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We analyze planning and scheduling of multiproduct batch operations in the food-processing industry. Such
operations are encountered in many applications including manufacturing of sorbitol, modified starches,

and specialty sugars. Unlike discrete manufacturing, batch sizes in these operations cannot be set arbitrarily,
but are often determined by equipment size. Multiple batches of the same product are often run sequentially in
“campaigns” to minimize setup and quality costs.
We consider a multiproduct, single-stage, single-equipment batch-processing scheme and address the prob-

lem of determining the timing and duration of product campaigns to minimize average setup, quality, and
inventory holding costs over a horizon. We formulate the deterministic, static version of this problem over an
infinite horizon. We show that, in general, a feasible, finite, cyclic solution may not exist. We provide sufficient
conditions for the existence of a finite cycle, use single-product problems to provide lower bounds on the costs
for the multiproduct problem, and use them to test heuristics developed for this problem. Next, we modify
this formulation to incorporate fixed cycles that may be necessary due to factors such as product obsolescence,
perishability, or contracts with customers. We do this by allowing for disposal of excess stock so that finite cycles
are always feasible, though they might not be optimal; we also develop bounds and heuristic solution proce-
dures for this case. These methods are applied to data from a leading food-processing company. Our results
suggest that our methods could potentially reduce total annual costs by about 7.7%, translating to an annual
savings of around $7 million.
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1. Introduction
Batch operations are used to produce a wide variety
of products in the food-processing industry, such as
sorbitol, modified starches, and specialty sugars. In
addition, batch operations are prevalent across a wide
spectrum of process industries. Examples in these
industries include autoclaves or stirred tank reactors
in basic and specialty chemical processes, batch distil-
lation in refining, kilns and furnaces in ceramics, hot
metal production in steel-making, and lens grinding
in optics manufacturing to name just a few.
Batch operations differ significantly from discrete

manufacturing. The most significant difference from
the planning and scheduling perspective is that batch
sizes cannot be freely chosen with batch opera-
tions. Typically, the size of the equipment (reactor or

processor) either will determine or significantly con-
strain batch size. Because reactors are standard pieces
of equipment used for many different products, reac-
tor sizes and optimal production quantities do not
necessarily correspond for all of the products that can
be produced on a given reactor. Consequently, several
batches of a particular product may be run sequen-
tially in a so-called “campaign” so as to produce an
appropriate quantity, while avoiding part or all of the
set-up costs incurred when switching between differ-
ent products. In addition, with increasing campaign
length, more batches can be pooled together, which
reduces variance in conformance quality and associ-
ated rework costs. However, sufficient inventory of
other products needs to be built up during this cam-
paign to meet demand, which results in holding costs.
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Finally, in certain applications, product disposal costs
are incurred if production is far in excess of demand
due to batch size and quality requirements.
This paper has been motivated by a study of the

batch operations at a large food-processing company
that manufactures wheat- and starch-based prod-
ucts such as glucose, sorbitol, modified starches,
and gluten, with annual sales exceeding $2 billion.
These products are used extensively as components in
other food-processing industries (e.g., breweries, con-
fectioneries, and bakeries), consumer product indus-
tries (e.g., cosmetics and toothpaste), as well as the
paper, pharmaceutical, textile, and specialty chemical
industries.
To produce these products, this company oper-

ates several industrial-scale batch processes. Because
building these processes requires major capital invest-
ment, it is crucial that they constantly produce high
volumes of output at the correct level of quality. To
achieve this goal, these processes have high degrees
of automation, are operated continuously, produce
one product at a time, and are usually shutdown
only a few times a year for scheduled maintenance.
As product changeovers result in long downtimes
and considerable setup costs, products are often pro-
duced in long campaigns and are inventoried. Reduc-
tions in downtimes and in costs associated with
campaign switchovers, holding, and quality rework
are critical at this company in particular and in the
food-processing industry in general. This is because
their products are typically commodities with market-
defined prices, and profits can be increased only by
reducing costs and by increasing output by minimiz-
ing downtimes.
The current procedures for campaign planning

and scheduling at these processes rely on produc-
ing products in cycles. Here, the sequence of product
campaigns in a cycle is chosen to minimize average
campaign setup costs, whereas the campaign length
of a product in a cycle is chosen so that the cycle
production quantities are in the ratio of total aggre-
gate product demand. While this procedure was easy
to understand and implement, this company believed
that downtimes and costs could be reduced further
by using advanced analytical models.
The analytical models developed in this paper are

based on the following two examples of batch oper-
ations used by this company. These examples were

chosen because the products produced by these batch
operations accounted for a significant portion of total
profits at this company. The first example deals with
the production of a variety of grades of sorbitol,
which is used to produce several commodity-type
products in the cosmetics and pharmaceutical indus-
tries. These grades are produced in a single-stage,
single-equipment batch-processing scheme, where the
stage and equipment correspond to a single batch
reactor. The level of a key attribute distinguishes the
grades of sorbitol and, typically, the duration of the
reaction sets the level of the distinguishing attribute.
There are significant setup costs and time associated
with the start of a new campaign because the reactor
has to be cleaned and, many times, reagents have to
be changed, depending on the type of grade. How-
ever, there are no setup costs and time across batches
in the same campaign. In addition, the probability of
conformance of a product to meet the specified range
of attribute level is increasing for the duration of the
campaign. This is because more batches can be pooled
together, thus reducing variability in this attribute and
in associated rework costs. However, the inventory of
the other grades must be sufficient to cover down-
stream demand, which is known and stable. The sec-
ond example deals with manufacturing of modified
starches. In this case, in addition to the characteristics
of the previous example, the length of the production
cycle is fixed by customer contracts, as these prod-
ucts have very specialized applications. We modify
our model to consider this case.
The problem we study has similarities to the clas-

sic economic order quantity (EOQ) formulation. The
multiproduct, static-deterministic EOQ problem with
continuous batch sizes, also known as the economic
lot scheduling problem (ELSP), has been studied
extensively. Elmaghraby (1978) provides a compre-
hensive survey of the research on this problem. The
ELSP has been shown to be NP-hard (Hsu 1983).
Consequently, an effective method for computing the
optimal solution to the general problem does not
exist. The ELSP with discrete time periods, variable
demand, and sequence-dependant setups is known
as the “product-cycling” problem. Karmarkar and
Schrage (1985) consider the product-cycling problem
under deterministic variable demand, while Rajaram
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and Karmarkar (2002) consider the product cycling
problem under yield uncertainty.
The ELSP with integer batch sizes addressing the

scheduling and planning of batch operations has a
considerably smaller amount of literature. Reklaitis
(1992) provides a comprehensive review of the litera-
ture in scheduling and planning of batch operations in
the chemical processing industry. More recent work in
this area includes Castro et al. (2001), Lin et al. (2002),
and Orcun et al. (2001). Generally, these works deal
with developing detailed mathematical programming
formulations of this problem in specific applications
and simplifying these formulations so that the prob-
lem is amenable to solution by commercially available
software. Further, when heuristics are used to solve
this problem, lower bounds are seldom provided to
test the quality of these heuristics. Other research on
this problem includes Dessouky and Kijowski (1997)
who model the multiproduct batch scheduling prob-
lem as a mixed-integer program over a finite hori-
zon. They do not explicitly consider setup times and
employ a uniform discretization of time in which
each unit of time is one production shift and all
products have a processing time of one production
shift. While these assumptions are rather restrictive in
our application to the food-processing industry, they
seem realistic in the application to a pesticide plant
considered in that paper and also facilitate a solu-
tion to the problem via a polynomial time algorithm.
Orcun et al. (1999) develop a mixed-integer program-
ming formulation for the planning and scheduling of
batch process plants under uncertain operating con-
ditions and test this model on data from a baker’s
yeast production plant. They solve this problem using
commercially available software and illustrate the
impact of uncertainty on production planning and
scheduling.
The problem considered here differs from the prob-

