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INVESTMENT DIVERSIFICATION AND BOND MATURITY
Rricuarp RoLp*

I. Ture TerM STRUCTURE AS A CAPITAL AsseET PrICING PROBLEM

WHAT DETERMINES the shape of the term structure of interest rates? What
causes its shape to change over time? Answers to these questions are needed
by monetary policy makers, by corporate treasurers, by speculators, and by
economists studying multi-period consumption-investment choices.

Risk, the central feature of the term structure problem, has been attributed
to four sources: (a) default; (b) differences in liquidity or money substi-
tutability among various maturities; (c) uncertain rates of inflation; and (d)
incompatibility hetween bond maturities and investor horizons, We shall in-
troduce another risk component, portfolio interaction, which has been widely
discussed in trade and academic literature as a major determinant of common
stock prices but has been neglected as an explanatory element of the term
structure.

Portfolio diversification has obvious application to the bond-holder and the
bond-issuer. A lender with a given horizon period may find that his optimum
portiolio contains short-term and long-term bonds. This would be a rather
trite contention were it not for the many statements in term structure litera-
ture about investors plunging into either long or short maturities.® It is less
obvious than for the lender, but the borrower may also choase to diversify his
portfolio of outstanding obligations over various maturities. For example,
consider a government agency borrowing for a specific long-term project at
current high rate levels. It might be able to reduce total expected interest
payments (and expected taxzes) by financing the project partly with short-
term bonds rather than entirely with bonds whose term-to-maturity matches
the project’s life. On the other hand, even though the agency expects lower
rates in the future, it would not feel secure in funding the entire project with
short-term bonds that would require a later refinancing. It would prefer to
pay the higher expected rate on a portfolio of long- and short-term bonds
rather than accept the risk that rates will go higher contrary to expectations.

Unfortunately, these simple illustrations of maturity diversification fail to
indicate the exact economic benefits of such action. Just what are the quantita-
tive links between maturity and risk? The remainder of the paper will attempt
to describe them. Section IT will review the theory of the term structure of
interest rates under uncertainty. Section IIT will outline the Sharpe-Lintner
theory of capital asset pricing and show the relation between liquidity pre-
miums (from term structure theory), and risk premiums (from capital asset

* Carnegie-Mellon University. Alan Meltzer and Norman C. Miller provided many useful
comments and suggestions, 1 also benefited from discussions with Marshall Blume, Paul Caatner,
Merton Miller, Franco Modigliani, Thomas J. Sargent, Myvon Scholes, and John Woad, None
of these individuals would agree to share responsibility for the remaining errors.

1. Cf. {2, p. 2241, {10, p. 514], {19, p. 524].
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pricing theory). Section IV will test the combined theories with U.S. Treasury
bill rates and Section V will present conclusions.

II. Turory oF THE TERM STRUCTURE UNDER UNCERTAINTY

The notation and algebra of term structure theory is one of its mast con-
fusing qualities. (Some have lamented the infeasibility of printing a cubic
figure since a three-dimensional symbol would permit a super- or sub-script
at all eight corners rather than at only four.) We shall attempt to alleviate
these difficulties by only discussing the simplest debt instruments, the bill, and
by using the shortest compounding interval, zera. A bill pays a fixed amount
at maturity and nothing before maturity.? For convenience, we assume the
fixed payment is one dollar, The current market price of a one-dollar bill de-
fines its continuously compounded yield-to-maturity as shown in Table 1.
Prices of bills adjacent in maturity define market “forward rates” (also
shown in Table 1).

TARLE 1
ConNTINUQUSLY COMPOUNDED INTEREST RATE DEFINITIONS

P,. The market price, at the beginning of period t, of a
bill with n periods until maturity, (The value at ma-
turity is normalized to $1 and p, ¢ is less than $1 if
the yield is positive.)

Ry¢==——log, (pys): the continnously compounded internal rate of return
n on an n-period hill at period t. This is also called the
“yield-to-maturity” and the “n-period spot rate.”
e =kRy,— (k— DRy 1. the one-period forward rate at period t which is ap-
plicable k periods after t. r, ¢ is the yield on a current
Pir-1.t 1 ” . s
=: log, (k1) futures contract” to loan money for one period
Pt T starting at the beginning of period t 4 k — 1, This

contract is also called a “forward loan >ab

2 To make a one-period “forward loan" in a perfect capital market, one simply sells (k — 1)-
period bills short and uses the proceeds to huy k-period bills, At the end of k — 1 petiods, the
short sale matures and the trader is left long in one-period loans. Refore ¥ — 1 periods have elapsed,
the trader is neither a net borrower nor a lender. In the zhsence of default risk, the forward rate
is z perfectly certain nominal return.

b Forward rates applicable over more than one future period are defined analogously. The
j-period forward rate, ohserved at period €, to begin at £ +%k — 1 is

1 ) 1 Pr—j,t .
et =" [kRk,t — (k — ])Rkv—j,t] = "‘_“'loge i (k ; i)
] ] Prt

When the preceding subscript, J, equals unity, it will be deleted.

