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We formulate the dynamic product-cycling problem with yield uncertainty and buffer limits to determine how much product to produce at
what time to minimize total expected switching, production, inventory storage, and backorder costs. A “restricted” Lagrangian technique is
used to develop a lower bound and a model-based Lagrangian heuristic. We also develop an operational heuristic and a greedy heuristic.
The operational heuristic has been implemented at seven refineries at Cerestar, Europe’s leading manufacturer of wheat-and corn-based
starch products in the food-processing industry. This has already reduced total costs by around 5 percent or $3 million annually at these
sites. Tests of the Lagrangian heuristic on data from these refineries during this period have shown the potential to further reduce total costs
by at least 2 percent or about $1 million. In addition, the Lagrangian heuristic has provided an objective basis to evaluate the economic
impact of several strategic decisions involving issues such as buffer expansion, variability reduction, and product selection.

1. INTRODUCTION

In many process industries, a single, capital intensive,
highly specialized process such as a refinery manufactures
only a few products. Typically, such processes are dedi-
cated to a single product at a time, and incur significant
downtimes and costs when products are switched and pro-
duction yields are uncertain. Examples of such manufactur-
ing processes can be found across many process industry
sectors including food processing, glass and paper manu-
facturing, chip fabrication, metal fabrication, plastic extru-
sion and moulding, and semicontinuous chemical processes
found in the petrochemical and pharmaceutical industry.
The key production-planning problem in these processes
is to determine which products to produce at which time
to meet demand in the most cost-effective manner. This
type of problem is commonly called a “product-cycling”
problem because the process switches between products,
although products are not usually produced in the same
repetitive cycle.
In these processes, while one product is being produced,

inventory for all other products is being decreased by
demand. Since these products are usually commodities and
are intermediary in nature, short-term demand is known,
but could be variable during the planning horizon. On the
other hand, production yield is uncertain due to the charac-
teristics of the chemical processes in many of these oper-
ations. However, using historical production data, we can
derive the distribution of yield realizations for each prod-
uct during a production period. There are variable costs
incurred for holding inventory between periods, for back-
orders and for production. There are limits on the total
amount of inventory that can be accumulated; beyond these

limits, significant handling costs are incurred. At each prod-
uct changeover, fixed-switching costs are incurred and pro-
duction time is lost. In addition, the switching costs and
times may be sequence dependent. In this paper, we formu-
late and solve the resulting dynamic product-cycling prob-
lem with yield uncertainty and buffer limits to determine
which product to produce at which times to minimize total
expected switching, production, inventory storage (includ-
ing holding and handling), and backorder costs.
The static, constant demand, deterministic yield, con-

tinuous time version of the product-cycling problem is
well known (Elmaghraby 1978, Dobson 1987). Bourland
et al. (1997) consider this problem when the yield rate
is deterministic but increasing with the duration of the
production run. The discrete period, dynamic version has
received less attention. This problem with deterministic
yield and demand has been considered by Karmarkar
and Scharge (1985), Salomon et al. (1989), Fleischmann
(1990), Salomon (1990), and Pochet and Wolsey (1991).
The static discrete-period problem with deterministic yield
and stochastic demand has been studied by Graves (1980),
who develops heuristic solution techniques. The dynamic
version of this problem has been studied by Karmarkar
and Yoo (1994), who present decomposition techniques and
report computational studies on small-scale problems.
The problem considered here differs from the problems

addressed by these papers in several ways. First, while
there has been a considerable body of work dealing with
lot sizing under yield uncertainty (Yano and Lee 1995),
the authors are not aware of any work that formulates and
solves the dynamic product-cycling problem with uncer-
tain yield, encountered in many process industry settings.
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Second, much of the literature to date addresses prob-
lems that are both small in size and of a structure sim-
ple enough to be solved using commercially available math
programming software. In contrast, the problem we con-
sider is more complex. In our computational experience,
we observe that powerful commercial software tools cannot
generate feasible solutions to even small problem instances.
Consequently, we develop bounds and heuristics, designed
to solve large-sized practical problems to near optimality.
Finally, to the best of our knowledge, this is the first known
application of these methods to the food-processing indus-
try. We consider the dynamic product-cycling problem with
uncertain yields and buffer limits faced at seven refiner-
ies of Cerestar, Europe’s leading manufacturer of starch
and wheat-based products in the food-processing industry.
The methodologies developed to address this problem are
validated and implemented at these seven sites as part of
a broader multiyear research project described in Rajaram
et al. (1999). This work has had a major economic, strate-
gic, and organizational impact at this company.
This paper is organized as follows. In the next section,

we formulate the dynamic product-cycling problem with
yield uncertainty and buffer limits as a stochastic dynamic
program with mixed continuous and (0-1) integer variables.
Except in special cases, the state space of this problem is
too large to allow the use of conventional dynamic pro-
gramming techniques. Consequently in §3, we employ a
“restricted” Lagrangian decomposition approach to decou-
ple the problem into more manageable pieces and provide
a lower bound on expected costs. In §4, we use the solution
of the decomposition to develop a model-based Lagrangian
heuristic and also describe an operational heuristic and a
greedy heuristic. The solutions provided by these heuristics
provide an upper bound on optimal expected costs. In §5,
we perform a computational study to test the performance
of these heuristics. In §6, we describe the application of our
method at seven of Cerestar’s refineries. In the concluding
section, we summarize our work and discuss its economic,
strategic, and organizational impact at Cerestar.

2. MODEL FORMULATION

Consider a manufacturing process producing m products
and let i ∈ I = �1� � � �m� index the set of products. These
products are produced during n time periods indexed by t ∈
T = �1� � � � n� to meet a prespecified level of demand during
each period. However, output during each period varies due
to yield uncertainty. Product changeovers take place during
the beginning of the period and require a fixed downtime.
Only one type of product can be produced during each
period. To decide what product, when, and how much to
produce, define the variables:

Yit =
{
1 if product i is produced in period t�

0 otherwise,

Zjit =
1 if we switch from product j to product i

at the begining of period t,

0 otherwise.

We are given:

Dit = demand for product i during period t
(units demanded/unit-time).

Bi = maximum storage level for product i
(units stored).