lems addressed by these papers in several aspects.
First, it considers campaign setup times and costs,
quality costs, and demand feasibility constraints.
These aspects are of practical importance in several
applications in the food-processing industry. Second,
it explicitly develops a quality model that calculates
quality costs as a function of the batches produced
in a campaign. Third, much of the literature to date
addresses problems that are either of small size or

of a structure simple enough to be solved using
commercially available math programming software.
In contrast, the problem we consider is more complex.
In our computational experience, we have observed
that powerful commercial software tools cannot gen-
erate feasible solutions to even small problems. Conse-
quently, we develop bounds and heuristics, designed
to solve large-sized practical problems to near opti-
mality. Finally, to the best of our knowledge, this is
the first known investigation of the applicability of
these methods to the modified starch- and sorbitol-
processing industries. We validate this model using
data from a large food-processing company.
This paper is organized as follows. In the next

section, we formulate the multiproduct, infinite-
horizon problem, examine its feasibility, and construct
a Lagrangian relaxation that decomposes this problem
to multiple single-product EOQ-type problems with
unit batches and quality costs. These EOQ-type prob-
lems are solved by rounding down and rounding up
the continuous solution to the nearest batch multiple
and taking the better answer. We also develop two
heuristics that allow us to convert the solution of the
relaxed problem into a feasible solution to the mul-
tiproduct infinite-horizon problem. In §3, we modify
this formulation to incorporate fixed cycles by allow-
ing for disposal of excess stock so that finite cycles
are always feasible, though they might not be opti-
mal. We also develop bounds and heuristics for this
modified problem. We report computational results in
§4. In §5, we describe the application of our methods
to data from the food-processing industry. The com-
putational study and the application show that these
heuristics and bounds work well. In the concluding
section, we summarize our work and suggest future
research directions.

2. Model Formulation, Lower Bounds,
and Heuristics

Consider a batch-manufacturing facility producing p
products and let i ∈ I = �1� � � � � p� index the set of
products. In this facility, we consider the problem
of multiproduct, single-stage, single-equipment batch-
process planning and scheduling where demand is
known and constant. We consider the case in which
the batch process has a fixed capacity that must be



Rajaram and Karmarkar: Campaign Planning and Scheduling for Multiproduct Batch Operations
256 Manufacturing & Service Operations Management 6(3), pp. 253–269, © 2004 INFORMS

sequenced in an all-or-nothing manner and in which
any batch consists of a single product. We assume that
for a given product, this batch process has known and
fixed set-up times, production times, and costs of set-
up, production, and holding inventory. In this con-
text, we formulate the static, deterministic, average
cost, multiproduct campaign planning and schedul-
ing problem for an infinite horizon. The aim is to
determine the timing and the duration (in terms of
the number of batches) of campaigns on a single
batch processor to minimize average setup, holding,
and quality costs. These assumptions are consis-
tent with the sorbitol production example described
in the introduction. In addition, the static setting
is a reasonable model for planning in many food-
processing industries where demand may be fairly
level because downstream operations are typically
run at stable utilization levels. To determine the tim-
ing and the duration of the production campaigns at
this batch manufacturing facility, we define the fol-
lowing variables.
T = cycle length;
Ti = cycle length for product i;
ni = number of campaigns of product i that are con-

ducted over T ; and
mij = number of batches of product i in campaign j ,

where j ∈ J = �1� � � � �ni�.
We are given:

Di = demand rate for product i (units/time);
B= batch size of reactor (units);
ti = processing time per batch of product i (units of

time);
�i = setup time per campaign of product i (units of

time);
Si = fixed cost for setting up a campaign for product

i ($);
Ri = rework cost per campaign of product i ($); and
hi = holding cost per unit of product i ($/unit).
In this model, “quality” refers to conformance to

product specifications. Quality is affected by the dura-
tion of the campaign or, in effect, by the number of
batches produced in a campaign. The costs of quality
are the expected costs of correcting nonconforming
products by reworking. Let Pij �mij � represent the prob-
ability of nonconformance of product i in campaign j
as a function of mij . Then, the expected costs of qual-
ity of product i in campaign j can be approximated as

RiPij �mij �. We derive the function Pij �mij � under certain
assumptions after describing the model.
Define vector �mi = �mi1�mi2� � � � �mini � and Ii� �mi� a

scalar function of vector �mi representing the cumu-
lative inventory when product i is produced across
ni campaigns in cycle T . We estimate the value of
function Ii� �mi� later in this section and the total hold-
ing costs for product i during cycle T is hiIi� �mi�. In
addition, let �X� represent occupancy constraints that
ensure that no two campaigns overlap on the single
batch reactor. We do not explicitly state these con-
straints as they are relaxed in our solution procedures.
Finally, we assume that there is enough capacity to
satisfy total demand. The condition for which this
assumption holds is established in Proposition 2.
The campaign planning and scheduling problem

(CPSP) can be represented by the following nonlinear
mixed-integer program.

(CPSP)

Z=Min
(∑p

i=1Sini+
∑p
i=1hiIi� �mi�+

∑p
i=1

∑ni
j=1RiPij �mij �

T

)
�

(1)

subject to

ni∑
j=1
mijB=TDi ∀i� (2)

T ≥
p∑
i=1
�ini+

p∑
i=1

ni∑
j=1
timij� (3)

�X�� (4)

T ≥0� mij�ni∈N+ ∀i� (5)

Objective function (1) consists of the average
setup, holding, and quality costs over a horizon.
Constraint (2) ensures that the total production quan-
tity of any given product during the cycle is equal to
its total demand during this cycle. This constraint is
essential to prevent infinite accumulation or infinite
shortage in the infinite-horizon average cost prob-
lem. Constraint (3) ensures that the total cycle is suf-
ficiently long to contain the setup and production
times for all of the product campaigns. Reactor occu-
pancy constraints are represented by (4), while non-
negativity and integrality constraints are represented
by (5).
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To estimate Pij �mij � in the CPSP, we assume that
the customer-specified product quality tolerances are
specified as a fraction �i of attribute level ai associated
with product i. Thus, the upper specification limit
(USL) is ai�1 + �i�, and the lower specification limit
(LSL) is ai�1−�i�. We assume that errors �i associated
with ai are due to the composition of the product and
are normally distributed with mean 0 and standard
deviation �i. Thus, ãijk, the distribution of the attribute
level of the kth batch of product i in campaign j is
also normally distributed with mean ai and standard
deviation �i.
Typically, during a production campaign j , mij

batches of product i are mixed together. In addi-
tion to sorbitol production, mixing is commonly used
in manufacturing products such as beverages, glu-
cose, and modified starches in the food-processing
industry. The objective of mixing is to minimize the
overall variation of a product attribute by compen-
sating for errors in this attribute in a single batch
by using other batches. When batches are mixed, the
distribution of attribute level of product i in cam-
paign j is given by ãij =

∑mij
k=1 ãijk/mij . Note that ãij

is normally distributed with mean ai and standard
deviation �i/

√
mij . Let  � � denote the cumulative

distribution function of the standard normal variate.
Then, by definition, Pij �mij � = P!ãij ≥ USL" + P!ãij ≤
LSL"= P!ãij ≥ ai�1+�i�"+ P!ãij ≤ ai�1−�i�". Thus,

Pij �mij � = 1− 
(
ai�i

√
mij

�i

)
+ 

(−ai�i
√
mij

�i

)
= 2 

(−ai�i
√
mij

�i

)
� (6)

Next, we establish some properties of the CPSP.