Prominent term structure theories assert relations between each market
forward rate and a corresponding future spot rate “expected” by the market.

2. All other types of deht obligations make intermediate “coupon™ payments before a final
repayment of “principal’ These coupan payments cloud the true maturity of the security since
they may be regarded as part of the total debt and are paid at many different maturities. This
has given rise to the concept of “duration” [12, pp. 44-53], which is an attempt to adjust a
bond’s maturity downward if its coupon is high and upward if its coupon is low relative to
the current yield-to-maturity.
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An understanding of this natural relation between forward rates and future
spot rates goes back at least to Irving Fisher® and perhaps even to ancient

times.*
The general form of the asserted market equilibrium relation is

Hie= Et(ﬁ1.t+1—1) + Lj.t (1)

where 1;t is the one-period forward rate currently calculated from market
prices,® Ry,e43—1 is the one-period market spot rate at the beginning of t 7 — 1
(a random variable in t), E is the mathematical expectations operator at the
beginning of t, and L;. is a “liquidity premium.” Since (1) is a market equi-
librium equation, a question arises concerning Et(HRL,t.H*L). If we do not ex-
clude differences of opinion among market participants, whose expectation is
this? The answer, provided by [15, pp. 26-32], shows E¢ to be a weighted
average of individual expectations, the weights depending on individual en-
dowed resources, risk preferences, consumption plans, and levels of confidence.
The precise composition of each liquidity premium, L;¢, in terms of individual
investor characteristics, is also given in [15, p. 32].

While much controversy in recent years has involved the sign and temporal
behavior of liquidity premiums, most economists are willing to accept the
basic “expectations hypothesis” (of which equation (1) is an algebraic depic-
tion}. Many are still justifiably unsure about the three variants® of the hy-
pothesis, however, and a primary goal of the present endeavor is to provide a
more appealing theoretical and empirical explanation of liquidity premiums
via an “expectations-portfolio hypothesis” which contains all three current
term structure theories as special cases.

The theory of efficient securities markets can be combined with (1), the
static equilibrium equation, to produce a dynamic term structure theory. In

3. Fisher did not mention forward rates by name but clearly recognized the imputed forward
rate when he said, “Such an investor [who has a horizen of 50 years and is contemplating the
putchase of a 25-year bond yielding five per cent], if he expected the rate of interest at the end
of 25 years to be 2 per cent, would, in purchasing the above-mentianed hond, be getting $5 a
year for 25 years and $I a year for the next 25 years. Under these conditions, if he could buy
a 50-year bond at 4 per cent, he would prefer to do so.” (2, p. 274], Fisher ignores the passibility
of risk aversion in this example even though it is contained in a chapter entitled, “The Risk
Element.” In 1907, Fisher represented a formal analysis of multi-period lending in [3]. His
“rates of interest for successive years" were actually one-year forward rates [3, pp. 355-4171.

4. Cf. “Mesopotamia: Sumer, Babylonia, and Assyria,” Chapter II of [5].

5. See Table 1,

6. The three variants are: the pure expectation hypothesis associated with Meiselman [131,
the liquidity preference hypothesis, Kessel [7], and the market segmentation hypothesis, The
pure expectations hypothesis asserts that L, , is zera for all j and t. Supposedly, this is accomplished
by risk- and maturity-indifferent speculatars who arbitrage among securities until forward rates
equal expected spot rates. The liquidity preference hypothesis, originally supgested by Hicks [4],
asserts LJ.‘t is uniformly positive for all j and ¢ This is suppased to he due to either {(a) a con-
tinually weak supply of long-term relative to short-term funds Hicks, [4, pp. 146-471, or (b)
a higher quality of liguidity (or moneyness) in short-term bonds Kessel [7, p. 45]. The market
segmentation hypothesis has setved as sttaw man for many witheut having received a rigorous
exposition, (However, a good summary is provided by Malkiel [11, pp. 28-301.) In its most
generous form, Modigliani and Sutch, [14], it asserts that bonds of different maturities are
imperfect substitutes. In its strictest form (as straw man), it claims that no trader will deviate
from his préferred maturity.
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an efficient market, all available information about a security is very rapidly
incorporated into its market price by traders who have a great incentive to
act on new information quickly. Under the most severe assumptions,” the
theory concludes that no trading rule based on eny past information will earn
a profit greater than what one could obtain by investing in securities at
random.? If information is costly to obtain and evaluate, however, a less strict
form of the hypothesis asserts that no economic profit can be obtained by us-
ing a price-predicting model or trading rule. In this case, trading rules based
on non-price data may be better than random selection, but they may also
be more costly to develop and implement. Competition among traders should
ensure an identity between their marginal trading revenues and their marginal
implementation costs.

