic dynamic program (P1).

Z(t) � min C(Q ) � E [C (Q , x) � C (Q , x)] (P1)1 x 1 1 2 1
Q �01

where

�C (Q , x) � C (x � Q )1 1 b 1

C (Q , x) � min C (I, x)2 1 2
I

� �� E {C min((y � (Q � x) ) ,Y/X b 1

�I � (Q � x) )}1

�� E E {C (y � w � I)Y/X W/X u

�� C (I � y � w) }o

I � Q � x, I � 0 (P2)1

C1(Q1, x) represents the backorder costs Cb(x � Q1)�

during the period before the reorder is placed. C2(I, x)
represents expected cost as a function of the inven-
tory position I after the reorder is placed and consists
of two terms. The first term, EY/X{Cbmin((y � (Q1 �
x)�)�, I � (Q1 � x)�)}, represents the expected costs
of backorder during the replenishment leadtime. Be-
cause backorders are accepted only if they can be
filled from replenishment, it is important to recognize
that backorders during the replenishment leadtime
can never exceed the effective inventory position after
the first period backlog is cleared (i.e., I � (Q1 � x)�).
This condition is enforced by the operator min((y �
(Q1 � x)�)�, I � (Q1 � x)�). The second term of
C2(I, x) is EY/XEW/X{Cu(y � w � I)� � Co(I � y � w)�},
represents the expected overstock and understock
costs in the periods after the reorder is placed until
the end of the season.

It is important to recognize that C2(I, x) is neither

convex nor concave in I. We illustrate this property
using the following example.

EXAMPLE 1. Let Q1 � 50 and x � 10. Let the con-
ditional probability distribution for Y/(X � 10) be
P(Y/(X � 10) � 100) � 0.5 and P(Y/(X � 10) � 200)
� 0.5, while the conditional probability distribution
for W/(X � 10) is P(W/(X � 10) � 100) � 0.5 and
P(W/(X � 10) � 200) � 0.5.

Let Cb � 15, Co � 20, Cu � 40, 
 � 0.9, I1 � 80,
and I2 � 110, I
 � 
I1 � (1 � 
)I2 � 83. By substi-
tuting these values, using the values of Q1 and x, and
distributions Y/X and W/X to calculate expectations,
it is easy to verify that:


 � �C (I , x) � E [C min((y � (Q � x) ) ,2 Y/X b 1


 �I � (Q � x) )]1


 �� E E [C (y � w � I )Y/X W/X u


 �� C (I � y � w) ]o

1 2� 9325 � 
C (I , x) � (1 � 
)C (I , x)2 2

� 9317.5.

This shows that C2(I, x) is not convex in I.
Next, let I1 � 80 and I2 � 300, so that I
 � 
I1 �

(1 � 
)I2 � 107, while all the other values remain
unchanged. Now,


 � �C (I , x) � E [C min((y � (Q � x) ) ,2 Y/X b 1


 �I � (Q � x) )]1


 �� E E [C (y � w � I )Y/X W/X u


 �� C (I � y � w) ]o

1 2� 8672.5 � 
C (I , x) � (1 � 
)C (I , x)2 2

� 8775.

This shows that C2(I, x) is not concave in I.
In view of this characteristic of C2(I, x), simulation-

based optimization techniques (Ermoliv and Wetts
1998), typically used to compute the solution to this
class of problems, are not guaranteed to solve Prob-
lem P2 and subsequently Problem P1 to optimality.
Consequently, for this reason and run-time consider-
ations, we elected to develop a heuristic. This heuris-
tic is described in the next section.
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Once we have developed a scheme to solve this
problem, to find the optimal reorder time, we would
perform a line search on t to solve (P):

Z* � min Z(t) (P)
0�t�T�L

4. The Two-Period Newsvendor
Heuristic

The purpose of this heuristic is to set Q1. In this re-
gard, it is useful to understand the costs affected by
the choice of Q1. Firstly, a portion of Q1 may remain
unsold at the end of the season, generating an over-
stock. Secondly, during the interval 0 to t � L, if Q1

is too small, one may incur backorder costs. During
the interval t to t � L, one may also incur stockouts
if satisfied and backordered demand exceeds Q1 �
Q2, but it seems more natural to think of this cost as
resulting from the choice of Q2, not the choice of Q1.
Given this, we let S � X � Y, U � X � Y � W, and
choose Q1 to solve:

¯Z (t) � min C(Q )h 1
Q �01

� �� E C (s � Q ) � E C (Q � u) (PH)S b 1 U o 1

To solve this problem, let F1(s) and F2(u) be the dis-
tribution functions of random variables S and U, re-
spectively. The first-order condition for problem (PH)
is:

�Z (t)h � �C (1 � F (Q )) � C F (Q ) � 0b 1 1 o 2 1�Q1

We set the heuristic order quantity Q to the valueh
1

of Q1 that satisfies this condition. Rearranging terms,
this is calculated as the solution to the following
equation:

CoF (Q ) � F (Q ) � 11 1 2 1Cb

Let f 1(s) and f2(u) be the density functions of ran-
dom variables S and U, respectively. Because

2� Z (t)h � �C f (Q ) � C f (Q ) � 0,b 1 1 o 2 12�Q1

the first-order conditions are sufficient to establish

the optimality of Zh(t) at Q . Note that our choice ofh
1

Q minimizes expected backordering costs during theh
1

period before replenishment and minimizes expected
overstock cost at the end of the season because of
Q . The following result establishes conditions underh

1

which this heuristic finds an optimal solution.

PROPOSITION 1. Suppose Z(t) is the optimal solution to
Problem (P1) when random variables X, Y, and W are per-
fectly correlated. Then, Zh(t) � Z(t).

PROOF. If random variables X, Y, and W are perfectly
correlated, then Y � �X and W � �X, where �, � are
positive constants. Thus, E(Y/X � x) � �x, V(Y/X �
x) � 0, E(W/X � x) � �x, and V(W/X � x) � 0. When
all customers backorder, the optimal reorder quantity
is Q � [x(1 � � � �) � Q1]�. If Q � 0, then one* *2 2

incurs no overstock and understock costs in the third
period after the reorder arrives. The only costs in-
curred will be possible backorder costs during the first
two periods represented by Cb[x(1 � �) � Q1]�. If
Q � 0, in addition to the backorder costs in the first*2
two periods, one could incur an overstock of [Q1 � x(1
� � � �)]� because of the initial order with associated
costs Co[Q1 � x(1 � � � �)]�. Consequently, total ex-
pected costs in the season when one has perfectly cor-
related demand can be expressed as

�C(Q ) � E {C [x(1 � �) � Q ]1 X b 1

�� C [Q � x(1 � � � �)] }.o 1

Because by definition, S � X � Y � X(1 � �) and U
� X � Y � W � X(1 � � � �), C(Q1) � ES{Cb(s �
Q1)�} � EU{Co(Q1 � u)�} � C̄(Q1). Thus, Z(t) �

C(Q1) � C̄(Q1) � Zh(t). Q.E.D.minQ �Q1

It can be shown that Proposition 1 also holds under
the assumption of no customer backorders. In light
of this proposition, it is reasonable to expect good
performance from this heuristic because the logical
basis of implementing replenishment based on early
sales is that demand during the later season is highly
correlated with early demand. In our application, we
found across all the products the correlation between
X and Y to be around 0.96 and between X and W to
be about 0.95. This suggests that this heuristic could
provide a simple and efficient basis to model the re-
quired decisions in this application.
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Once one uses the two-period newsvendor heuris-
tic to determine Q1 and observes demand x during
the first period, the optimal solution to the minimi-
zation problem P2 can be approximated by setting I
� max(I*, Q1 � x), where I* is the newsvendor quan-
tity defined on HR/X, the cumulative distribution of R
updated by X � x (i.e., I* � H [(Cu � Cb)/(Cu � Cb

�1
R/X

� Co)]. The quality of this approximation is also as-
sessed in the application while evaluating the perfor-
mance of the heuristic.