Proposition 1. A finite feasible cycle need not exist for
the CPSP.

Proof. Define

ri1� i2 =
∑ni2
j=1mi2j∑ni1
j=1mi1j

� i1 �= i2� ∀i1� i2 ∈ I �

Because mij ∈ N+ ∀i� j , it also follows that ri1� i2 ∈Q+,
where Q+ is the set of positive rational numbers.
Next, from (2) we would require that

ri1� i2 =
∑ni2
j=1mi2j∑ni1
j=1mi1j

= Di1
Di2
�

The result follows from choosing Di1 = %W and
Di2 =W for W > 0, such that Di1/Di2 = ri1� i2 
Q+. �

The proof for Proposition 1 implies that a neces-
sary condition for the existence of a feasible finite
cycle is that Di1/Di2 ∈Q+� i1 �= i2� ∀i1� i2 ∈ I . This result
suggests that a finite cyclic schedule is likely to exist
in practice and provides a basis for searching for
this cyclic schedule from a theoretical and practical
point of view. This result also implies that for a fea-
sible finite cycle to exist, we must be able to express
Di = (i/�ir�)i�(i�)i ∈ N+ ∀i and that the irrational
portion ir in this term is common across all prod-
ucts. Let ) represent the least common multiple of
�)1�)2� � � � �)p� and K = �ir�). Proposition 2 estab-
lishes the duration of a feasible finite cycle.

Proposition 2. Any finite feasible cycle T is of dura-
tion +KB, where + ∈R+ satisfies

+ ≥∑
i

�ini
K�B−∑

i Diti�
�

Proof. Consider a feasible cycle T that satis-
fies (2) so that

∑
j mij = TDi/B� ∀i. Because Di =

(i/��ir�)i��(i� )i ∈N+ ∀i and because we require that∑
j mij ∈N+, this implies that T = +KB. For this value
of T , note that

∑
j mij = +KDi�∀i. In addition, for this

value of T to represent a feasible cycle, we would
require that (3) is satisfied. The result follows by not-
ing that when T = +KB and ∑

j mij = +KDi� ∀i, (3) is
satisfied when + ≥∑

i �ini/�K�B−
∑
i Diti��. �

Note from Proposition 2 that B >
∑
i Diti for the

feasibility of any finite production cycle in the CPSP.
This is similar to the feasibility condition for the ELSP
as shown by Maxwell (1964) and Dobson (1987), in
which the continuous production rate for product i
is ri = B/ti and the necessary and sufficient condition
for feasibility is 1 >

∑
i Di/ri. This also implies that

the fraction of time available per cycle for setups is
�1 − ∑

i Di/ri� and the total time per cycle available
for setup is T �1 − ∑

i Di/ri�. Because the total time
required for setups in a cycle in the CPSP is

∑
i �ini,

for feasibility we would require that T �1−∑
i Di/ri�≥∑

i �ini. By substituting ri = B/ti and T = +KB in
this inequality, we get + ≥∑

i �ini/�K�B−
∑
i Diti��, the

inequality in the statement of Proposition 2.
The CPSP can be considered as an ELSP-type prob-

lem with fixed batch sizes and rework costs. Because
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it is well known that the ELSP is NP-hard (Hsu 1983),
it is highly unlikely that we can solve large, real-sized
instances of the CPSP to optimality. We confirm this
in our numerical experiments and in the application.
Consequently, we develop heuristics to address this
problem. Next, we construct a decomposition of the
CPSP, which is used to develop lower bounds on this
problem. These lower bounds are then used to evalu-
ate the performance of the heuristics in the computa-
tional study and in the application.

2.1. Problem Decomposition and Lower Bounds
To decompose the CPSP into tractable subproblems,
we first rewrite constraint (3) as

1≥
∑p
i=1 �ini+

∑p
i=1

∑ni
j=1 timij

T
�

We then relax constraint (3) by introducing Lagrange
multiplier , ≥ 0 and drop constraint (4). Finally,
we rewrite constraint (2) as

∑ni
j=1mijB = TiDi ∀i and

Ti = T ∀i. This leads to the following relaxed problem.

Min
p∑
i=1
ZLBi �ni�mij� Ti��

subject to
ni∑
j=1
mijB= TiDi ∀i� �A�

T = Ti ∀i� �B�

(5),

where

ZLBi �ni�mij�Ti�

= �Si+,�i�ni+hiIi� �mi�+
∑ni
j=1�RiPij �mij �+,timij �

Ti
�

We next drop constraint (B). This leads to p single-
product subproblems. Observe that constraint (A) can
be written as Ti = �

∑ni
j=1mijB/Di� ∀i. We substitute this

value of Ti in the expression for ZLBi �ni�mij� Ti� to get
the ith single-product subproblem as

ZLBi �,�

= Min
ni�mij∈N+

{
ZLBi �ni�mij �=

(
1
Di

ni∑
j=1
mijB

)−1

·
((
Si+,�i

)
ni+hiIi� �mi�+

ni∑
j=1

(
RiPij �mij �+,timij

))}
�

(7)

so that ZLB�,� = −,+∑p
i=1Z

LB
i �,� represents a lower

bound on the optimal value of the CPSP. To find a tight
lower bound, we solve the Lagrangian dual problem
ZLB =Max,≥0�ZLB�,��. The following proposition sim-
plifies the solution to these subproblems.

Proposition 3. The optimal solution to the single-
product, static, infinite-horizon batch processor subproblem
(7) has a fixed cycle solution with ni = 1.
Proof. At any production occasion, the inventory

level at the point of completion of the first batch of the
campaign must be zero. If not, production could be
delayed until this was the case, and costs would have
been reduced. Thus, the completion of the first batch
of a campaign is always a regeneration point. This
implies that each campaign must be of the same length
and that each cycle consists of one campaign. �

By Proposition 3, ni = 1 ∀i, so that �mi = �mi1�=mi
and the optimal policy is a fixed cycle with a single
campaign of m∗

i batches. To calculate m
∗
i , we need to

first estimate Ii�mi�, the average inventory level for
product i during a fixed cycle with a single campaign.
In this regard, it is useful to consider Figure 1, which
represents the inventory level over time during the
fixed cycle. The shaded area in this figure represents
Ii�mi�.
From Figure 1, we get

Ii�mi� =
ti
2

mi−1∑
k=1
!2kB−�2k−1�tiDi"+

!miB−�mi−1�tiDi"2
2Di

= miB!miB−�mi−1�tiDi"
2Di

�

We use the above expression for Ii�mi�, set ni = 1 and
Pi�mi� from (6) in (7) to get the (CPSP)i

ZLBi �,� = Min
mi∈N+

{
ZLBi �mi�=

�Si+,�i�Di
miB

+ hi
2
�miB−�mi−1�tiDi�

+ 2RiDi 
(−ai�i√mi/�i)
miB

}
+ ,tiDi

B
�

(8)

Note that the (CPSP)i represents the relaxed prob-
lem for product i. The difference between this relaxed
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Figure 1 Inventory Positions for ith Product in the Infinite Cycle Case

Ii  (mi)

ti ti ti ti ti

miti

miBi

Di

tiDi

tiDi

problem and an ELSP relaxation is (a) the different
inventory calculation, (b) the quality cost, and (c) the
restriction to integer multiples of B.
Next, consider the expression for ZLBi �mi� described

in (8). The first term in this expression represents the
setup costs per unit time, while the second term rep-
resents the holding cost per unit time. This is similar
to the cost function of the classical EOQ formula-
tion, modified to incorporate fixed batches (Johnson
and Montgomery 1974). The third term represents the
quality rework costs per unit time. Thus, the prob-
lem of determining m∗

i = argminmi∈N+�ZLBi �mi�� can
be considered to be an EOQ-type problem extended
to incorporate quality costs. Next, we develop some
results, which are useful in computing m∗

i .