For the term structure, the theory of efficient markets requires forward
rates to evolve over time according to

Ee_n(re — Lye | Be—r) =ti4mt-B — Lijtmi-n (2)

where B._g represents 2 union of the individual information sets available to
traders in period t — H.* Qver time, rjy1,t—1, Iit, tj—Les1, €tC., are sequential
market forward rates applicable to the same future one-period spot rate,
R;.e41-1. By substituting into (2) from equation (1) for static equilibrium
we find;

Et——H[Et(ﬁ-l.t+j—I)] = Et—H(ﬁL.t+J- 1) (3)

which records a fundamental characteristic of an efficient bill market: in every
period (e.g., in t — H), the market expects to hold identical expectations in
the future {e.g., in t) to those it now holds. From another viewpoint, equation
(2) specifies the required expected return demanded by the market for hold-
ing bills. For example, to obtain the one-period expected return in t — 1 for
{(n 4 1)-period bills, we sum both sides'® of (2) over j and use identities from
Table 1 to obtain

ﬁn,t - -
Ei— [loge (P—“—)] =Rip—1+ E [Lyr1t—1 — Eema(Ly 1) ] (4
n41,t—1
1=1

The left side of (4} is, of course, the expected return from holding the bhill*?
for one-period (continuously compounded), and the right side is just the cur-

7. These assumptions are:

a) zera transactions costs;

b) free information, becaming available to everyone at the same time, and evaluated identically

by everyone:

c) everyone acting rationally and believing others do the same.

8. A complete summary of efficient market theory including its histarical development and its
variants is provided by Fama [1].

9. A mathematical derivation of equation (2) is reported in [15]. Tt is based on a similar result
for commadity futures contracts given by Samuelsen [16].

10. After setting H = 1.

11 p, ¢ and py 4,1 are subsequent prices of the seme bill. See Table 1.
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rent one-period market spot rate plus a summation that contains aggregated
tisk preferences, consumption plans, and confidence levels. Equation (4} is a
general specification of market price behavior over time, It is similar to the
random walk hypothesis'? and to martingale sequences specified by efficient
market theory for common stock prices.® It contains, however, one crucial
additional feature: the expected log price relative is not a constant because
the right side of (4) contains variables with t subscripts. In the random walk
hypothesis, a price change (a log price relative), is asserted to be drawn each
period from a distribution with constant parameters. Equation (4) is anal-
ogous. Its price change is also a random draw each period, but the distribu-
tion’s mean can shift temporarily. Moreover, we are so far unable to state
how the mean will shift from one period to the next.'*

This is an embarassing situation for a theory since the shifting mean pre-
cludes any possibility of empirical refutation. We are therefore forced to look
elsewhere for supplements to the theory and for an explanation of the temporal
evolution of expected price changes. In the next section, capital asset pricing
theory will be enlisted for this purpose.

III. CaprtaL AsseET Pricing THEORY

The Sharpe [17]-Lintner [9] theory of capital asset pricing under condi-
tions of risk concludes that a market equilibrium is reached when

Pk.t — -
Ein [loge (‘—'“-**-—) :I =HRga¢=n-| HﬁkEt-—H(Mt w Ra,;—m) (k =0). (8)
Paipt—nm
Here Py, again is defined as the price of a bill with k periods to maturity at
the beginning of period t (and the log price relative above is an expected re-
turn over H periods), H is an “investor horizon period” which is assumed
equal for all investors (hence the H-period spot rate, Ra.c—m, is a certain re-
turn when we neglect default and inflation risks),'® M. is a return on a “mar-
ket” portfolio, and B« is a market response coefficient.*® This model assumes

12, Ci. {1].
13, Cf. [11.

14, Nate that changes may also oceur in other parameters of the distrtibution, Nothing in equa-
tion {4} precludes it,

15, In the remainder of the paper, we will assume that bills contain no risks of default or inflation,
16. Thearetically, the “market partfalio contains 21l assets in the economy weighted in propartion

to value. Also, B, is given by
-
Cov [Mt; log (,,—):I
Pyigie-m

Var (Mt)

E —

Nate that k is the maturity remaining at t (the end of the horizon periad) on the bill originally
putchased. Equation {3} only admits the case of a bill whose time-to-maturity at purchase exceeds
or equals the investment horizon., If k =0, the bhill originally purchased has maturity H and the
investment is riskless. In this case, of course, §, = 0.