Sjit = downtime incurred when we switch from product
j to product i at the beginning of period t
(fraction of length of period t).
We assume that Siit = 0.

Kjit= cost for switching over from product j
to product i at beginning of period t.
We assume that Kiit = 0.

Cit = cost of producing product i in period t ($).
hi = holding cost per unit of product i ($/unit-time).
ei = handling cost per unit of product i in

excess of available buffer capacity ($/unit-time).
pi = backorder cost per unit of product i ($/unit-time).
ãi = random variable representing the yield distribution

of product i during a production period
(units-produced /unit-time), with āi representing
the expected value of this distribution.

We define Xit = Yit −
∑

j SjitZjit as the fraction of time
period t available for production if we switch over to prod-
uct i at the beginning of period t. Let Ii�t−1� units of inven-
tory be available at the end of period t−1. During period
t, ãiXit units of the ith product are produced. Thus, Ĩit =
ãiXit + Ii�t−1�−Dit units of inventory are available at the
end of period t. For product i in period t, we represent the
expected holding costs of producing more than demanded,
handling costs when we exceed the allocated buffer size
and backorder cost for producing less than demanded by
Lit�Xit , Ii�t−1�� = Eãi �hi�Ĩit�

+ + ei�Ĩit − Bi�+ + pi�−Ĩit�+�.
The dynamic product-switching problem with yield uncer-
tainty is formulated as a stochastic dynamic program with
mixed continuous and (0-1) integer variables, in which dur-
ing the last period of the n period problem, we solve prob-
lem (Pn), where:

�n�Yn−1� In−1�=Min
Yn�Zn

∑
i

{
CinYin+

∑
j

KjinZjin �Pn�

+Lin�Xin� Ii�n−1��

}
subject to

�1n� Xin = Yin−
∑
j

SjinZjin ∀ i�

�2n� Zjin � Yin+Yj�n−1�−1 ∀ i�
�3n�

∑
i

Yin = 1�

�4n� Yin�Zijn ∈ �0�1� ∀ i�
�5n� Xin � ∀ i�
In this problem, we minimize the total expected pro-

duction, switching, inventory storage (including holding
and handling) and backorder costs during the nth period.
Constraint (1n) calculates the time per period available
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for production. Constraint (2n) ensures that Zjin = 1 if
we switch from product j to product i at the beginning
of period n. Constraint (3n) enforces that only one prod-
uct is produced per period, while integrality and nonzero
conditions are enforced by Constraints (4n) and (5n). For
t = 1�2� � � � n−1, we solve problem Pt where:

�t�Yt−1� Ĩt−1�=Min
Yt�Zt

∑
i

{
CitYit+

∑
j

KjitZijt �Pt�

+Lit�Xit�+Eãi ��t+1�Yt� Ĩt��

}
subject to

�1t� Xit = Yit−
∑
j

SjitZjit ∀ i�

�2t� Zjit � Yit+Yj�t−1�−1 ∀ i�
�3t�

∑
i

Yit = 1�

�4t� Yit�Zijt ∈ �0�1� ∀ i�
�5t� Xit � 0 ∀ i�
The optimal solution for the entire time horizon is obtained
by solving problem (P1� and has the value �1�Y0� I0�. This
stochastic-dynamic problem is difficult to solve due to the
large state space, as the inventory and product state vari-
ables can take on a large set of values. It can be shown that
even if we restrict In to a finite set of values by assuming
a discrete distribution of yield, this set can take (In�

nm3n
values. Consequently, we elected to develop a Lagrangian
relaxation of the problem to provide lower bounds and use
this solution to construct and evaluate heuristics to address
this problem.
In general, the choice of the specific multiplier values

used in the relaxation could be deferred until the starting
state in the given period is known. However, the multipli-
ers would then effectively be functions of random variables
representing the yield in the previous period. To make the
computations tractable, we treat the multipliers as though
they are fixed at the start of the problem. In effect, the
choice of the multipliers is being restricted to the class
of constant functions. This “restricted Lagrangian method”
led to promising results when applied to stochastic mul-
tiperiod, multilocation inventory-allocation problems by
Karmarkar (1987). However, the same technique applied
to a combinatoric-stochastic problem by Karmarkar and
Yoo (1994) was much less successful. An essentially sim-
ilar decomposition technique in a continuous time, convex
control setting was proposed by Kleindorfer (1973) and
Kleindorfer and Glover (1973), who did not examine the
computational viability of their method. In the next sec-
tion, we apply this technique to decompose the problem
and generate lower bounds.

3. PROBLEM DECOMPOSITION
AND LOWER BOUNDS

To develop an appropriate decomposition, we first con-
sider problem (Pn�. This problem consists of a process-

switching problem in which we decide what product to
produce in each period based on minimizing switchover
and variable production costs per period and a production-
inventory problem in which we make a production decision
based on minimizing expected inventory storage and back-
order costs. These problems are linked together by Con-
straint (1n). We relax this constraint by introducing multi-
pliers  in, separating the process-switching problem from
the production-inventory problem, which results in the fol-
lowing subproblems in period n:

Wn�Yn−1� in�=Min
Yn�Zn

∑
i

{
�Cin− in�Yin �PSn�

+∑
i

∑
j

�Kjin+ inSjin�Zjin
}

subject to �2n�� �3n�� �4n��

Uin�Ii�n−1�� in�=Min
Xin

 inXin+Lin�Xin� Ii�n−1�� �PI in�

subject to (5n),

#n�Yn−1� Ii�n−1�� in�=Wn�Yn−1� in� �PRt�

+∑
i

Uin�Ii�n−1�� in��

The relaxed problem (PRn) consists of a process-
switching problem (PSn) and m production inventory prob-
lems (PIin), i= 1 to m, each corresponding to an individual
product. In period t, we solve:

Wt�Yt−1� t�=Min
Yn�Zn

∑
i

{
�Cit− it�Yit �PSt�

+∑
i

∑
j

�Kjit+ itSjit�Zjit

+Wt+1�Yt� t+1�

}
subject to �2t�� �3t�� �4t�,

Uit�Ii�t−1�� it�=Min
Xin

 itXit+Lit�Xit� Ii�t−1�� �PI it�

+Eãi �Ui�t+1��Ĩit� i�t+1���

subject to �5t�,

#t�Yt−1� Ii�t−1�� it�=Wt�Yt−1� it� �PRt�

+∑
i

Uit�Ii�t−1�� it��

We solve the process-switching problem (PSt) at t = 1 by
a straightforward dynamic programming algorithm of com-
plexity O�m2n�. This algorithm is described in detail in the
Appendix.
The production-inventory problem for the ith product at

the nth period is a problem similar to the classic newsboy
problem. In this problem, demand for the product is known
in the short term, but production quantity is unknown due
to yield uncertainty. This type of problem is known to occur
in several process industries including petroleum refining,
petrochemical, glass, pharmaceutical, and food-processing
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industries where demand is known in the short term, but
production varies due to uncertainty in the yield of the
chemical reactions used in these processes. Bollapragada
and Morton (1999) study the stationary version of this
problem with demand uncertainty across an infinite hori-
zon. We next develop the solution to (PIin).

Proposition 3.1. Let X∗
in be the optimal solution to prob-

lem (PIin). Then, if random variable ãi has distribution
function Fi�ai� and 'i�k�=

∫ k
0 ãi)Fi�ai� for any real k, X

∗
in

satisfies:

'i

(
Din− Ii�n−1�

X∗
in

)
+ ei
hi+pi

'i

(
Din+Bi− Ii�n−1�

X∗
in

)
=  in+ �hi+ ei�āi

hi+pi
�

Proof. Let *i�Xin�, Ii�n−1�� =  inXin+Lin�Xin, Ii�n−1�� =
 inXin + Eãi �hi�Ĩin�

+ + ei�Ĩin − Bi�
+ + pi�−Ĩin�+�, where

Ĩin = ãiXin+ Ii�n−1�−Din. Then,

)*i�Xin� Ii�n−1��

)Xin

=  in+hi
∫ 	
Din−Ii�n−1�

Xin

ãi)F �ai�+ ei
∫ 	
Din+Bi−Ii�n−1�

Xin

ãi)F �ai�

−Pi'i

(
Din− Ii�n−1�

Xin

)
and

)2*i�Xin� Ii�n−1��

)X2
in

= �hi+pi�
�Din− Ii�n−1��

2

X3
in

)F

(
Din− Ii�n−1�

Xin

)
+ ei

�Din+Bi− Ii�n−1��
2

X3
in

)F

(
Din+Bi− Ii�n−1�

Xin

)
� 0�

Thus, the condition )*i�X
∗
in� Ii�n−1��/)X

∗
in = 0 is both nec-

essary and sufficient to establish the optimality of this prob-
lem at X∗

in. We use this condition along with the fact that
āi =

∫	
0 ãi)Fi�ai�='i�k�+

∫	
k
ãi)Fi�ai� and rearrange and

group terms to derive the required result.

Proposition 3.2. Uin�Ii�n−1�� in� is a convex function of
Ii�n−1�.

Proof.

Uin�Ii�n−1�� in�=  inX
∗
in+L�X∗

in� Ii�n−1��

=  inX
∗
in+Eãi �hi�Ĩin�++ ei�Ĩin−Bi�+

+pi�−Ĩin�+��

where Ĩin = ãiXin+ Ii�n−1�−Din.

)Uin�Ii�n−1�� in�

)Ii�n−1�

= hi

(
1−F

(
Din− Ii�n−1�

Xin

))
+ ei

(
1−F

(
Din+Bi− Ii�n−1�

Xin

))
−piF

(
Din− Ii�n−1�

Xin

)
�

)U 2
in�Ii�n−1�� in�

)I 2i�n−1�

= �hi+pi�)F
(
Din− Ii�n−1�

Xin

)
+ ei)F

(
Din+Bi− Ii�n−1�

Xin

)
� 0�

Thus, Uin(Ii�n−1�,  in) is convex in Ii�n−1�.

Using these propositions and the fact that the expecta-
tion operator preserves convexity, we solve m multiperiod
production-inventory problems (PIit� at each period t using
backward recursion for a particular choice of multipli-
ers. The computational procedure for solving this prob-
lem is included in the Appendix. If switchover times are
sequence independent (i.e., Sjit = Sit , for all i� j), this
computation is greatly simplified since during any period,
Xit ∈ �0�1− Sit�1�. To get a tight lower bound, we solve
the Lagrangian dual problem (PDt) defined as:

�̄t�Yt−1� Ii�t−1��=Max
 it

#t�Yt−1� Ii�t−1�� it�� �PDt�

To solve the Lagrangian-dual problem (PDt�, in principle,
we could use a subgradient search method over the multi-
pliers to tighten the bound as much as possible. This proce-
dure (e.g., Bertsekas 1995) has been successfully applied to
address a variety of large-scale deterministic-combinatorial
problems. In this problem, this subgradient depends on
the expected production schedule for product i during the
remaining (n− t) periods. Thus, this procedure would be
computationally prohibitive for a practical-sized problem.
To develop an alternate procedure, we note that multi-

plier  ij can be interpreted as a credit for switching to
product i in period j. From any given heuristic solution in
which we know what product we produce in a given time
period, we estimate a trial value for  ij as:

 ij =



pi if
j−1∑
t=1

āiYit <
n∑
t=1

Dit�

−nhi if
n∑
t=1

Dit �

j−1∑
t=1

āiYit �
n∑
t=1

Dit+Bi�

−nhi− ei if
j−1∑
t=1

āiYit >
n∑
t=1

Dit+Bi�

Here, we set the multiplier (the credit gained from switch-
ing to product i) to the backorder cost if the expected quan-
tity produced until period j − 1 is smaller than the total
demand required over the planning horizon. If we switch
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to this product when the quantity produced until period
j−1 exceeds the total demand over the planning horizon,
but within the buffer limits, this credit becomes a holding
penalty for the excess inventory across the entire planning
horizon. Finally, if the resulting inventory exceeds buffer
limits, we would incur handling costs in addition to hold-
ing costs.
We use the lower bound generated by this procedure to

evaluate the quality of the heuristics developed to address
this problem. If this lower bound is used to generate a
model-based Lagrangian heuristic, we perform this proce-
dure in an iterative manner until the gap between the heuris-
tic and lower bound either reaches an acceptable value or
does not show any further reduction.