5. Modifications to Account for
Returns of Merchandise

In catalog retailing, because customers place orders
based on photographs displayed in catalogs, pur-
chased merchandise is often returned if the actual
product differs from what the customer expected
from the catalog. In this section, we describe how to
extend our model to include merchandise returns.

Returned items can be resold if they are received
before the season ends. This means that backorders
in the interval (0, t � L) and stockouts during the in-
terval (t � L, T ) may be reduced by the availability of
returns, but returns that are received too late to be
resold can contribute to overstock. Based on the prac-
tice followed by the catalog retailer described in the
application, we assume that a known fraction � of
customers return products, where 0 � � � 1. These
returns are immediately reusable if necessary to sat-
isfy either a backorder or demand. We also assume
that recycled returns (i.e., returns on returns and so
on) are not reusable during the sales season. These
assumptions ensure that we make an unbiased com-
parison with existing practice at this retailer.

Consequently, to adapt the heuristic to include re-
turns of merchandise, we first consider the period un-
til the reorder arrives. If Q1 is the initial-order quan-
tity and s is the demand during this period, the total
number of reusable returns is � min(s, Q1). If s � Q1,
the total backorders that occur during this period are
[s � (Q1 � � min(s, Q1))]� � [s � Q1(1 � �)]�. Sim-
ilarly, if u is the demand during the entire season,
total reusable returns because of the initial-order

quantity are � min(u, Q1). If Q1 � u, the total over-
stock that occurs during the entire season is

� �[Q � (u � � min(u, Q ))] � [Q � u(1 � �)] .1 1 1

Using these results, we redefine (PH) to:

Z (t) � min C (Q )r r 1
Q �01

�� E C (s � Q (1 � �))S b 1

�� E C (Q � u(1 � �)) . (PHr)U o 1

We use the procedure outlined in the previous sec-
tion to determine Q as the solution to the followingh

1

equation.

C Qo 1F [Q (1 � �)] � F � 11 1 2� �(1 � �)C (1 � �)b

At the end of the first period, we observe realized
demand x and use it to set the reorder quantity Q2

� I � (Q � x)� � � min(Q , x), where I � max(I*,h h
1 1

(Q � x)� � � min(Q , x)), and I* is the newsvendorh h
1 1

quantity defined on HR�/X, the cumulative distribu-
tion of R’ � R(1 � �) updated by X � x (i.e., I* �
H [(Cu � Cb)/(Cu � Cb � Co)]).�1

R�/X

6. Application
We have tested the ideas presented in this paper at a
large catalog retailer. We applied the model and the
two-period newsvendor heuristic to make purchase
decisions for 120 styles/colors from the women’s
dress department appearing in a particular catalog.
We chose this division because it represented a sig-
nificant portion of the business. The sales season for
these products is T � 22 weeks, and the replenish-
ment leadtime is L � 12 weeks. Because these prod-
ucts are sold through mailorder catalogs, the price
during the season is fixed. Around 35% of sales are
returned, i.e., � � 0.35.

In the process currently in place at this retailer, ini-
tial-order quantities are set to forecast demand for the
22-week season adjusted for anticipated merchandise
returns. Forecasts for each style/color are updated af-
ter two weeks by dividing observed sales by the his-
torical fraction of total-season sales for the depart-
ment, which have been observed in the past to
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Figure 2 Comparison of Early and Updated Forecasts

normally occur in the first two weeks. Reorders are
placed to make up the difference from an updated
forecast adjusted for returns. Specifically for a given
style/color, if f is the total forecast sales and � is the
anticipated fraction of returns, then Q1 � (1 � �) f .
Letting x2 be the actual sales observed at the end of
two weeks and k2 be the fraction of total demand his-
torically observed at this point for a group of similar
products, then we set Q2 � ((1 � �)x2/k2 � Q1)�.
Note that this procedure sets Q1 to the forecast sales
net of anticipated returns during the entire season
and, hence, reorders are used as a reaction to larger-
than-anticipated sales rather than something that is
planned for in advance.