Also, (5) assumes the initial purchase is held until the horizen period ends. We will later con-
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that diversification (through portfolio holding) is a dominant market trait.!?
Every individual is assumed to care only for the risk and return on his enfire
portfolio, and individual securities are only important as contributors to the
portfolio’s character. This is the well-known raison d’etre for fi, which mea-
sures the co-movement of a security’s return with the returns of all other
securities. If B« is positive and large, the security tends to accentuate fluctua-
tions in its portfolio’s value. Such is the essence of risk. Securities with large
(s will only be held hy risk averters if their expected returns are also large,
and securities with small ’s will be held even when their expected returns are
low.'8

Sharpe-Lintner risk coefficients are related somehow to liquidity premiums.
To derive this relation, we first rewrite the static equilibrium term structure
equation (1), as

Ei—rm(Rit) =tai1e-8~— Laie-m (6)
Letting k == 1 in model (5), noting that
loge (P1,t/Pat1,t-m) = (H+ 1}Ratr-m— Ry
and combining (5} and (6) we obtain

(H+ 1}Rr41e-u — taitt-r+ Latie-n ~
= HRg . n + H}:E(—g(M¢— Ru¢_n),

and by noting that
rgyre—a == (H 4 1}Ras1,t-5 — HRpt- 5,
we obtain

Lust—a = HP1Fe_n(M; — Ra¢_m). (N

In the context of the Sharpe-Lintner model the right side of (7) is the fotal
cost of risk associated with a bill whose time-to-maturity is just one period
longer than the horizon period. It seems appropriate that the liquidity pre-
mium associated with a commitment of funds for one period past the horizon
should equal this total cost of portiolio risk. Similar algebraic manipulation
will provide a second liquidity premium,

LH.t—H = _HB—IEt——H(ﬁt - RH,t»—H) . (8)

This risk cost is associated with a bill whose maturity is just one period
shorter than the horizon period. A one-period reinvestment (at an uncertain
rate) is necessary after H — 1 periods when this bill is purchased. Unfor-
tunately, due to the static nature of both capital asset pricing theory and the

sider the possibility of initially purchasing a bill whose maturity is shorter than the horizon and
the related possibility of intermediate trading (before the harizon's end).

A complete treatment of the horizon problem in the Sharpe-Lintner model is given hy Jensen
[4, pp. 186-191],

17. The original theory also assumed homeogencous expectations and investar utility functions
which only depend on the mean and dispersion (variance} of rates of return.

18. The precise trade-off between portfolie risk contribution and expected return is established in
equilibrium by the preferences of tradets, Equilibrium price per unit of risk is B,y (M, —Rg . g}/
Var(ﬁt). See Jensen [6, pp. 175-76].
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term structure equilibrium equation (1) used thus far, La and Lry: are the
only liquidity premiums that adhere to simple relations with Sharpe-Lintner
risk coefficients.

Adding the dynamic term structure equation {2} will provide some addi-
tional information on the relation between risk coefficients and liquidity pre-
miums. First, we let k == j — 1 in the Sharpe-Lintner model (5) and subtract
the result from (5) with k = j. This provides

Ee—n(rasii—m — fre) = H(By — Bj—1)Ee—n(M; — Ra,e—=) (9

for j > 0. According to the dynamic equation (2), the left side of (9} is
Et—H(LH_H,t—H —_ Lj,t) and thus

E w(Luyse—m— i‘j.t) =H{f; — ﬁj—-l)Et-—H(ﬂt —Rpi_w) (10)

for j > 0. Equation {10) provides some insight about long-term averages of
liquidity premiums and thus about “biases” in forward rate forecasts of future
spot rates.”® For example, if the market horizon is very short, say H=1,
equations (10) and (7) can be combined with . == 0 to obtain

Ly =B (M —Ey) (11)

where the bars indicate long-term averages.?® The mean forward rate in this
case is
1y =Ry + (M — Ry). (12}

Thus with a one-period horizon prevailing in the market, the term struc-
ture will be monotonically upward-sloping on average if and only if the f’s
(the risk coefficients) increase monotonically with maturity,®' j. This will be
true, of course, if longer-term bonds tend to fluctuate in price with general
ecanomic conditions more than shorter-term bonds. Nothing in portfolio theoty,
however, asserts whether longer- or shorter-term bonds have greater price
variability and we are obliged to consult data for an answer.

To obtain empirically testable models, we will use equation (9). Setting
j=1in (9), setting j =k in a repetition of (9), and jointly eliminating
Ec—a(Mc—Rg—m) results in

E‘*_:‘;Ek_i Eem(Ry: — rmyse_n) (13)
1

Ei_n(fyt—ratri—n) = B

for H,k > 0. Assume now that these expectations can be replaced by an
additive error term, i.e., that

ﬁl: - ﬁk—-l

Fit — THpLe—H = R {(Ret—Tayre—m) + €mxe (14)
1

for HJk > 0. When H =1, the shortest possible horizon period, equation
(14) becomes

19. Forwatd rate bias is the main issue of contention between the “pute” expectations hypothesis
and the liquidity preference hypothesis of the term structutre {Cf. footnote 6).