4. HEURISTICS AND UPPER BOUNDS

In general, the lower bound solution to problem (Pt) may
not be feasible since Constraint (1t) is violated. Conse-
quently, we developed heuristics to solve this problem.
We first present an intuitive operational heuristic, which
was initially developed for the application to enable plan-
ners to understand and develop confidence in our approach,
improve upon current practice, and better appreciate the
gains of implementing more detailed heuristics. Next, we
describe a greedy heuristic that is more involved than the
operational heuristic, but does not use the decomposition
of problem. Finally, we develop a model-based Lagrangian
heuristic that uses the solution of the decomposition of
problem (Pt) described in §3 to develop a feasible solution.

Operational Heuristic

In the operational heuristic, we use the process-inventory
constraints and the actual inventory positions of the prod-
ucts at the beginning of the period to decide whether to con-
tinue with the campaign for the current product or switch
over to a different product during that period. To describe
this procedure, we introduce the following notation:

V
�max�
i = maximum permissible inventory for

the ith product (units stored).
V
�min�
i = minimum permissible inventory

for the ith product (units stored).
V a
it = actual total inventory of the ith product at the

beginning of time period t (units stored).
Ti� sh = time required to shut down the ith product

under production. This is independent of the
next product to be produced (fraction of
length of period t).

Assume that the ith product is being produced in period
(t−1). At the beginning of period t, we define the follow-
ing constraints:

V a
it + �āi−Dit�Ti� sh � V

�max�
i � (1)

V a
jt−DjtSijt � V

�min�
j ∀ j 
= i� (2)

Constraint (1) imposes the condition that while the ith
product is being produced, actual inventory at the tank
and the maximum expected inventory build-up during shut-
down should always be lower than its maximum permis-
sible inventory. The remaining constraints for each prod-
uct not under production each enforces the condition that
the actual inventory and the maximum expected inventory
depletion during its switchover should always be greater
than its minimum permissible inventory.
To implement this heuristic, using real time data on

actual inventory positions at the beginning of period t, we
check the feasibility of these m constraints. If none of them
are violated, we continue to produce product i until the
beginning of period t+1 and restart this procedure. If Con-
straint (1) is violated, we switch to that product for which
Constraint (2) is tightest. Otherwise, if Constraint (2) is
violated for one or more products, we switch to the product
with the greatest associated violation.
It is important to recognize that in this heuristic we mini-

mize the number of basic grade switches and maximize the
duration of a production campaign by initiating a switch
only when the demand-dependant boundary conditions rep-
resented by these constraints are violated.

Greedy Heuristic

In the greedy heuristic, we use the expected cost at a
given period represented by the production, switching, and
expected inventory holding, backorder, and handling costs
to decide which product to produce at that particular time
period. To formalize the greedy heuristic, assume without
loss of generality that product f was produced in period
(t− 1) and product i is being considered for production
in period t. Then, let �Vit represent the expected inven-
tory level of product i at the end of period t, where �Vit =
āiXit+V a

it−Dit . The expected inventory backorder or hold-
ing and handling costs associated with �Vit are represented
by ëit = hi��Vit�++ei��Vit−Bi�++pi�−�Vit�+. Similarly, we
let �Vjt = V a

jt−Djt be the inventory level for product j 
= i

and let ëjt = hj��Vjt�+ + ej��Vjt −Bi�+ + pj�−�Vjt�+ repre-
sent the associated expected inventory cost. In the greedy
heuristic, we produce product g at the beginning of period
t, where

g = argmin
i=1tom

{
Cit+Kfit+ ëit+

∑
j 
=i
ëjt

}
�

It is important to recognize that in this heuristic, we pro-
duce the product with results in the smallest expected costs
during a given period.

Lagrangian Heuristic

In the process-switching problem, decisions on which prod-
uct to produce and when to produce are made by mini-
mizing production and switching costs. In the Lagrangian
heuristic, we adjust the solution of the process-switching
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problem to ensure that each product realizes at least Ri
runs, where

Ri =
∑n

t=1Din

āi
+
(
n−

m∑
i=1

�
∑n

t=1Din�

āi

)( �Si∑m
i=1

�Si

)
�

Here, āi is the expected yield per period for product i,
while �Si represents the average downtime incurred when we
switch over to product i. The first term of this equation rep-
resents the minimum expected number of runs required to
meet total demand during the planning horizon. The second
term represents the residual time allocated to this product
to compensate for switching downtimes. This allocation is
achieved by partitioning the total remaining time across the
horizon in proportion to the magnitude of average switch-
ing downtimes.
To adjust the solution of the process-switching problem

so that each product realizes Ri runs, we define the follow-
ing:

k = iteration index.
Rki = number of runs required at iteration k.
tk = start time of iteration k.
Ik = index set of products at iteration k.

The planning horizon is adjusted to accommodate Ri
runs of the ith product using the following procedure.

Step 0: Initialization: k = 0, tk = 0 and Ik = I .

Step 1: Elimination:
1.1. Solve the process-switching problem
starting at period tk.
1.2. Let product p be the first product to reach
its limit Rp in time period t.
1.3. Update Ik+1 = Ik− �p�.
1.4. If Ik+1 = � �, Stop. Else go to Step 2.

Step 2: Recalculation:
2.1. Update Rk+1

i = Ri−Rki ∀ iåIk+1.
2.2. Set k = k+1 and tk = t and go to Step 1.

Note that for a given product, by aiming to meet total
demand during the planning horizon, this heuristic indi-
rectly incorporates inventory storage and backorder costs,
and thus embeds the production inventory aspect in the
process-switching problem. It can be shown that this heuris-
tic is of complexity O�m2n2�.