Proposition 4. ZLBi �mi� is discrete convex in mi.

Proof. To show that ZLBi �mi� is discrete convex in
mi, it is sufficient to show that ZLBi �mi� is convex for
continuous mi. To see this result, note that

 

(−ai�i√mi
�i

)
=
∫ −ai�i√mi/�i

−�
e−Z

2/2 dz

and

d2ZLBi �mi�

dm2i
= 2�Si+,�i�Di

Bm3i
+ 4RiDi
Bm3i

∫ −ai�i√mi/�i

−�
e−Z

2/2 dz

+ 10RiDiai0i
4B�im

5/2
i

e−�1/2��a
2
i 0
2
i mi/�

2
i �

+ RiDia
3
i
0 3
i

2B�3
i
m3/2i

e−�1/2��a
2
i 0
2
i mi/�

2
i � ≥ 0� �

Let m̃i be the optimal continuous solution to the
(CPSP)i. Because ZLBi �mi� is convex for continuous mi,
standard search techniques such as the golden section
method (Luenberger 1984) are sufficient to compute
m̃i. Then from Proposition 4, it follows that the
optimal number of batches in the fixed cycle m∗

i =
argmin�ZLBi ��m̃i��ZLBi ��m̃i�� and ZLBi �,� = ZLBi �m

∗
i � +

,tiDi/B.
To find a tight lower bound, we next consider

ZLB�,�=−,+∑p
i=1Z

LB
i �,�. Observe that in this expres-

sion for ZLB�,�, the first term is linear and decreasing
in ,, while the second term is linear and increasing
in ,. Therefore, we solve for ZLB = Max,≥0�ZLB�,��
by conducting a simple single-dimensional line search
on ,. We use lower bound ZLB to evaluate the quality
of the heuristics developed to address this problem,
which is described next.

2.2. Upper Bounds and Heuristic Solutions
In general, the solution provided by the lower bound
in §2.1 might not be feasible to the CPSP due to
the violation of constraints (3) and (4). Because the
CPSP is related to the ELSP, it seems plausible that
one could use the continuous solution to the ELSP
(using one of the many well-known heuristics devel-
oped for this problem) and derive a feasible solution
to the CPSP by rounding up or down this continuous
solution to the nearest batch size multiple. However,
rounding the continuous solution is seldom a good
solution to the CPSP, because this could lead to an
infeasible solution to the CPSP, as illustrated by the
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example in the appendix. In addition, ELSP heuristics
do not consider quality rework costs, which are sig-
nificant in the food-processing industry.
To ensure feasability and to incorporate the impact

of quality rework costs, we develop the following two
heuristics that are specially adapted to the needs of
the CPSP.

Model-Based Heuristic. In the model-based heuris-
tic, we use the optimal lower bound solution m∗

i to
construct a production plan. This heuristic consists of
two phases. In the first phase, we determine the total
production quantity for each product during the entire
cycle, and in the second phase we determine the
sequence and production quantity for each campaign
in the cycle. The details of each of these phases are as
follows.

Phase 1. In this phase, we use m∗
i and compute

T ∗
i = m∗

i B/Di, ∀i. Let T ∗
(l.c.m.) represent the least com-

mon multiple of �T ∗
1 �T

∗
2 � � � � � T

∗
p � and n

�h1�
i = T ∗

(l.c.m.)/T
∗
i .

Let 1�h1� represent the smallest positive integer such
that 1�h1� ≥ ∑

i �in
�h1�
i /�T ∗

(l.c.m.)−
∑
i tin

�h1�
i m∗

i �. Then, we
set the total heuristic production quantity for the ith
product during the cycle as m�h1�i = 1�h1�n

�h1�
i m∗

i , ∀i.
Here, 1�h1� can be regarded as a scaling factor that
ensures the cycle time T ∗

(l.c.m.) is sufficient to accommo-
date the campaign setup and production time across
all products.
The procedure outlined above is similar to the

basic period approach used to construct a solution
procedure for the ELSP (Elmaghraby 1978). In this
approach, one permits varying cycles as integer multi-
ples of basic periods subject to a feasibility constraint.
Here, T ∗

i can be regarded as the basic period for prod-
uct i, while T ∗

(l.c.m.) can be considered as the varying
cycle. Observe that T ∗

(l.c.m.) is an integer multiple of the
basic period and the feasibility of this varying cycle
is imposed by 1�h1� ≥∑

i �in
�h1�
i /�T ∗

(l.c.m)−
∑
i tin

�h1�
i m∗

i �.

Phase 2. To determine the production sequence of
these products in a given cycle, we define n�h1�max =
maxi�n

�h1�
i � and construct n�h1�max serial sequence buckets.

For product i, we choose n�h1�i instances to mini-
mize the inventory-holding costs in a cycle by max-
imizing the time difference between any adjacent
production instances across all production instances
and producing 1�h1�m∗

i batches in each production
instance. To pick the production instances, define gi =

��n�h1�max−n�h1�i �/n
�h1�
i � and ri = �n

�h1�
max − n

�h1�
i � − gin

�h1�
i .

We leave a gap of gi buckets between each of the
first �n�h1�i − ri� production instances and a gap of
gi + 1 buckets between each of the remaining ri pro-
duction instances. This procedure is repeated for all
the products and ensures that batches are spread out.
Nearly identical procedures have been employed for
the ELSP (Dobson 1987). Finally, to make sure that
products within a bucket are sequenced in a well-
defined and consistent manner, we sequence these
products in increasing order of m∗

i ti.

Feasibility Heuristic. In the feasibility heuristic,
we use the feasibility conditions of the CPSP, sum-
marized in Proposition 2, to construct a production
plan. This heuristic also consists of two phases. The
total production quantities for each product during
the cycle are determined in the first phase, while the
sequence and production quantity for each campaign
in the cycle is determined in the second phase. These
details of these phases are as follows.

Phase 1. In this phase, we consider (8), set , to ,∗ =
argmax,≥0�ZLB�,�� and use Proposition 2 to set mi =
+KDi. This results in

Zi = Min
+∈R+

{
Zi�+�=

�Si+,∗�i�
+KB

+ hi
2
�+KDiB− �+KDi− 1�tiDi�

+ 2RiDi 
(−ai�i√+KDi/�i)
+KDiB

}
�

It is important to observe that ZLBi �+� is convex in
+. This follows by applying the implicit function
theorem and the proof of Proposition 4 and noting
that

d2Zi�+�

d+2
= d2ZLBi �mi�

dm2i
× dmi
d+

+ dZ
LB
i �mi�

dmi
× d

2mi
d+2

= d2ZLBi �mi�

dm2i
KDi ≥ 0�

Because the sum of convex functions is convex, we
use this result and a golden section search to find
+∗, the value of + that optimizes Z�+� = ∑

i Zi�+�.
Let n�h2�i = �+∗KDi/m∗

i �+1 and let 1�h2� be the smallest
integer such that 1�h2� ≥ ∑

i �in
�h2�
i /�+∗K�B−∑

i Diti��.
Then we set m�h2�i = 1�h2�n�h2�i , ∀i. Here again, 1�h2� can
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be regarded as a scaling factor that ensures the cycle
time +∗KB is sufficient to accommodate the campaign
setup and production time across all products.