20. Equation (11) is obtained by deleting the expectations operators and adding a disturbanee
term with sample mean zero.

21. When H == 1, however, the term structure’s average shape is a much more complex function
of the B's.
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ﬁk - ﬂk—l

Tt — Ieg1,0—1 — '-""ﬂ——' (Rl,t -_ l'z,t-l) + ELrty (15)
1

which should be familiar to readers of term structure literature because it is
formally identical to Meiselman’s “error-learning model” [13, p. 20]. It
even lacks a constant term, a fact used by Meiselman to infer that ail
liquidity premiums are zero** [13, pp. 45-47]. The error-learning “response

ﬁk - E’L’—-l
coefficient” turns out to he —————, a simple function of the risk coeffi-
1

cients from the Sharpe-Lintner model. Although (15) and the “error-learn-
ing"” model are formally identical, the economic theory behind them is much
different. While the error-learning model asserts that short-term forecast
errors generate revisions throughout the term structure, equation (15) has
nothing to do with forecast errors but is the direct result of a propensity to
hold diversified portfolios. Another contrast between the error-learning model
and the theory leading to (15) involves the differencing interval. In published
empirical work with the error-learning model, the differencing interval was
chosen arbitrarily as the calendar time between successive observations of
collected data. Equation (14), however, indicates the differencing interval is
exactly H, the “market horizon,”’ and this means that H is another parameter
to be estimated empirically, not just selected conveniently.?

To accompany (14), we shall now derive a testable model for the situation
when a reinvestment is necessary before the horizon period expires.* In this
case, the maturity, k, left on the original bill at the end of the horizon, may
be negative. First, we assume that an initial purchase is an (H 4 k)-period
bill in t —H at a price Payee—n (k< Q). After H-}- k periods this bill
matures and a reinvestment must be made for the remaining —k periods of
the horizon. For simplicity, assume that the reinvestment is riskless, ie., 2
(—k)-period bill that will mature exactly at the end of the horizon is pur-
chased as the reinvestment. The total expected return to this strategy is

3
Et_ﬂ[loge (-——‘-—-—)il =HRg,: =

Paikt-um N
+ HBuEe—g[Me— Rue—nl; (H+k>0),(k<0). (16)

Second, consider the strategy of initially purchasing an (H -+ k -+ 1)-period
bill which is sold in t -+ k. (It still has one period to maturity in t --k.) The
expected return to this strategy is

Pron/Py, _
Ei g [lﬂge (———1 ki ) :I =HRg:-g + Hx41Ee—n(M¢ — Ru¢-.5)
Patriirt-n
(17)

22, Of course, liquidity premiums are not necessarily zero in the theory leading to (15).
23. The linear form was 2lso an assumption in Meijselman's theory that had to be justified
empirically. Here the linear form is a canclusion.

24, Recall that (14) was developed from (5), a form of the Sharpe-Lintner madel that requires
the ariginally purchased bill ta have a maturity Ionger than the harizan. Cf. footnote 14,
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for k<0 and H+ k > 0. Note that when k =0, fess =0 and (17) is
equivalent to (§) with k= 1. Algebraic manipulation with (16) and (17)

provides

Er m(Ritrr-1—Taprs—_p) = ﬁk__éb Et—H(f{Lt —tayre-m) (18)
1

for k < 0 and H 4 k > 0. Replacing the expectations with an additive error
results in a testable model,

[-J’k - [—J'k—l

Ritpker — THLkt—H = — (Rit — rap1e—n) + €mxe (19)
1

which corresponds for k<K 0 and H+k > 0 to (14) for H> 0 and k> Q.
Equations (14} and (19) will be empirically supported if money market
participants value hills as portfolio components just as stock market partici-
pants value common stock. This is not to say that all investors who hold
portfolios of commeon stock need to enter the money market or vice versa.
In fact, major holders of bills such as banks and corparate treasurers may
not hold common stocks at all, and many mutual funds may not hold bills,
Their specialized investment policies can be regarded, however, as a reliance
on arbitrageurs whose livelihood is secured by equating money market returns
with stock market returns. In the next section, we will examine the extent of
such activity by testing equations (14) and (19).
IV. Ewmpiricar TrsTs

For convenience, the two testable equations developed in Section IIT are
reiterated below:

et —rtEtrt-8B = '—ﬁ-k“?ﬁ—ﬁi (Ryt — tA4re—u) EE It (14)
1
for k, H > 0; and
B — Br—1
Ritix—1—ratxi—m = "'—['3'— (Rie—rei1e—m) + Emt (19)
1

for k<0 and H -k > 0. Data, described in the Appendix, are weekly
observations of U.S, Treasury Bill yield curves during the period October,
1949, to December, 1964. Time subscripts in (14) and (19) must be mea-
sured in weeks and the maximum maturity is 26 weeks. For equation (14),
the maturity, H 4k, on the bill when originally purchased is constrained
to the interval 0 < H - k<26, For (19), the limiting subscript, H 4 1,
must remain in 1 < H + 1 < 26.