5. COMPUTATIONAL STUDY

To test the performance of these heuristics and of the lower
bound we used a data set from Cerestar’s largest glucose
refinery located at Sas van Gent in the Netherlands. This
data set consisted of all input parameters required for this
problem for seven products (also known as basic grades)
produced in the refining process. These included cost
parameters such as production, switching, inventory stor-
age (holding and handling), and backorder costs; process
parameters such as yield distributions, switching down-
times, and buffer limits, and finally, demand for each basic

grade. Data was provided for a three-month or 92-day
duration. This process operates continuously on a three-
shift basis and each period was set to one shift of eight
hours. Thus, we had data across 276 continuous shifts or
periods. The planning horizon was typically one week or
21 periods.
Recall that the objective function of the product-

switching problem at any period consisted of production,
switching, inventory backorder, and holding and handling
costs. To analyze the relative proportions of these costs,
define:

R1 =
∑7

i=1
�Ki�Ci

7
and R2 =

∑7
i=1

�pi+hi+ei�
��Ci/�Di�
7

�

where

�Ki =
∑276

t=1

(∑
j 
=i Kjit
6

)
276

� �Ci =
∑276

t=1Cit
276

� and

�Di =
∑276

t=1Dit

276
�

Here, we first calculate the ratios of the average switch-
ing cost to the average production cost per period for each
product across the entire data set. We then define R1 as the
average of the ratios across the seven products. Next, we
calculate the ratio of the inventory costs consisting of unit
backorder, and holding and handling costs to the average
unit production costs and similarly define R2 as the aver-
age of these ratios across these products. For the reference
data set, R1 = 3�8 and R2 = 2�1.
We tested how sensitive our heuristics and bounding

techniques were to the scale of these cost parameters. To
perform this analysis, across all the products, we scaled
the switching costs by 1/3, 1/2, 2, and 3 (i.e., changing
R1 by these factors), scaled the inventory cost by the same
factors (i.e., changing R2 by the same factors), and finally
scaled the production costs by these factors. Our scaling
factors were chosen by roughly estimating such costs across
industries like petrochemicals, food processing, and phar-
maceuticals based upon informal discussions with man-
agers in these industries. This scaling in effect ensured that
the cost proportions of this data were representative across
this spectrum of industries. Note that our scaling procedure
results in 64 (i.e., 4× 4× 4) data sets generated from the
reference problem.
For each of the 64 data sets, we used simulation to deter-

mine the production yield realization in each period. We
next used the operational, greedy, and Lagrangian heuristic
to develop the production plan and its associated expected
cost corresponding to these yield realizations. We also com-
puted a lower bound on expected costs for each data set
using the scheme developed in §3. All of these analyses
were done using Matlab (Mathworks Inc. 1998) and a spe-
cialized C program. Each run was solved within few min-
utes on a Dell desktop PC. We define the performance gap
of the heuristic as the increase in the expected cost of a
heuristic solution from the lower bound solution expressed
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as a percentage of the lower bound solution. Across the
64 data sets, the gap of the operational heuristic ranged
from 3.5 to 10 percent averaging around 7 percent, the gap
for the greedy heuristic ranged from 6 to 20 percent aver-
aging around 12 percent, while the gap of the Lagrangian
heuristic ranged from 2.5 to 9 percent averaging around 4.5
percent. Due to the inherent randomness in yield, it was not
possible to find an optimal solution to even small-sized test
problems. Thus, it was difficult to assess the portions of
the gap attributable to the heuristic and to the lower bound
respectively.
We wanted to better understand the circumstances under

which percentage gaps increase. This could provide us with
insights to improve the heuristics and the lower bound. We
observed from our analysis that these gaps are uniformly
higher when production and switching costs are higher or
while inventory storage and backorder costs are lower than
the reference case. Conversely, the gaps are significantly
lower when production and switching costs are lower, or
while inventory storage and backorder costs are higher than
the reference case. It is important to note that these gaps
were reduced in the operational and Lagrangian heuris-
tic largely because the lower bounds became tighter. For
instance, the average solution provided by the lower bounds
increased by an average of 2.8 percent, while the average
solution provided by the operational heuristic decreased
by 0.8 percent, and the Lagrangian heuristic decreased by
0.4 percent. This indicates that both of these heuristics are
fairly stable across a wide range of variation in cost param-
eters, while there could still be potential to improve the
lower bounds. However, we found that the average solution
by the greedy heuristic decreased by 4 percent, suggesting
that the performance of this heuristic was very sensitive to
the relative size of the cost parameters.
In general, the performance of a heuristic to solve this

problem is determined by how well it can incorporate the
planning horizon, costs, and process constraints such as
inventory-storage limits and yield variability. We found that
the expected costs corresponding to the Lagrangian heuris-
tic was on an average 6 percent lower than the greedy
heuristic. The greedy heuristic considers costs directly and
the process constraints indirectly through these costs and
actual inventory levels. In addition to incorporating these
aspects, the Lagrangian heuristic considers the entire plan-
ning horizon and anticipates any changes in the known
demand patterns during this period. We also found that
the average expected cost of the Lagrangian heuristic was
around 3 percent lower than the operational heuristic. We
believe this is because the Lagrangian heuristic, unlike
the operational heuristic, explicitly considers costs and the
entire planning horizon. Finally, we found that the opera-
tional heuristic outperformed the greedy heuristic on aver-
age by 2.5 percent. While both these heuristics are myopic,
we found that since the operational heuristic is not sensi-
tive to the scale of the cost parameters and is always within
process constraints, it is better able to cope with varying
demand patterns within the planning horizon. In light of

these results and the fact that the Lagrangian heuristic cap-
tures all of the aspects of the greedy heuristic in addi-
tion to considering the entire planning horizon, we restrict
our attention to the operational and Lagrangian heuristic in
future analyses.
Other factors that could potentially affect the perfor-

mance of the heuristics and the lower bound include the
degree of variation of demand during the planning hori-
zon and the level of yield variability. To analyze the effect
of these parameters, we calculate the average coefficient
of variation of the weekly demand for each product in the
reference data and define 2D as the average coefficient of
variation across all the products. Similarly, we calculate the
coefficient of variation of the yield distribution for each
product and let 2Y represent the average across all prod-
ucts. For the reference data set, we found that 2D = 0�3,
while 2Y = 0�4. We scaled �2D� 2Y � by factors 1/3, 1/2, 2,
and 3 generating 16 additional data sets from the reference
problem.
Across these data sets, the performance gap of the oper-