Figure 2 shows the improvement in forecast accu-
racy because of updating at the retailer. Each point
shows forecast and actual demand for a particular
style/color combination. The left graph compares de-
mand forecasts with actual demand for the average
of forecasts made by four expert buyers prior to the
beginning of the season. In the right graph, the fore-
casts equal actual sales after two weeks into the sea-
son divided by a factor representing the fraction of
total sales historically observed after two weeks.

Application of our model requires a method to es-
timate demand-probability distributions. This is par-
ticularly challenging because there was no sales his-
tory for any of the new dresses. However, we were
able to calculate forecast errors, defined as the differ-
ence between buyer forecast and actual sales for sim-
ilar products appearing in the same catalog from the
past two years. We used this information to conclude

that the distribution of forecast errors was normally
distributed with a large degree of confidence (�2 test
holds at � � 0.01 level). We assumed that forecast
errors would follow a similar distribution in past and
future seasons. This seemed reasonable because the
same individuals who forecasted product demand in
the past were also forecasting current season de-
mand.

Because the demand for any given product is equal
to its forecast plus the associated forecast error, this
implies that the demand distribution for U for a given
product during the entire season is normally distrib-
uted. While probability distributions for retail prod-
ucts seem to have long tails, these result from plot-
ting actual demand for products that seem
indistinguishable (or at least similar) ex ante. How-
ever, in contrast, U represents the demand distribu-
tion for a given product.

To estimate normal parameters � and � of this dis-
tribution, we implemented the procedure developed
by Fisher and Raman (1996). In this method, the
members of a committee (comprised of four buyers
in our case) independently provide a forecast of sales
for each product. The mean � is set to the average of
these forecasts. The standard deviation of demand �

is set to ��c, where �c is the standard deviation of the
individual committee member’s forecasts and the fac-
tor � is chosen so that the average standard deviation
of historical forecast errors equals the average stan-
dard deviation assigned to new products. In our ap-
plication, we found � to be 1.4.

To estimate the parameters of distribution X and
R, where U � X � R, we assume that (X, R) follows
a nondegenerate bivariate normal distribution. For
this distribution, it is well known (Bickel and Dock-
sum 1977) that the marginal distribution of X is an
univariate normal distribution with mean �x and
standard deviation �x, while the marginal distribu-
tion of R is also normally distributed with mean �R

and standard deviation �R. Let kt represent the pro-
portion of total sales until reorder point t, �t the cor-
relation between X and R, and �t the correlation be-
tween X and U. We estimate kt, �t, and �t from
historical data and use the formulas developed in
Fisher and Raman (1996) to calculate
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Figure 3 Committee Standard Deviation Versus Forecast Error

2(1 � � )t� � k �, � � � � � � ,x t X t t 2[ ]�(1 � � )t

2(1 � � )t� � k (1 � �), and � � � .R t R 2�(1 � � )t

For the bivariate normal distribution (X, R), note that
the updated distribution R/X � x is also normally
distributed with mean �R/X � �R � �t(x � �X)�R/�X

and standard deviation �R/X � �R�1 � � . Because2
t

0 � �t � 1, this implies that �R/X � �R. Thus forecast
updating based on actual sales x reduces variance in
the distribution of demand during the remaining sea-
son and permits a more accurate forecast. By using
replenishment, the retailer can take advantage of this
improved forecast by placing a more precise reorder
that directly contributes to higher expected profits
during the remaining season.

To better understand the nature of forecast errors,
we compared the standard deviation of the commit-
tee forecast for individual products at the beginning
of the season (i.e., �c) with its corresponding forecast
error. These results, shown in Figure 3, suggest that
when the committee agrees, they tend to be accurate,
and that the committee process is a useful way to
determine what you can and cannot predict.

With the exception of the backorder penalty Cb, all
the cost parameters required for our analysis were
readily available. Estimating the backorder penalty is
challenging in practice because, in addition to the $1
per-unit extra-transaction cost for procurement and
distribution associated with a backorder, there is an

intangible cost because of customer ill will. The com-
pany was uncertain as to the exact value of the ill-
will cost, but felt a value of Cb in the range $5 to $15
was reasonable. We applied our analysis to three cas-
es using $5, $10, and $15 per unit as values of Cb. We
also analyzed the case Cb � 1 to insure that our heu-
ristic did not outperform the current rules because we
assessed an ill-will cost that was not used in the cur-
rent rule.