Our data analysis objective is to infer the most likely value for the hori-
zon, H, while simultaneously testing the adequacy of the models represented
by (14) and (19). This is a very difficult econometric problem because little
is known about suitable methods for comparing alternate models® when the

25. Equations (14) and (19) constitute 2 different model for each harizon value, H. Fach model
is a set of 24 equations as H+ k=32, ..., H, H-+2,..., 26 far each given H. Note that
when H 4k —H -+ 1, (14} i3 2 trivizl equatian.
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number of sample observations differs among them. Note that the number of
observations available for each equation is constrained by a data sample of
fixed calendar length because the differencing interval spans H periods. Since
sample intervals must not overlap, longer differencing intervals have smaller
numbers of observations.

An Attempt to Measure the Market Horizon Period

The strength of assaciation between variables on the left and right sides
of equations (14) and (19) will provide an empirical basis for inferring the
most likely value of the market horizon period. For each value of the horizon
(H=1, ..., 25 weeks), we shall measure association by Kendall’s tau,*
Tr,E+k, Calculated between the two variables® in equation (14) and between
the two variables® in (19). This is a total of 576 sample values of Kendall’s
tau, but since we are only interested in estimating the horizon, H, in this
subsection, we shall average ta,m+r over the nuisance parameter k (the matu-
rity remaining on the initial purchase at the horizon’s end), to obtain

ot 26
Ta= l: E :fE,H+k+ E ; fﬂ,H+k:|/24-

Hi4h=2 Hof ke=H4 2
These means* are presented in Table 2 along with the minimum and maxi-
mum sample sizes for each H and the standard deviations®® of Tar¢x calcu-
Iated over H - k given H. Ta is plotted against H in Figure 1.

A
T

H 10/49 - 12/64

3/59 -~ 12/64

o I I | ! -

5 16 15 0 25 H
{weeks)

26, This is a well-know ordinal measute of association. Far a bivariate population on the random
variable y and x, let (vy,%;} and (¥5,%,;)} be 2 two-fold sample, Kendall's tau is © = concardance —
discordance = Pr(y; => ¥, and %y 2> x5} 4 Pr{y, <y, and x; << x,) — Pr(y; < ¥, and x; > %y) —
Pr{y, >» ¥, and x; < x,). See [8, pp. 822, 836-839].

27. These variables are (v —tg ¢ p) aud Ry ¢~—tg g, g) for H+k=H+2, ...,
2; Hem 1, .. . 24,

28. These variables are (Ry ;o y~tp e gl and Ry, —tp y, g for H4+ k=2, ...,
H-1,H;H=2,...,25

29, The complete 574-element table of %H,H +x is available from the author on request.

30. This measure of digpetsion cannot be used in the ordinary way to caleulate the standard errar
of the mean because there is no reason to suppose that the %H,H +i ate independent.
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TARBLE 2
SUMMARY MEASURES OF ASSOCIATION BETWEEN CHANGES IN FORWARD RATES
(U.5. Treasury Bills, 1949-64}

Number of
Standard* : Negative
Horizon Deviation of Sample Sizest €H.H +k
H (weeks) . — Minimum ~ Maximum  Qutof 24
Octobet, 15949-—Decetnber, 1564
1 Ja19 .0855 201 795 1
2 138 0972 146 397 0
3 181 .103 96 265 L
4 .195 .109 73 198 1]
5 184 148 57 159 4
6 164 146 47 132 3
7 213 134 39 113 0
8 .235 174 37 99 2
9 .283 153 31 88 1
10 .284 144 28 79 0
11 .290 149 25 72 1
12 336 A51 24 65 1
March, 1959—December, 1964
1 0854 .0681 201 304 1
2 110 0910 146 151 1
3 158 0838 96 101 1
4 163 .0888 73 75 o
5 154 140 57 60 5
6 14 .112 47 50 4
7 213 125 39 42 0
8 223 167 37 37 2
9 262 .149 31 33 2
i1y 279 145 23 29 0
1 287 175 25 27 ¢
12 330 168 24 25 1
13 171 125 23 23 2
14 156 187 20 20 5
15 229 170 20 20 3
16 .344 .146 18 18 0
i7 338 .108 16 17 4]
18 .382 176 14 16 4]
19 416 .159 14 15 0
20 325 75 13 14 2
21 313 272 12 13 4
22 337 195 11 13 1
23 .388 172 12 12 0
24 321 .169 12 12 1
25 220 208 10 10 4
0 26—H
A / . / 1/2
* [ Z Cgaey— T2 24+ Z gy — Ta)? 24]
k2 —H k=2