ational heuristic averaged around 10 percent ranging from
6 to 15 percent. We observed that as 2D increased the gaps
increased, as the myopic nature of the heuristic was unable
to capture the known, but variable, demand patterns. How-
ever, the lower bound did not change appreciably in these
cases. The performance gap of the Lagrangian heuristic
ranged from 3 to 10 percent averaging around 5 percent.
Here, we observed that as the level of yield variability
increased, both the costs of the lower bound and the heuris-
tic increased. Finally, we found that across these data sets,
the expected costs of the operational heuristic were around
4 percent higher than that of the Lagrangian heuristic. As
expected, these costs were much higher than the average
for the larger values of 2D. On the other hand, when 2D
was scaled by 1/3 to reach its smallest value and 2Y was
scaled by 3 to achieve its largest value, we found that
the expected cost of the operational heuristic was 1 per-
cent lower than the Lagrangian heuristic. This shows that
for processes with very small levels of demand variation
within the planning horizon, but with an extremely high
degree of yield variability, an operational heuristic using
actual volumes and process constraints may be more effec-
tive than the Lagrangian heuristic that uses a distribution
of yield realizations. However, for most real applications,
we can expect the Lagrangian heuristic to outperform the
operational heuristic as yield variability is seldom allowed
to drift to such levels due to its negative impact on process
productivity and product quality.
Generally in a stochastic-decision problem, it is not valid

to judge the quality of a decision based on an outcome,
as due to randomness a good outcome does not necessar-
ily imply a good decision. However, in this study, since the
evaluation of the heuristics were extensive, based on 64 sets
of data over a three-month period, we are confident that
they would perform well in a real application. In the final
analysis, the real measure of performance of the heuristics
is the quality of the decisions based on its solution, a ques-
tion we consider in the Application (§6).
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6. APPLICATION

We have implemented the operational heuristic as part of a
broader research project described in Rajaram et al. (1999)
to Cerestar, Europe’s leading manufacturer of wheat- and
starch-based products such as glucose, sorbitol, dextrose,
and gluten with annual sales exceeding $2 billion. These
products are used extensively as components in the food-
processing industries (e.g., breweries, confectioneries, and
bakeries), consumer-product industries (e.g., cosmetics and
toothpaste), and other industries such as paper, pharmaceu-
ticals, textiles, and specialty chemicals.
To produce these products, Cerestar operates over 20

different types of industrial-scale processes in 16 plants
located in nine countries. These can be broadly classi-
fied into physical processes such as refining, separation,
grinding, and extracting, and chemical processes, such as
hydrogenating and modifying starch products. Since build-
ing these processes requires major capital investments, it is
crucial that they constantly produce high volumes of output
at the correct quality level. To achieve this goal, these pro-
cesses are characterized by high degrees of automation, are
operated continuously producing one product at a time, and
are usually shut down only a few times a year for scheduled
maintenance. As product changeovers result in long down-
times and considerable setup costs, products are produced
in long campaigns and inventoried subject to buffer limits.
Since the mid-eighties, Cerestar has been aggressively

improving its process-control and product-planning sys-
tems under an initiative called Social Technical Systems
(STS). STS has been widely recognized as a benchmark
for process improvement and has been adapted for similar
processes within and across industries. While STS greatly
improved the performance of existing planning systems at
its processes, Cerestar believed that downtimes and costs
due to switchovers, holding, and lost sales could further be
reduced using advanced analytical models, which is what
led to the involvement of the first author. Such reductions
were critical in this industry, as products are commodi-
ties with market-defined prices and profits can be increased
only by reducing costs and increasing outputs by minimiz-
ing downtimes.
We focused on the refining processes at Cerestar because

refined products accounted for a large part of total profits.
The production planner responsible for a particular refin-
ery decides which product to produce during which shift
based on demand requirements and inventory positions and
provides this input to operators at the beginning of a shift.
Product changeovers, if any, are conducted only at the
beginning of an eight-hour shift. This policy reduces the
overall level of control and coordination complexity during
the shift and offers the potential for the operator to better
understand and learn which parameter settings work well
for a given product across the entire shift.
We were provided with all of the data required to validate

our approach during a three-month period from seven of
Cerestar’s largest refineries located in five countries. Note
that we used the largest data set (based on a refinery at Sas

Table 1. Performance gaps of the heuristic on sample
data over a three-month period from seven
refineries.

Performance Gap Performance Gap
of the Operational of the Lagrangian

Refinery Site Heuristic (Percent) Heuristic (Percent)

Sas van Gent, 6 4
The Netherlands

Manchester, 6 5
United Kingdom

Martorell, Spain 7 6
Castelmassa, Italy 5 3
Haubordin, France 7 5
Krefeld, Germany 5 4
Barbie, Germany 4 3

van Gent producing seven basic grade products) as the ref-
erence in the computational analysis described in the pre-
vious section. We used this data across a rolling planning
horizon of one week to a generate lower bound on expected
costs using the approach outlined in §3 and also generated
an upper bound on expected costs using the Lagrangian and
operational heuristics. The percentage gaps for the seven
refineries are summarized in Table 1. These results sug-
gest that both heuristics perform very favorably; the gaps
associated with the model-based Lagrangian heuristic are
on average around 1.5 percent smaller. We also computed
the expected costs using the existing production-planning
systems. Table 2 summarizes the percentage reduction in
expected costs had these heuristics been implemented in
this period for each refinery. The total cost savings across
all refineries using the operational heuristic would have
been around $0.55 million, while the corresponding figure
using the Lagrangian heuristic would have been about
$0.75 million.
At this time, the management at Cerestar has imple-

mented the operational heuristic, since the planners under-
stood and developed confidence in this method. The glu-
cose refinery at Sas van Gent was chosen as the first test
site because it was the flagship refinery of the company,

Table 2. Potential reduction in expected costs using the
heuristic solution on sample data over a three-
month period from seven refineries.