Note that although ill-will costs can also be added
to Cu, we did not add them because an ill-will cost
in this application was charged only because man-
agement was mainly interested in insuring that flex-
ibility to backorder was not abused. Given the values
of Cu and Co, if Cb � 0, then it is optimal to set Q1 �

0 and backorder all first-period demand. But, these
excessive backorders would likely reduce market
share in the long term. The omission of ill-will costs
in Cu does not affect the analysis because, depending
on the product, Cu was two to four times greater than
backorder costs, and consequently, it would never be
optimal to not satisfy demand to avoid a backorder.

As a practical matter, we found that historically
around 5% of customers chose not to accept the offer
to backorder at this retailer. Consequently, we adjust-
ed the backorder cost to account for this fraction of
lost sales by defining an effective backorder cost, C�b
� 0.95·Cb � 0.05·Cu, representing the costs of a bac-
korder and stockout weighted by the expected frac-
tion of customers who would choose either option.
We replaced Cb with C in the definition of problem�b
(PHr).

The first step in our methodology is to determine
the reorder time. It is important to accurately choose
this time because, if chosen too early in the season,
actual sales will not be sufficient to provide an ac-
curate revision of the second-period demand forecast.
On the other hand, if the reorder time is too far into
the season, the benefit of replenishment is diminished
because it is then used to service only a small portion
of the season. The specific choice of reorder point de-
pends on the proportion of total sales observed dur-
ing the initial weeks and the length of the replenish-
ment leadtime. For instance, if this proportion is high,
there is a long leadtime or both, one would choose
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Figure 4 Reorder Time and Expected Coststhe reorder point early in the season to ensure that a
reasonable proportion of total sales is serviced by the
reorder.

To determine the best reorder time, we used Monte
Carlo simulation with the estimated distributions of
demand to calculate Z(t) for Week t. In this procedure,
for a given reorder time, we estimate the initial-order
quantity using our heuristic. We simulate x (as a re-
alization of X), the distribution of total demand until
the reorder is placed. We use x to calculate the back-
order costs before the reorder is placed, update R/X
� x, and calculate the expected costs during the re-
maining season. We repeat this procedure for several
simulated realizations of X and calculate the expected
costs during the entire season associated with a reor-
der time by averaging the costs associated with each
realization. As discussed previously, using the bivari-
ate normal distribution to model demand (X, R) en-
sures that both X and R are univariate normal distri-
butions and the variance of updated second-period
demand R/X � x is also univariate normal whose var-
iance is now reduced from �R to �R/X � �R�1 � � ).2

t

We repeat the simulation for several choices of re-
order time. The results of this simulation are sum-
marized in Figure 4. Because Z(t) attains its mini-
mum at t � t* � 2, the reorder time is chosen to be
at the end of Week 2. Note that the length of the re-
plenishment leadtime assumed in this analysis is 12
weeks. As the season lasts only 22 weeks, we cannot
reorder after Week 10. Consequently, the value of Z(t)
for t � 10 is set equal to the expected costs incurred
for a single period buy if we set Q1 to Q , the news-s

1

vendor quantity defined on the total distribution of
demand (i.e., Q � F [Cu/(Cu � Co)].s �1

1 2

A key factor that influences the level of profits
gained by replenishment is the proportion of total de-
mand over time observed during the early part of the
season and the time until the reorder arrives. Clearly,
if this proportion is very high, then the benefits of
replenishment are limited, as the reorder would only
serve a small proportion of total-season demand. In
our application, we found that historically, for similar
product lines, 10% of total demand is observed when
the reorder is placed after two weeks, and 50% of

demand is observed at Week 10 when the reorder ar-
rives. These values confirmed that replenishment
based on actual sales was a viable strategy for the
chosen product line and motivated us to apply our
method to determine initial- and replenishment-order
quantities.