t Minimum sample sizes correspond to longest differencing intervals and mazimum sample sizes
to shortest differencing intervals in equations {14) and (19).
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The results indicate a positive association among the forward rate changes
in equations (14) and (19).2! Estimated means of T are uniformly positive
over all values of the.horizon parameter, H, and only 36 of the 576 T's are
negative.’> However, the results are far from conclusive concerning the hori-
zon parameter, H. One would like to select the value of H that results in the
best fit of equations (14) and (19) as evidenced by the largest absolute

magnitude of Ta. Unfortunately there is no clear-cut winner. If there is a
unique market horizon, the results only suggest that it is not very short term,
say 2-6 weeks, nor does it correspond to the issues of new maturities of
Treasury bills, 13 and 26 weeks, because the degrees of association between
the variables in (14) and (19) are close to zero in these ranges.*® Portfolio
considerations seem rather weak over the shortest horizons because the
model does not explain much of the short-term wvariation in forward rate
changes.

Risk Coefficients for Treasury Bills

Estimated values of Kendall’s tau, mieasuring association between forward
rate changes, are largest in the horizon ranges of 8-12 and 16-23 weéks. If
portfolio considerations motivate money market investors, these periods are
the most likely candidates, among thase considered, for investor horizons..
After choosing one of these as the “market’s” horizon, estimates of Sharpe-
Lintner risk coefficients can be calculated for Treasury- bills. These estimates
should measure the value of bills as portfolioc components and also provide
evidence on the structure of liquidity premiums.

To conserve space, estimates for only one horizon are reported below. a4
H =8 weeks was chosen because its mean degree of assaciation, 'Cs, was a
median value of the s and thus seems representatlve being blased in neither
direction with respect to the sample of T's. The guantity

RS ﬁl&_l?)k—-l

£ ﬁl
is the coefficient of forward rate change on the right sides of (14) and (19).
Table 3 presents unconstrained least-squares estimates of vyk(k = —6, —5,

, 0, 2,...18) and calculated standard errors.®® Since f,= 0, estimates of

31. Of course, this results might have been anticipated because past empirical fits of Meiselman's
error-learning model, equation (14} with H =1, have generally shown strong positive correlation
between forward rate changes [13, p. 22]. Note, however, that H = 1 provides the weakest degree
of pasitive association with these data.

32. In the sample period from March, 1959, on.

33. Treasury bill maturities near 13 and 26 weeks are peculiar in several respects. Transaction
costs are considerably lower at these maturities than at adjacent ones. Alsa, the term structures
of yields and forward rates have discontinuities at these paoints. [See 13, ch. 51. New issues of
Treasury bills evidentally affect the patterns of yields and prices in 2z manner admittedly unex-
plained by the current theary.

34, Results for all values of H are available on request.

35. A nate of caution: We have used non-parametric methods here when possible because the
distributions of ferward rate changes seem non-Gaussian, The distributions are symmetric but have
fat tails and the standard errors in Table 3 should not be used for Gaussian-based tests of hy-
potheses, They are only reported for completeness, For more infarmation on the distribution of
farward rate changes, see [15].
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individual §’s (as proportions of B1) can be obtained from estimated y’s by
using

Elfr-l-i-z{‘: (k>1)
B4 Py
and
A e
E=~E i (k < 0).

j=k+1

Estimated values of fi/B:1 are reported in Table 3 and are plotted in Figure
2. Sample sizes are smaller for k > 5 (or H 4k > 13) because maturities
greater than 13 weeks were only issued by the Treasury in the latter part of

TABLE 3
Least Squares EsrTiMartes For Risk CoerriciENTs, Hokizon-EreHr WEEKS
(U.S. Treasury Bills, 1949-64%)

Maturity, . Standard . Sample
k {weeks} ' Errar, v, B, /B; Size
-7 —L71

—6& 0250 0295 —1.69 29
—35 116 0443 -—1.57 99
—4 124 0557 —1.45 99
—3 242 0681 —1.21 a9
—~2 388 0684 — 819 99
—1 Al8 .0950 — 401 99
"] 401 0556 0.0 99
587 0997 1.587 a9

3 609 0558 2.20 99

4 591 0600 2.79 99

5 635 0844 3.42 a7

6 209 230 3.63 37

7 157 173 3.79 37

8 .240 122 4.03 37

9 400 164 4,43 37
10 115 By 4] 4,54 37
11 523 209 5.07 37
12 604 164 5.67 37
13 --.0755 154 5.59 37
14 1.037 293 6.63 37
13 A37 451 1.07 37
16 283 184 7.35 37
17 230 204 7.58 37
13 240 140 7.82 37

* For k < 6 estimates are hased an period from October, 1949 to December, 1964, For k 2= 6, ¥,
is based on March, 1959 ta December, 1964.

the sample period.3® (See Appendix.) Least-squares estimates of ¥ show
considerably more variation for these smaller sample sizes.