Potential Reduction Potential Reduction
in Expected Costs in Expected Costs

from the Operational from the Lagrangian
Refinery Site Heuristic (Percent) Heuristic (Percent)

Sas van Gent, 6 9
The Netherlands

Manchester, 7 8
United Kingdom

Martorell, Spain 8 9
Castelmassa, Italy 7 9
Haubordin, France 6 8
Krefeld, Germany 5 7
Barbie, Germany 4 7
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producing the most profitable products and perceived to
have the best planning- and process-control systems. If
improvements could be realized at this refinery, these
heuristics could clearly result in improvements at all other
sites. This heuristic was implemented for a six-month
period and led to a realized cost saving of about 3 percent
or $0.4 million more then a comparable six-month period
when the previous system was used. This successful imple-
mentation motivated Cerestar to implement this heuristic at
six other refineries. Since October 1997, production plan-
ning at all these refineries is conducted using the opera-
tional heuristic. The cost saving after implementation at
each site is summarized in Table 3. The total annual cost
savings at these refineries is estimated to be about 5 percent
or $3 million.
We wanted to calculate the additional benefit that would

have accrued had the solution to the Lagrangian heuris-
tic associated with the smallest gap from the lower bound
been implemented in this period. To estimate this value, we
assumed that the actual yield realized during this period is
unchanged even when the actual production times of the
product may have changed under the Lagrangian heuristic.
We found that the Lagrangian heuristic offered the potential
to further reduce total costs by at least 2 percent or about
$1 million. Cerestar is currently evaluating the feasibility
of implementing the Lagrangian heuristic.
We can use the Lagrangian heuristic to evaluate the cost

implications of several strategic operational decisions at
each refinery. For example, we can evaluate the benefits of
expanding the end-process buffers at a given refinery by
increasing the total buffer level at a given refinery and eval-
uating the changes in expected costs corresponding to the
best (i.e., lowest gap) solution to the Lagrangian heuristic.
Figure 1 represents the percentage reduction of expected
costs (including the fixed costs for buffer expansion) ver-
sus the percentage increase in buffer size from the base
case at the Sas van Gent refinery. Increasing the buffer size
in effect increases parameter Bi, and reduces the expected
handling costs in the loss function. Predictably, as observed
from this figure, after a certain level of expansion, the
fixed costs of expansion exceed the reduction in expected
costs due to handling. These results serve as a guideline to
choose the level of buffer expansion.

Table 3. Realized annual cost reduction after imple-
mentation of the operational heuristic.

Cost Saving Cost Saving
Refinery Site (Percent) (Million $)

Sas van Gent, 7 0.8
The Netherlands

Manchester, 5 0.3
United Kingdom

Martorell, Spain 6 0.6
Castelmassa, Italy 8 0.3
Haubordin, France 7 0.5
Krefeld, Germany 6 0.3
Barbie, Germany 5 0.2

Figure 1. Reduction in total expected costs with
increase in buffer volumes at the Sas van
Gent refinery.
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Second, we are able to quantify the benefit of reducing
yield variability at a given refinery. This analysis is useful
in justifying initiatives used to achieve variability reduction,
including process-technology choice, better process-control
technology, and better operational procedures for control as
those described in Rajaram et al. (1999). To perform this
analysis, we used the solution from the Lagrangian heuris-
tic associated with the lowest gap to calculate expected
costs for different levels of variability for ai, the yield dis-
tribution for the ith product. Figure 2 represents the per-
centage reduction in expected costs when the coefficient of
variation of the yield distribution is systematically reduced
by the specified percentage for all products at the Sas van
Gent refinery. This figure shows that even a small reduction
in variability leads to a significant reduction in expected
costs and larger reductions of yield variability often lead
to only marginal levels of cost reductions. This suggests
that rather than investing in capital-intensive process tech-
nology to achieve radical reduction in yield variability, the
major cost benefits can be derived by focusing on oper-
ational procedures to achieve incremental reductions in
yield variability. We also performed this analysis in all the
other refineries to assess the benefit of achieving variability
reduction. Here again, the major cost benefits from vari-
ability reduction can be derived from using operational pro-
cedures rather than investments in process technology to
achieve this goal.

Figure 2. Reduction in expected costs with reduction
in variability at the Sas van Gent refinery.
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Finally, we can use the Lagrangian heuristic to develop
a framework to rationalize the choice of products that are
produced in a given refinery. Typically, these products are
referred to as basic grades and are directly produced at
the refinery. Basic grades typically vary by a particular
attribute known as the Dextrose Equivalence (DE) level,
and customer requirements for a particular DE level are
met by blending basic grades. In principle, we could just
produce two basic grades representing the extremes in DE
level and produce the entire range of final customer prod-
ucts. Such a mechanism would reduce switchover costs, but
could increase the costs of blending, which include costs of
storage, operation, and rework at the blenders. We used the
solution of the Lagrangian heuristic corresponding to the
lowest gap to calculate the expected costs for all different
product configurations for the Sas van Gent refinery. Here
we first choose the products representing the extreme points
in the range of the DE attribute and calculate the expected
costs using this heuristic and the additional blending costs
that are incurred due to this configuration. We use extensive
enumeration to find the optimal basic grade configuration
when we produce more than the two extreme basic grades.
This analysis at the Sas van Gent refinery suggests that the
lowest expected cost configuration occurs when we utilize
only five out of the seven basic grades currently employed
at this process. Similar analysis can be performed at the
other refineries to rationalize and if necessary reconfigure
the choice of basic grade portfolios.