Phase 2. Define n�h2�max = maxi�n�h2�i � and construct
n
�h2�
max serial sequence buckets. For product i, choose
n
�h2�
i buckets such that the time difference between
any adjacent production instances across all produc-
tion instances is maximized. Production instances are
picked using n�h2�max and n

�h2�
i with the same procedure

described in the second phase of the model-based
heuristic. For all but the last production instance, pro-
duce 1�h2�m∗

i batches of product i. In the last produc-
tion instance, produce m�h2�i − �n�h2�

i
−1�1�h2�m∗

i batches.
This procedure is repeated for all products; within a
bucket, products are sequenced in increasing order
of m∗

i ti.

3. Incorporation of Fixed Cycles
In certain applications, even if a finite feasible cycle
exists, it may not be possible to implement the associ-
ated production plan. This occurs when the cycle has
to be shortened to accommodate factors such as prod-
uct obsolescence, perishability, or contracts with cus-
tomers that are of shorter duration than the cycle. To
determine a production plan that incorporates these
aspects across all products, it is now necessary to con-
sider a fixed cycle and to dispose of excess product,
if needed, so that finite cycles are always feasible,
though they might not be optimal. In practice, dis-
posal may be necessary if production exceeds demand
due to batch size and quality requirements. How-
ever, we have observed in practice that disposal usu-
ally takes place after the product is delivered to the
customer to deal with potential contingencies dur-
ing delivery and small increases in customer demand.
Examples of fixed cycle production with disposal
include the manufacturing of modified starches in
the food-processing industry. These products typically
have very specialized applications and thus the dura-
tion of the production cycles are often limited by cus-
tomer contracts.
To model this case, we modify the CPSP by let-

ting Ti represent the fixed and given planning horizon
for the product. Let variable di denote the disposal

quantity of product i and let Ci represent the dis-
posal cost per unit of product i. Typically, Ci is com-
prised of additional handling and waste water treat-
ment costs associated with product disposal. Here
again, we assume that B >

∑
i Diti to guarantee fea-

sibility of the finite cycle production schedule. The
finite cycle campaign planning and scheduling prob-
lem (FCCPSP) is represented by the following nonlin-
ear mixed-integer program

(FCCPSP)

Z̃ = Min
p∑
i=1

(
Sini+hiIi� �mi�+

∑ni
j=1 �RiPij �mij ��+Cidi
Ti

)
�

(9)

subject to (3), (4), and

ni∑
j=1
mijB= TiDi+ di ∀i� (10)

di ≥ 0� mij�ni ∈N+ ∀i� (11)

Objective function (9) consists of the average setup,
holding, quality, and disposal costs over a fixed hori-
zon. Constraint (10) ensures that the production quan-
tity of any given product during its production cycle
is equal to its demand and disposal quantity dur-
ing this cycle. This constraint is key in distinguishing
the FCCPSP from the CPSP, as now we are always
guaranteed a finite, feasible cycle because production
in excess of demand can be disposed of at a fixed
penalty. Nonnegativity and integrality conditions are
represented by constraint (11).

3.1. Problem Decomposition and Lower Bounds
To decompose the FCCPSP into tractable subprob-
lems, we relax constraint (3) by introducing Lagrange
multiplier 4≥ 0 and drop constraint (4). This leads to
p single-product subproblems of the form

Z̃LBi �4� = Min
di�ni�mij

{
Z̃LBi �ni�mij�di�

1
Ti

=
(
�Si+4�i�ni+hiIi� �mi�

+
ni∑
j=1
�RiPij �mij �+4timij �+Cidi

)
�

subject to (10) and (11). (12)
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Figure 2 Inventory Positions for ith Product in the Finite Cycle Case
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Note that Z̃LB�4�=−4+∑p
i=1 Z̃

LB
i �4� represents a

lower bound on the optimal value of the FCCPSP.
To compute a tight lower bound, we solve
Z̃LB=Max4≥0�Z̃LB�4��. We next calculate Ii� �mi�, the
average inventory level over the cycle of the product.
In this calculation, it is useful to consider Figure 2,
which represents the inventory level over time when
ni campaigns of product i are conducted over a
fixed cycle of length Ti. In this figure, shaded regions
represent the average inventory level for product i
during a particular campaign, while the sum of the
shaded regions represents the average inventory for
this product during the fixed cycle.
We use this figure to compute

Ii� �m�=
ni∑
j=1

mijB�mijB−�mij−1�tiDi�
2Di

� (13)

We substitute (6) and (13) into (12) to get the relaxed
problem for product i, which we call the (FCCPSP)i

Z̃LBi �4�

= Min
di�ni�mij

[
Z̃LBi �ni�mij�di�=

1
Ti

{
�Si+4�i�ni

+ hi
2Di

ni∑
j=1
mijB�mijB−�mij−1�tiDi�

+
ni∑
j=1

(
2Ri 

(−ai�i√mij
�i

)
+4timij

)
+Cidi

}]
�

subject to (10) and (11). (14)

Proposition 5. Z̃LBi �ni�mij�di� is jointly convex in mij
and di.

Proof. Observe that for continuous mij

52Z̃LBi �ni�mij�di�

5m2ij
=2B�B−tiDi�+

Ri
2
e−�1/2��a

2
i 0
2
i mij /�

2
i �

·
[
ai0i

�im
3/2
ij

+ a3i 0
3
i

�3i m
1/2
ij

]
≥0� ∀j�

52Z̃LBi �ni�mij�di�

5d2i
=0� ∀j�

52Z̃LBi �ni�mij�di�

5di5mij
= 5

2Z̃LBi �ni�mij�di�

5mij5di
=0 ∀j�

The above results also imply that the Hessian matrix
corresponding to Z̃LBi �ni�mij�di� is positive semidefi-
nite. This in turn implies that Z̃LBi �ni�mij�di� is jointly
convex in mij and di. �

For a given ni, let m̃ij and d∗i optimize Z̃
LB
i �ni,

mij�di�. Proposition 5 ensures that a standard tech-
nique such as the conjugate gradient method (Luen-
berger 1984) is sufficient to compute m̃ij and d∗i .
Because Z̃LBi �ni�mij�di� is convex in mij , it follows
that Z̃LBi �ni� mij� di� is discrete convex in mij . Thus,
the optimal number of batches of product i in cam-
paign j is m∗

ij=argmin�Z̃LBi �ni� �m̃i�� d∗i �� Z̃LBi �ni�
�m̃i�� d∗i ��. This procedure is fast enough that we can
find n∗i , the optimal number of campaigns for prod-
uct i by enumeration of all values ni=1�2��� subject
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to (10). Note that in this procedure the largest num-
ber of campaigns we need to consider is bounded by
Z̃LBi �ni�m

∗
ij �d

∗
i �/Si for any value of ni for which we

have evaluated Z̃LBi �ni�m
∗
ij �d

∗
i �. This is because using

a number of campaigns larger than this would incur
setup costs greater than the total cost of a known solu-
tion. Finally, Z̃LBi �4�= Z̃LBi �n∗i �m∗

ij �d
∗
i �, Z̃

LB�4�=−4+∑
i Z̃
LB
i �4� and we solve Z̃LB=Max4≥0�Z̃LB�4�� by

conducting a simple single-dimensional line search
on 4.