36. Although they are not reported in Tazble 3, Figure 2 also plots, with the dashed curve, Bﬂk/ﬁl
when ail the'least-squares estimates used only the last part of the sample period, from March, 1959,
on. The differences are very small.
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ak/ﬁlw

6.0—
5.0 —
4.0 —
3.0—
2.0 —

1.0 i

|~

Maturity,
k
(weelts]

The pattern in fu/P1 is at least consistent with capital asset pricing theory.
Recall that k is the maturity remaining on a bill at the end of the investor’s
horizon. Thus, for k > 0, the larger k, the less perfectly the security matches
the horizon and the greater its risk. Hence, the risk coefficient fx should
increase with k. For k < 0, the risk coefficients are negative, This might also
be expected because: (a) when k < 0 the initially purchased bill matures at
a non-stochastic known value® before the horizon period expires; (b) if
asset prices have fallen when the initial purchase matures, the investor can
buy a larger quantity of bills for reinvestment, and vice versa; (c) therefore
the holding period return on this strategy is negatively correlated with the
market return over the total horxizon. This negative relation will be less pro-
nounced as k approaches zero, i.e., as the initial purchase approaches the
hotizon period in maturity. We thus conclude that bills with maturities
shorter than the horizon have wmegative risk. They may be combined in a
portfolio with commaon stock or long-term bonds to reduce the expected varia-
tion in return of the total portfolio.

However, results for a single horizon period of eight weeks are only given
as an example and are not meant to constitute a favorable test of the theory
in Sections I-IIIL. In fact, it seems reasonable to suppose that the horizon

37, Assuming no risk of default or inflation.
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period differs among investors and is not even known with precision by many
individuals. With the present state of theory, it seems impossible to derive a
general model that accounts simultaneously for differing investor risk atti-
tudes and horizon periods. We are only entitled to conclude that a general
tendency exists for a positive relation between the Sharpe risk coefficients
on a Treasury bill and the bill’s maturity. If investors are primarily risk
averters, a higher expected return must accompany the higher risk inherent
in longer maturities and the term structure must be upward-sloping on aver-
age.
V. CoNcLusION

Theories of the term structure of interest rates have traditionally not
mentioned portfolio diversification as a possible motive of hond investors®
This paper has attempted to show how Sharpe-Lintner capital asset pricing
theory [9, 17], which is based entirely on portfolio motives, is relevant for
the pricing of fixed-income securities. A static and dynamic theory of term
structure behavior developed in [15] was combined with the Sharpe-Lintner
equilibrium equation to derive relations between the portfolio risk of bonds
and the term structure’s “liquidity premiums.”

Theoretical and empirical difficulties arise from the horizon period, i.e., the
length of time an investor plans to forego consumption and remain invested.
Aggregation problems stem from the possibility that individual horizons may
vary and a different set of testable equations is necessary for every choice of
the market’s horizon. Surprisingly, if there exists a unique market horizon
that is very short, portfolio behavior implies a movement of forward rates in
formal conformation to Meiselman's [13] error-learning madel, even though
this theory has nothing to do with the forecast revisions Meiselman postu-
lated.

U.S. Treasury bill rates were used to test operational forms of the theory.*
The results were inconclusive with respect to measurement of a unique
horizon period applicable to all investors. However, the data did indicate
that portfolio risk components of Treasury hills, as measured by Sharpe-
Lintner B coefficients, increase with term-to-maturity, This implies an upward-
sloping term structure on average.

APPENDIX

Bid and asked rates on U.S8. Treasury bills were keypunched and verified directly from
dealer quote sheets provided by Merrill Lynch, Pierce, Fenner and Smith, government se-
cutities division (formerly C. J. Devine and Company). The original rates were “hanker’s
discounts” but were converted to continuously compounded internal rates of return per
annum. The arithmetic mean of hid and asked rates was used here.

The sample consists of 796 weekly yield curve ohservations from QOctober, 1949, through
December, 1964. Through February, 1959, the Treasury normally issued 9i-day bills only.
Beginning in March, 1959, 182-day bills were also issued. This is why the tables contain
fewsr observations for maturities of greater than 13 weeks.

Ordinarily, Tuesday closing quotations were used. When holidays occurred, Monday
closing quotations were used. All reported tests were also conducted excluding holiday-

38, An exception is [18.].
39. The data sample included aver 15 years of weelly ohservations,
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assaciated observations and no significant differences were obtained. The data were also
filtered in various ways to detect errors. Any errors that remain are due to:

(a) printing mistakes on the quote sheets;
(b) quoted rates that were not firm;
{c) averaging bid and asked rates,

Since these errors are very small or infrequent, they are unlikely to have affected the results.

A more complete description of the data is available from the author on request. It in-
cludes the method of data filtering, an extensive historical description, and a discussion of
the hid-asked spreads.
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