For the 120 styles/colors in this department, we
determined the initial-order quantity by solving
problem (PHr) using the heuristic modified to include
returns. We then observed x, the sales until the sec-
ond week, and set the reorder quantity Q2 using the
procedure developed in § 5. Because at the end of the
season we knew total sales and actual sales per week
for each dress, we were able to calculate the stock-
outs, overstock, backorders, dollar sales, and profits
that would have resulted from our ordering policy.
To compare our method with the current ordering
rules, we also calculated these values for the current
policy. The results consolidated across all the 120
dresses are tabulated in Table 1.

Observe that although the total orders placed by
our method and existing practice are similar, the
composition of these orders across the two periods is
different. Our heuristic reduces overstocks, stockouts,
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Table 1 Comparison of the Two-Period Newsvendor Heuristic with
Current Practice

Current
Rule

Model
CiB � $5

Model
CiB � $10

Model
CiB � $15

Initial Order
Reorder
Total Buy
Overstock
Omits
Backorders
Profit ($)
Sales ($)

19050
2816

21866
7689
3712
6534

431696
1317889

14479
5229

19708
4924
2998
8643

496597
1301579

18015
3931

21946
7061
2566
6969

445384
1372926

20680
3179

23859
8925
2423
5989

395782
1422108

Profit Increase By Model
(As % Current Sales) 4.92 3.52 2.23

Figure 5 Replenishment Costs and Leadtimes

and backorders enough to increase profits compared
with the current rule from 2.23% to 4.92% of current
sales, depending on the value of Cb. Profit before tax
for this retailer is around 3% of sales. Consequently,
our heuristic offers the potential to approximately
double profit.

Our results also show the impact of Cb on the so-
lution. Order quantities for the current rule do not
change because the current rule does not consider Cb

in determining order quantities. When Cb � $5, we
order a smaller initial quantity because backorders
are now relatively less expensive. This in turn increas-
es backorders and stockouts but reduces overstocks,
which increases profit improvement from 3.52% to
4.92%. On the other hand, when Cb � $15, we order
a larger initial quantity because backorders are rela-
tively more expensive. This reduces backorders and
stockouts but increases overstocks, which reduces the
profit improvement from 3.52% to 2.23%.

To insure that our heuristic did not outperform the
current rules because we assessed an ill-will cost that
was not used in the current rules (possibly because ill-
will costs were not recorded in the books), we also
considered the case when Cb � 1. Here, Cb only con-
sists of the additional transaction cost per unit of pro-
curement and distribution associated with a backorder.
As expected, our heuristic ordered a substantially
smaller amount initially than the cases with larger val-
ues of Cb. This in turn increased backorders and stock-
outs, but reduced overstocks. Over all, the profit im-
provement over the current rules increased to 5.52%.

This is consistent with the general pattern in Table 1,
which shows profit improvement increasing as Cb de-
creases.

This analysis assumes a replenishment leadtime of
12 weeks. It is easy to understand that reducing this
time could potentially increase the benefits of replen-
ishment, because a greater portion of the season can
be serviced from the more accurate reorder. However,
it is important to precisely calculate this benefit to
justify the costs of leadtime reduction. Our method-
ology provides a framework to analyze these benefits
both before and after sales are realized. To perform
this analysis before actual sales are realized, we use
a simulation to calculate expected costs for different
values of leadtimes. Using actual sales, and for the
case in which Cb � 10, we performed an analysis
identical to the one used to obtain the results report-
ed in Table 1, but using the new choices of the lead-
time. These results are summarized in Figure 5 and
indicate that the length of the replenishment lead-
times significantly influences the benefits of replen-
ishments. This type of analysis could be used to de-
cide between a domestic supplier with typically



FISHER, RAJARAM, AND RAMAN
Optimizing Inventory Replenishment of Retail Fashion Products

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

Vol. 3, No. 3, Summer 2001240

Table 2 Percentage Performance Gap Between the Two-Period News-
vendor Heuristic and a Simulation-Based Optimization Method
for Different Levels of Demand Correlations

Correlation
Performance Gap

(%) Correlation
Performance Gap

(%)

0
�0.1
�0.2
�0.3
�0.4
�0.5
�0.6
�0.7
�0.8
�0.9
�0.99

5.2
4.15
3.1
1.8
1.5
1.2
1.1
0.8
0.5
0.3
0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.99

5.2
4
3
1.7
1.4
1.3
0.9
0.7
0.6
0.2
0.07

higher costs but shorter leadtimes and a foreign sup-
plier with relatively low costs but long leadtimes.