Proposition 6. Consider the (FCCPSP)i, the relaxed
problem for product i as described in Equation (14). The
optimal solution to the (FCCPSP)i satisfies the following
conditions.
(a) At the start of campaign for product i, the inventory

level for this product is ��i+ti�Di so that inventory is zero
when the first batch of this campaign is ready.
(b) Any sequence of campaigns in a cycle can be arbi-

trarily reordered without changing the solution.
(c) �mij1−mij2 �<2� ∀j1�j2∈ J .
Proof. (a) If this is not true, then one can always

postpone the start of the campaign until the point
when inventory is ��i+ti�Di and reduce inventory-
holding costs, contradicting the optimality of the
solution.
(b) This result follows by noting that the value

of Z̃LBi �ni�mij � represented by (14) is invariant to the
order of �mi1�mi2�����mini �.
(c) Let m�1�ij1 =k� m

�2�
ij1
=k+1, m�1�ij2 =k+2, m

�2�
ij2
=k+1�

f �m
�1�
ij1
� m

�1�
ij2
�= Z̃LBi �ni� m�1�ij1 �di�+Z̃LBi �ni� m

�1�
ij2
�di� and

f �m
�2�
ij1
� m

�2�
ij2
�= Z̃LBi �ni� m�2�ij1 � di�+Z̃LBi �ni� m

�2�
ij2
� di�. We

are required to show that f �m�2�ij1 � m
�2�
ij2
�<f �m

�1�
ij1
� m

�1�
ij2
�

or 2Z̃LBi �ni� k+1� di�<Z̃LBi �ni� k�di�+Z̃LBi �ni� k+2� di�.
This follows from the discrete convexity of Z̃LBi �ni�
mij�di� in mij established by Proposition 5 and the sub-
sequent discussion. �

We next state a regularity condition that simpli-
fies the computation of Z̃LB. This condition is based
on examining the production of modified starches
and other products such as beverages in the food-
processing industry, where an additional batch of
product is seldom produced purely to reduce rework
costs of the entire campaign. This is because the dis-
posal costs of this additional batch typically exceed
the reduction in rework costs due to the mixing of

an additional batch. In the context of the model,
this observation can be represented by the following
regularity condition,

CiB > 2Ri

(
 

(−ai�i
√
mij+1
�i

)
− 

(−ai�i
√
mij

�i

))
�

∀mij ∈N+� (15)

Let mi=
∑ni
j=1mij and m

∗
i =

∑ni
j=1m

∗
ij . When (15) holds,

note that m∗
i =�TiDi/B�. This is because if mi>m∗

i ,
by (15), total costs can be reduced. Conversely, mi<
m∗
i is not feasible because it would violate (10). We
use this result along with Proposition 6 to calculate
Z̃LB by the following procedure. For a given ni=
1�2�����m∗

i , compute bi=�m∗
i /ni� and ri=m∗

i −bini. Set
mij=bi for j=1 to �ni−ri��mij=bi+1 for j= �ni−ri
+1� to ni�di=m∗

i B−TiDi and compute Z̃LBi �ni�mij�di�.
For ni=1�2�����m∗

i , repeat this procedure and calcu-
late Z̃LBi �4�=minni �Z̃LBi �ni�mij�di��. Finally, we solve
for Z̃LB=Max4≥0�−4+

∑p
i=1 Z̃

LB
i �4�� by conducting

a line search on 4. We use lower bound Z̃LB to eval-
uate the quality of the heuristics used to solve the
FCCPSP.

3.2. Upper Bounds and Heuristic Solutions
Because the solution provided by the lower bound
in §3.1 might not be feasible to the FCCPSP, we
developed heuristics to generate feasible solutions to
this problem. We first present an intuitive operational
heuristic, which is followed by a more detailed back-
ward assignment heuristic.

Operational Heuristic. In the operational heuris-
tic, we use the process inventory constraints and the
actual inventory positions of the products after pro-
ducing a product batch to decide whether to continue
with the campaign for the current product or switch
over to a different product. To describe this proce-
dure, we introduce the following notation.

V
�max�
i = maximum permissible inventory for the ith

product (units stored).
V
�min�
i = minimum permissible inventory for the ith

product (units stored).
V
�a�
it = actual total inventory of the ith product at

the beginning of time t (units stored).

Assume that a batch of the pth product has just been
produced at time t. We continue with the campaign for
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product p if the following constraints are not violated

V
�a�
pt +B−tpDp≤V �max�p (16)

V
�a�
it −tpDi−��i+ti�Di≥V �min�i � ∀i �=p� (17)

Constraint (16) imposes the condition that if we
produce another batch of product p, at the end of
production, the actual inventory at the tank and
the net inventory buildup due to this batch should
always be lower than its maximum permissible
inventory. Constraint (17) enforces the condition that
the actual inventory and the inventory depletion
for each product not in production should always
be greater than its minimum permissible inventory.
Here, inventory depletion for a given product is cal-
culated during production of a batch of product p
and during production of a batch of this product
assuming that it is immediately produced after prod-
uct p. In practice, the maximum permissible inven-
tory level is set to the maximum storage allocated
for a given product, while the minimum permissible
inventory level is set to zero. Rajaram et al. (1999)
develop a method to determine the optimum alloca-
tion of storage to products in a large-scale industrial
process.
To implement this heuristic using real time data on

actual inventory positions at time t, we check the fea-
sibility of these m constraints. If none are violated, we
continue to produce another batch of product p. When
this batch is produced, we restart this procedure at
time t+tp. If constraint (16) is violated, we switch to
the product for which constraint (17) is tightest. Oth-
erwise, if constraint (17) is violated for one or more
products, we switch to the product with the great-
est associated violation. To initialize this heuristic, we
start with a campaign of the product with the lowest
initial inventory or highest holding cost.
It is important to recognize that in this heuristic we

minimize the number of setups between campaigns
and maximize the duration of a production cam-
paign by initiating a switch only when the demand-
dependant boundary conditions represented by these
constraints are violated. A similar heuristic is devel-
oped and implemented for continuous flow refining
processes in the food-processing industry (Rajaram
and Karmarkar 2002).

Backward Assignment Heuristic. Assume that at
time T demand for all products has been satisfied

so that there are
∑ni
j=1mijB units of finished goods

inventory for product i. In the backward assignment
heuristic, we assign this inventory back to the raw
material stage of the process through the reactor so
that we have zero batches in finished goods inventory
for each product. This backward assignment is neces-
sary to maintain demand feasibility. In this heuristic,
we first assign the product that would lead to the low-
est campaign setup and total inventory costs. When a
batch of this product has been assigned, we continue
with the assignment of this product if it still contin-
ues to result in the lowest costs; otherwise, we start
the campaign of the product that leads to the low-
est costs. This procedure is repeated until the finished
goods inventory for all products is zero. We formalize
this heuristic using the following steps.

Step 0. Initialization. At time T , one batch of prod-
uct p is assigned back to the raw material stage
if p=argmini=1tom�5i�, where: 5i= �

∑
r �=i hrV

�a�
rT +Ki+

hi�V
�a�
iT −B��/��i+ti�. Set T→T −tp and go to Step 1.

Step 1. We assign another batch of product p
if �

∑
r �=i hrV

�a�
rT + hp�V

�a�
pT −B��/tp <Mini �=p5i = �Ki+∑

r �=i hrV
�a�
rT +hi�V �a�iT −B��/��i+ti�. Set T→T −tp and go

to Step 2. Otherwise, we assign a batch of product
q, where q=argmini �=p�5i�, set T→T −tq , and go to
Step 2.

Step 2. If V �a�iT =0, we remove product i from the
set of products considered for assignment and go to
Step 1. If V �a�iT =0� ∀i, stop. Products are then produced
in exactly the reverse order of the assignment, so that
we start with the last batch of the assignment first and
produce the first batch of the assignment last.