7. DISCUSSION

In this paper, we consider the product-cycling problem with
uncertain yields commonly found in many process-industry
applications. The key production-planning problem in these
applications is to determine which product to produce in a
given process in order to minimize total production, switch-
ing, inventory storage, handling, and backorder costs. We
formulate this problem as a stochastic-dynamic program
with mixed continuous and (0-1) integer variables. We
develop lower bounds by using a “restricted Lagrangian
technique” that decomposes this problem into a process-
switching problem and an individual production-inventory
problem for each product across the planning horizon. This
lower bound solution is used to develop a model-based
Lagrangian heuristic. The gap in expected costs between
the lower bound and the heuristic solution is improved by
using the heuristic to set Lagrangian multipliers and then
using the improved lower bound to generate the heuristic
in an iterative manner. We also develop a simple and easy
to implement operational heuristic and a greedy heuristic.
Computational results show that the Lagrangian heuristic
outperforms the greedy heuristic, since it includes the fea-
tures of the greedy heuristic and considers the entire plan-
ning horizon. In addition, the Lagrangian heuristic outper-
forms the operational heuristic. We believe that this is due
to the fact that the Lagrangian heuristic, unlike the oper-
ational heuristic, explicitly considers costs and the entire

duration of the planning horizon in determining the pro-
duction plan.
We validate these heuristics using data from seven Cer-

estar refineries and found that, compared to the existing
practice, these heuristics offered the potential to signifi-
cantly reduce costs at these sites. The operational heuristic
has been implemented at all of these sites since October
1997. The total annual realized cost savings have been esti-
mated at 5 percent or $3 million. Tests of the Lagrangian
heuristic on data from these refineries during this period
have shown the potential to further reduce total costs by
at least 2 percent or about $1 million. Cerestar is currently
evaluating the feasibility of incorporating this heuristic. In
addition, the Lagrangian heuristic has been used to evaluate
the cost implications of several strategic-operational deci-
sions at these refineries, including choosing the best level
of buffer expansion, quantifying the benefits of yield vari-
ability reductions, and rationalizing the selection of basic
grades produced at these refineries. This analysis has sig-
nificantly influenced several strategic-operational decisions
at these sites.
The organizational impact of this work has been sig-

nificant. Prior to our work at these refineries, production-
planning decisions were made in a more reactive and
ad hoc manner, while strategic-operational decisions were
based more upon subjective experience, seniority, and
anecdotal evidence. In contrast, our methods have pro-
vided a systematic, rigorous, and consistent framework
to approach production-planning and strategic-operational
decisions. Decisions are now made in a proactive and scien-
tific manner based upon data and analysis. This in turn has
led to greater transparency and diffusion of ideas across this
multinational organization and has helped in benchmark-
ing and standardization of best practices across these sites.
More details on these aspects can be found in Rajaram
et al. (1999). Cerestar is currently transferring these ideas
in the production planning of newly acquired refineries in
North America. These methods are also being used to eval-
uate buffer expansion and product-line selection decisions
and variability reduction initiatives at these sites and in the
design and installation of new processes.
In summary, the methodology described in this paper has

had a major economic, strategic, and organizational impact
at this company. Cerestar expects to maintain the gains we
described and to increase them continuously several years
into the future.

APPENDIX

Dynamic Programming Algorithm
for the Process-Switching Problem

Step 1. Set t = n.
For i = 1 to m, compute
Wit�Yi�t−1�� it�=Minj=1 tom��Cit− it�+Kjit

+ itSjit�.
Go to Step 2.
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Step 2. Set t = n−1.
For i = 1 to m, compute
Wit�Yi�t−1�� it�

=Minj=1 tom��Cit− it�+Kjit

+ itSjit+Wj�t+1��Yjt� j�t+1���.
Go to Step 3

Step 3. Repeat Step 2 until t = 1.
At t = 1, the optimal switching cost is
W1�Y0� 0�=Minj=1 tom�Wi1�Yi0� i1��.

Dynamic Programming Algorithm
for the Production-Inventory Problem

Additional Notation
3ik is the yield per period for product i (k = 1� � � � �
K possible values).
pik is the probability of yield 3ik.

Step 0. Initialization.
Define the range of Ii�t−1� from −∑n

t=1Dit to∑n
t=1Dit .

Step 1. Solve the inventory problem at period t = n (last
time step).
Set Ii�t−1� to −∑n

t=1Dit .
Set Xit = 0.

Step 1.1.
Ĩ kit = a′ikXit+ Ii�t−1�−Dit .
Lkit�Xit� Ii�t−1��

= hi�Ĩ
k
it�

++ ei�Ĩ kit−Bi�++pi�−Ĩ kit�+.
Lit�Xit� Ii�t−1��=

∑K
k=1 pitL

k
it�Xit� Ii�t−1��.

*it�Xit� Ii�t−1��=  itXit+Lit�Xit� Ii�t−1��.
If Xit < 1, increase Xit by 0�01 and go to
Step 1.1, else go to Step 1.2.

Step 1.2.
Set Uit�Ii�t−1�� it�

=MinXit �*it�Xit� Ii�t−1���.
If Ii�t−1� <

∑n
t=1Dit increase Ii�t−1� by 1

and go to Step 1.1, else set t = n−1
and go to Step 2.

Step 2. Solve the inventory problem at period t.
Set Ii�t−1� to −∑n

t=1Dit .
Set Xit = 0.

Step 2.1.
Ĩ kit = a′ikXit+ Ii�t−1�−Dit .
Lkit�Xit� Ii�t−1��

= hi�Ĩ
k
it�

++ ei�Ĩ kit−Bi�++pi�−Ĩ kit�+.
Lit�Xit� Ii�t−1��=

∑K
k=1 pitL

k
it�Xit� Ii�t−1��.

*it�Xit� Ii�t−1��=  itXit+Lit�Xit� Ii�t−1��.
If Xit < 1, increase Xit by 0.01 and go
to Step 2.1, else go to Step 2.2.

Step 2.2.
Set Uit�Ii�t−1�� it�

=MinXit �*it�Xit� Ii�t−1���.
X∗
it = argmin�Uit�Ii�t−1�� it��.
Ĩ kit = 3̃ikX

∗
it+ Ii�t−1�−Dit .

Eãi �Ui�t+1��Ĩit� i�t+1���

=∑K
k=1 pikUi�t+1��Ĩ

k
it� i�t+1��.

Uit�Ii�t−1�� it�=  itX
∗
it+Lit�X∗

it� Ii�t−1��

+Eãi �Ui�t+1��Ĩit� i�t+1���.
If Ii�t−1� <

∑n
t=1Dit increase Ii�t−1� by 1

and go to Step 2.1. Else set t = t−1
and go to Step 3.

Step 3. Repeat Step 2 until t = 1 for each product.
Then go to Step 4.

Step 4. At t = 1, the optimal expected production-
inventory cost is

∑m
i=1Ui1�Ii0� i1�.
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