To further evaluate the quality of this heuristic, we
solved (P1) using a simulation-based optimization
method.1 In this technique, we use simulation to nu-
merically compute C(Q1) for selected values of Q1 in
the range [0, Q*], where Q* � F [Cu/(Cu � Co)] is�1

2

the newsvendor quantity2 defined across the whole
distribution of demand. Finally, we set Z(t) �

C(Q1). In the case where Cb � 10, this tech-*min0�Q�Q1

nique improved profit relative to the current rule by
around 3% of current sales, a lower improvement
than was achieved with our heuristic. In the cases
where Cb equaled 5 or 15, the profit improvement was
also marginally less than achieved with our heuristic.

In addition to resulting in a smaller profit gain
than the two-period newsvendor heuristic, we found
that the solution time for this technique was around
40 hours on a Dell Pentium II PC, as compared with
less than a minute for the two-period newsvendor
heuristic. These results provide strong justification for
using this heuristic in this application.

We also considered the impact on performance of
correlation between early and later demand. In our
application, across all products, we found the corre-
lation between X and Y to be around 0.96 and be-
tween X and W to be about 0.95. In view of Propo-
sition 1, such high correlation suggests that the
heuristic solution is very close to the optimal solution
for this problem.

We performed a computational study to evaluate
the performance of the heuristic for different levels of
correlation between early and later season demand.
Define �1 as the correlation between X and Y and �2

as the correlation between X and W. For simplicity,
we set �1 � �2 � � and vary � from 0 to 0.99 in steps
of 0.1. For a given value of �, and using the committee

1Please refer to Ermoliv and Wetts (1998), ‘‘Numerical Techniques
for Stochastic Optimization,’’ Springler Verlag, New York, for a the-
oretical justification and a detailed description of this technique. The
same simulation-based technique is used to numerically estimate
C2(Q1, x) required in the computation of C(Q1). Here we vary I over
the range [0, 10Q*] and set C2(Q1, x) � min0�I�10Q* C2(I).
2We choose this value because it is highly unlikely that an initial-
order quantity greater than this quantity would not be sufficient to
cover sales during the periods before the replenishment arrives.

estimates of � and � for each product, we calculated
Q1 using the heuristic and using the simulation-based
optimization method. We then used these values of
the initial-order quantities and Monte Carlo simula-
tion with the estimated distribution of U for each
product to calculate expected costs for each tech-
nique.

For a given value of �, let Ch represent the total
expected cost of the heuristic across all products, and
let Cs represent the corresponding total cost of the
simulation-based optimization procedure. The per-
centage-performance gap of the heuristic is defined
as (Ch � Cs)/Cs � 100%. We report the percentage-
performance gap across a range of values for demand
correlation in Table 2. For each level of demand cor-
relation, the run times for the heuristic across all the
products was less than a minute, while the equivalent
run time for the optimization approach was around
forty hours.

The results in Table 2 show that this gap varies
from 0.06% to 5.2%, with the highest gaps occurring
at the lowest levels of correlation. These results sug-
gest that the heuristic provides an efficient basis to
address this problem, even for cases that have modest
levels of correlation (e.g., ��� � 0.3) between early and
later sales. Because fashion replenishment makes
most sense for products with some degree of corre-
lation between early and later sales, this heuristic
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seems to be an accurate, simple, and intuitive way for
a retailer to implement this strategy.

In conclusion, we believe that the method described
here provides a useful framework to improve the ac-
curacy and analyze several crucial aspects of replen-
ishment-based planning.
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