4. Computational Study
To test the performance of the heuristics and the
lower bounds developed in §§2 and 3 of this paper,
we used data from a large food-processing company.
Here, data from the sorbitol-production process was
used to test the CPSP, while data from the modi-
fied starch process was used for the FCCPSP. We first
describe the results for the CPSP and then present the
corresponding results for the FCCPSP.
The data set used to test the CPSP consisted of

all input parameters required for this problem for
eight products at a sorbitol-production process at this
company. The data set included cost parameters such
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as the fixed cost for setting up a campaign, rework
cost per campaign, and holding costs, and process
parameters such as batch size, processing times per
batch of product, and setup time per campaign of
the product, and, finally, demand rate for each prod-
uct. Data were provided over a three-year period. We
were also provided with data on the attribute errors
of each product during this period. We used this data
to conclude that the distribution of attribute errors for
each product was normally distributed with a large
degree of confidence (;2 test holds at an (≤0�05 level
across all 8 products). We then computed �i, the stan-
dard deviation of the distribution of attribute error
for product i, which was required in the calculation
of the expected cost of rework associated with each
product.
Recall that the objective function of the CPSP con-

sists of the switching, holding, and rework costs
across all campaigns. To analyze the relative propor-
tions of these costs, we first calculate the ratios of
the rework cost to the setup cost per campaign for
each product. We then define K1= �

∑8
i=1Ri/Si�/8 as the

average of the ratios across the 8 products. Next, we
calculate the ratio of the holding costs per batch to
the setup costs per campaign for each product and
similarly define K2= �

∑8
i=1Bhi/Si�/8 as the average of

these ratios across these products. For the reference
data set, K1=0�3 and K2=0�1.
We tested how sensitive our heuristics and the

lower bound were to the scale of these cost param-
eters. To perform this analysis across all products,
we scaled the rework costs by 1/3, 1/2, 2, and 3
(i.e., changing K1 by these factors), scaled the hold-
ing cost by the same factors (i.e., changing K2 by
the same factors), and finally scaled the setup costs
by these factors. Our scaling factors were chosen by
roughly estimating such costs across a variety of food-
processing industries that face the CPSP based on
informal discussions with managers in these indus-
tries. This scaling, in effect, ensured that the cost pro-
portions of these data were representative across the
spectrum of food-processing industries. Note that our
scaling procedure results in 64 (i.e., 4×4×4) data sets
generated from the reference problem.
We tried to solve the CPSP corresponding to these

data sets using leading commercial software pro-
grams such as GAMS (Brooke et al. 1992) and CPLEX
(1995) loaded on a Dell Optiplex PC. However, we

aborted our runs after these programs ran for over
four weeks on these subproblems and were not
able to generate feasible solutions. This provides
validation for developing and using the heuristics
and bounds developed to address this problem. We
then used the model-based and feasibility heuristic
(described in §2.2) to solve the CPSP and to develop
the production plan and its associated costs for these
64 data sets. We also computed a lower bound on the
costs for each data set using the scheme developed
in §2.1. All of these analyses were done using Matlab
(MathWorks Inc. 1998) and a specialized C program.
Each run was solved within a few minutes on a Dell
desktop PC. We define the performance gap of the
heuristic as the increase in the cost of a heuristic solu-
tion from the lower bound solution expressed as a
percentage of the lower bound solution. Across the 64
data sets, the gap of the model-based heuristic ranged
from 1% to 4%, averaging around 3%. The gap of the
feasibility heuristic ranged from 2% to 5%, averaging
around 3.8%.
We wanted to better understand the circumstances

under which percentage gaps increase. This could
provide us with insights to improve the heuristics
and the lower bound. We observed from our analysis
that these gaps are uniformly higher when setup costs
are higher or when inventory holding and rework
costs are lower than the reference case. Conversely,
the gaps are significantly lower when setup costs
are lower or when inventory holding and rework
costs are higher than the reference case. It is impor-
tant to note that these gaps were reduced in these
heuristics largely because the lower bounds became
tighter. For instance, the solution provided by the
lower bounds increased by an average of 1.5% from
the reference case, while the solution provided by
the model-based heuristic decreased by an average
of 0.7% and the feasibility heuristic decreased by
an average of 0.5% from the reference case. This
indicates that both of these heuristics are fairly sta-
ble for a wide variation in cost parameters, while
there could still be potential to improve the lower
bounds.
We repeated this analysis for the FCCPSP by using

data from a modified starch-production process at
this company, which produces over 300 products.
Here, the corresponding values of the ratios K1 and
K2 were 0.7 and 0.8, respectively. Using the same
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procedure described above, we scaled the holding,
rework, and setup costs and formed 64 data sets.
Here again, GAMS or CPLEX were not able to gen-
erate feasible solutions across any of the data sets.
We then tested the operational and backward assign-
ment heuristic (described in §3.2) to develop the pro-
duction plan and to calculate the corresponding costs
across the 64 data sets. We used the procedure devel-
oped in §3.1 to develop lower bounds on the solution
to this problem and to evaluate the performance of
these heuristics. The gap for the operational heuristic
ranged from 2% to 5%, averaging around 3.3%. The
gap for the backward assignment heuristic ranged
from 3% to 6%, averaging around 4.5%. The changes
in the gaps of these heuristics in response to changes
in cost parameters were similar to those described
for the heuristics for the CPSP. Again, we found that
these heuristics were stable across a wide range of
data, while there was potential to improve the lower
bound.

5. Application
We have applied the methods in this paper to produc-
tion data from the food-processing company discussed
in the introduction. The assumptions of the CPSP and
FCCPSP are consistent with the operating environ-
ment at the sorbitol- and modified starch-production
processes, respectively. We tested the CPSP on data
provided to us from the sorbitol-production process.
The data available to us included three-year data on
all parameters used in the CPSP from five processes
located in five countries. Note that the data set from
the process with the largest daily output was used as
the reference in the computational study for the CPSP
described in the previous section. We were also pro-
vided with data on the attribute errors of each product
at each site during this period. We used this data to
verify that the distribution of attribute errors for each
product was normally distributed with a large degree
of confidence (;2 test holds at (≤0�10 level across all
products). This data was then used to calculate the
standard deviation of the distribution of attribute error
for a given product, required in the calculation of the
expected cost of rework associated with each product.
We solved the CPSP for the data from these five

processes using the model-based and the feasibility

heuristics. We used the procedure described in §2.1
to compute lower bounds. The lowest gaps were
provided when we used the model-based heuristic.
The results summarized in Table 1 indicate that solu-
tions provided by this heuristic were within 4% of the
lower bound.
We used the solution provided by the model-

based heuristic at a given process and calculated
the total campaign setup, holding, and rework costs
that would have resulted had the production plan
suggested by our method been implemented. We
compared our costs with actual annual costs at these
processes and found that our method would have
reduced total costs by at least 7% at all of these
sites. Had this approach been implemented, the total
annual cost savings at all these processes would have
been around $3 million. Individual percentage and
absolute cost savings for these processes are also sum-
marized in Table 1.
To better understand the underlying reasons for

the lowered costs resulting from the model-based
heuristic, we compared the solution of the heuristic
to the solution based on the existing operating pro-
cedure. This comparison found that our solution sug-
gested fewer, but longer, campaigns for each product.
While this increased the holding costs for each prod-
uct, this increase was offset by a significant reduc-
tion in campaign setup costs. In addition, there was
a notable decrease in expected quality rework costs.
This is because, with increased campaign length, more
batches could be mixed together, which, in turn,
reduced the probability of nonconformance of a prod-
uct produced in a given campaign.
We also tested the FCCPSP on data over three years

from seven modified starch processes from seven dif-
ferent countries, where the data from the process
with the largest output was used in the computa-
tional study for this problem. We used the operational

Table 1 Percentage Gaps of Heuristics from Tightest Lower Bound and
Cost Savings when Applied to Sorbitol Data

Percentage gap using Cost reduction
Site model-based heuristic Cost reduction (%) (million $)

1 3�5 8�0 0�5
2 4�0 7�0 0�4
3 2�5 9�0 0�7
4 3�3 8�0 0�6
5 2�0 9�0 0�8
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Table 2 Percentage Gaps of Heuristics from Tightest Lower Bound and
Cost Savings when Applied to Modified Starch Data

Percentage gap using Cost reduction
Site operational heuristic Cost reduction (%) (million $)

1 3�0 8�0 0�7
2 4�7 7�0 0�4
3 2�5 9�0 0�8
4 5�0 6�0 0�3
5 4�5 7�0 0�6
6 4�8 7�0 0�5
7 4�0 8�0 0�7

and backward assignment heuristics (§3.2) to develop
the production plan at each of these processes and
used the lower bound (§3.1) to calculate the gaps
associated with the heuristic. The lowest gaps were
provided by the operational heuristic. The results,
summarized in Table 2, indicate that solutions pro-
vided by this heuristic were within 5% of the lower
bound. We used the solution provided by the opera-
tional heuristic at a given process and calculated the
total campaign setup, holding rework, and disposal
costs that would have resulted had the production
plan suggested by our method been implemented. We
compared our costs with actual annual costs at these
processes and found that our method would have
reduced total costs by at least 6% at each site. Had
this approach been implemented, the total annual
cost savings at all these processes would have been
around $4 million. Individual percentage and abso-
lute cost savings for these processes are also summa-
rized in Table 2. Here again, we observed that the
solution provided by the operational heuristic had
fewer, but longer, campaigns across all products than
the solution based on the current operating proce-
dure. Furthermore, the increase in holding costs due
to the longer campaigns in the operational heuristic
was offset by the reduction in campaign setup and
expected quality rework costs to such an extent that
it lowered total costs when compared to the current
procedure.
The main insight that can be drawn from our

analysis of the CPSP and the FCCPSP at this com-
pany is that it is more profitable to run fewer and
longer product campaigns than current practice. This
insight was important for this company because
typically products were produced more frequently

and in shorter campaigns than necessary to mini-
mize finished goods inventories. The focus was on
minimizing finished goods inventory because such
inventory was more visible than aspects such as
setups and rework to the management, who conse-
quently felt that reducing this inventory could lead to
the greatest cost reduction. The results of our analysis
show that this may not always be true. In particu-
lar, it may be profitable to carry more inventory at
higher holding costs, especially if these cost increases
are much smaller than the savings from the result-
ing reduction of campaign setup and expected quality
rework costs.

6. Summary and Future Research
In this paper, we consider the problem of plan-
ning scheduling multiproduct, single-stage, single-
equipment batch operations in the food-processing
industry. Such operations are encountered in many
applications including manufacturing of sorbitol,
modified starches, and specialty sugars. Unlike dis-
crete manufacturing, batch sizes in these operations
cannot be set arbitrarily, but are often determined by
equipment size. Multiple batches of the same product
are often run sequentially in campaigns to minimize
setup and quality costs.
We considered the problem of determining the tim-

ing and duration of product campaigns to minimize
average setup, quality, and inventory holding costs
over a horizon. First, we formulated the deterministic
static version of this problem over an infinite horizon
and showed that, in general, a feasible finite cyclic
solution might not exist. We then provided sufficient
conditions for the existence of a finite cycle, used
single-product problems to provide lower bounds on
the costs for the multiproduct problem, and employed
them to test heuristics developed for this problem.
Next, we modified this formulation to incorporate
fixed cycles, which might be necessary due to fac-
tors such as product obsolescence, perishability, or
contracts with customers, by allowing for disposal of
excess stock so that finite cycles are always feasible,
though they might not be optimal. We also devel-
oped bounds and heuristic solution procedures for
this case. These methods were applied to data from
five sorbitol-production processes and seven modi-
fied starch-production processes at a leading food-
processing company. Our results suggest that our
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methods could potentially reduce total annual costs
by about 7.7%, translating to an annual savings of
around $7 million across all these processes.
Our future research will address some important

extensions to this problem. One natural extension of
this problem is to the multiproduct, multistage, multi-
reactor case found in applications such as bakeries,
confectioneries, and breweries. The increased com-
plexity of this problem would undoubtedly require
different heuristics and different procedures for deter-
mining lower bounds. Another extension could be
to the problem of scheduling a multiproduct batch
reactor with yield uncertainty and operator learn-
ing. This problem typically occurs across a variety
of batch processes in the food-processing industry
that use biochemical reagents. Determining the opti-
mal campaign in this case is more complex, as this
decision would depend on the realized yield from
each batch. In addition, yields typically improve with
increased duration of the campaign, due both to
learning and to the nature of the processes. Finally,
extensions to the batch reactor planning and schedul-
ing problem arise when product demand is variable
due to seasonal or broader economic factors. Depend-
ing on whether such demand variability is a known
or unknown, the models and solution procedure that
are required to address this case could be significantly
different.
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Appendix

Example
In this example, we illustrate how rounding the continuous
solution to the ELSP might lead to an infeasible solution
to the CPSP. We consider a three-product problem with the
following parameters.

Processing
Setup Holding Demand rate Setup time time per

Product cost cost (units/month) per campaign batch
i ($) Si ($/unit) hi Di (months) �i (months) ti

1 100 1 2�000 0�005 0�0875
2 200 1�5 3�000 0�01 0�0583
3 300 2 4�000 0�015 0�0438

Furthermore let B=700 and for simplicity let Ri=0 ∀i.
To determine a finite, feasible cycle of length T , we first
determine the continuous solution to the ELSP using the
approach of Hanssman (1962). In this approach, we impose
the rule that each product is produced once in each cycle.
This is equivalent to requiring that the number of runs
per month be the same for all products, say N . Then, the
total costs are N

∑p
i=1Si+�1/2N�

∑p
i=1hiDi�1−Di/ri�, where

ri=B/ti is the production rate for the ith product. It is
easy to show that the optimal number of runs mini-
mizing the total costs is Ñ ∗=∑

i=1hiDi�1−Di/ri�/2
∑p
i=1Si.

Because we require Ñ ∗ to be an integer, we check the
two bracketing integers and pick N ∗, the one resulting
in the lowest total cost. Then T =1/N ∗ and the opti-
mal lot size for item i is Q∗

i =Di/N ∗. Using these for-
mulas in this example, we calculate that N ∗=3, T =
1/3, Q∗

1=666�67, Q∗
2=1�000, and Q∗

3=1�333�33. Note that∑3
i=1��i+Q∗

i /ri�=0�28<T , Q∗
1=TD1, Q∗

2=TD2, and Q∗
3=

TD3, so that this represents a feasible solution to the
ELSP.
To translate this solution to a feasible solution to the

CPSP, we need to consider batch size B=700, set ni=
1 ∀i, and round up Q∗

1 to 700 so that m11=1, round down
Q∗
2 to 700 so that m21=1, and round up Q∗

3 to 1,400 so
that m31=2. However, this would not represent a feasible
solution to the CPSP because m11B �=TD1, m21B �=TD2, and
m31B �=TD3.
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