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Abstract 

This paper presents simple closed-form expressions for volatility futures and option 
prices and examines their implications for the characteristics of these securities. We show 
that the properties of these volatility derivatives are fundamentally different from those of 
conventional option and futures contracts. This analysis also provides insights into the role 
that volatility derivatives may play in managing and hedging volatility risk in financial 
markets. 
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1. Introduct ion 

Few proposed types of derivative securities have attracted as much attention 
and interest as futures and option contracts on volatility. In April 1993, Reuters 
began reporting the VIX index which tracks the implied volatility of S & P  100 
index calls and puts. The Wall Street Journal recently reported that the Chicago 
Board Options Exchange plans to unveil options on the VIX index shortly. A 
recent issue of Futures reports that the American Stock Exchange is also consider- 
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ing developing volatility options on the U.S. stock market and that market 
regulators have privately endorsed the concept. Articles in the November 1993 
issue of Futures and Options World and the July 25, 1994 issue of Barrons explain 
how volatility derivatives could be used to hedge the volatility risk of option 
portfolios. Volatility swaps have recently begun to trade in the over-the-counter 
market. In Europe, the German Futures and Options Exchange (DTB) launched a 
volatility index called VDAX on December 5, 1994. This index tracks the implied 
volatility of DAX index calls and puts. The DAX index is a value-weighted index 
of the 30 largest firms traded on the Frankfurt Stock Exchange. The Austrian 
Futures and Options Exchange (OTOB) announced a volatility index on its 
Austrian Traded Index (ATX) calls and puts for 1995. Volatility futures and 
options on volatility indexes are currently being developed by a number of 
investment banking firms in the U.S. and Europe. 

Futures and options on volatility are clearly fundamental types of derivative 
securities. By allowing investors to hedge directly against shifts in volatility, these 
securities enable investors to avoid the costs of dynamically adjusting positions for 
changes in volatility and serve to make the market more complete. 1 One trader 
stated " b y  being able to buy and sell volatility, investors would now be able to 
manage their risk in two dimensions - price risk and volatility risk - an 
opportunity previously out of reach for all but the large and sophisticated options 
users." 

This paper derives simple closed-form valuation expressions for a variety of 
volatility derivatives. We then examine the implications of the valuation expres- 
sions for the properties of these securities. The objective of this analysis is to 
understand how these derivative securities differ from more conventional futures 
and options and to provide some insights into the economic role that volatility 
derivatives may play. The valuation model we use captures many of the observed 
properties of volatility. In particular, the model allows volatility to be mean 
reverting and conditionally heteroskedastic. 

We first examine the properties of volatility futures prices. We show that these 
prices can differ from those implied by the standard cost-of-carry model in a 
number of important ways. For example, volatility futures prices are bounded 
above zero and the basis can be either positive or negative. In addition, we show 
that longer-horizon volatility futures can be virtually useless as hedging vehicles. 

We then derive valuation expressions for volatility options. These options have 
many surprising properties and are fundamentally different from conventional 
options. For example, the price of a volatility call can be below its intrinsic value, 
the traditional put-call parity relation does not hold for these options, and the 

I Brenner and Galai (1989) and Whaley (1993) provide excellent discussions of how volatility 
derivatives can be used to hedge the volatility risk of portfolios containing options or securities with 
option-like features. 
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pattern of  time decay is perverse. The underlying reason why these options behave 
so differently is that volatility is not the price of  a traded asset. 

As with futures, these results have important implications for the hedging 
behavior of volatility options. We show that prices of volatility calls and puts 
become less sensitive to the current level of  volatility as their time to expiration 
increases. This dampening effect implies that the deltas of  longer-term options 
tend toward zero. Furthermore, the absolute value of the delta for a volatility 
option is always less than one, and is generally less than some fixed number. 
These features dramatically alter the way in which these options can be used to 
hedge the volatility risk of  option portfolios, and have fundamental implications 
for the way that volatility option contracts should be designed. 

Finally, we focus on the valuation of options on volatility futures. We show 
that volatility futures options can be valued as if they were simple volatility 
options by making a transformation of  the strike price. A surprising implication of 
this is that for some strike prices, these options are priced as if guaranteed to be in 
the money or out of the money at expiration. 

The remainder of  this paper is organized as follows. Section 2 presents the 
basic valuation framework for volatility derivatives. Section 3 applies the model to 
volatility futures contracts and examines their properties. Section 4 considers the 
properties of  volatility option prices. Section 5 addresses the valuation of  volatility 
futures options. Section 6 summarizes the results and makes concluding remarks. 

2. The valuation framework 

In this section, we present the basic valuation framework within which specific 
expressions for volatility derivative securities are derived. Although the discussion 
is couched in terms of stock index volatility, the framework could also be applied 
to derivatives on other types of volatility such as currency or interest-rate 
volatility. In fact, these results could easily be extended to include derivatives on 
such diverse non-price state variables as inflation rates, casualty insurance claims. 
or health care cost indexes. 

Let V denote the current value of  the standard deviation of  returns for the stock 
index. This standard deviation can be either the instantaneous volatility or the 
volatility implied from some option pricing model - the distinction does not affect 
the form of the resulting valuation expressions. 2 Let the dynamics of V be given 
by 

d V =  ( a - K V ) d t  + ~ r ~  d Z ,  1) 

For example, Taylor and Xu (1994) show that when volatility is stochastic, the volatility estmmte 
implied by inverting the Black-Scholes model is nearly a linear function of the actual instantaneous 
volatility. 
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where or, K, and ~r are constants, and Z is a standard Wiener process. This 
framework is conceptually similar to that used by Wiggins (1987), Hull and White 
(1987), Johnson and Shanno (1987), Scott (1987), Stein and Stein (1991), and 
Heston (1993). 

This specification of  the volatility dynamics is also consistent with many of the 
observed properties of  stock index volatility. Empirical evidence by French et al. 
(1987), Harvey and Whaley (1992), and Sheikh (1993) suggests that index 
volatility follows a mean-reverting AR(I )  process. Regressions of  squared changes 
in implied volatility on volatility levels indicate that the variance of changes in 
implied volatility is not constant, but increases with the level of  volatility. The 
dynamics for V given in (1) capture both of  these features. In addition, these 
dynamics imply that V is always positive and has a long-run stationary gamma- 
distribution. 3 The mean and variance of  the stationary distribution are ~ / K  and 
t~O'2/2K 2. Similarly, the first-order serial correlation for V is e -K~t. Given 
estimates of  the mean, variance, and serial correlation of  V from indexes such as 
the VIX or VDAX, the parameters or, K, and cr 2 can easily be obtained by 
inverting the analytical expressions for the mean, variance, and serial correlation. 

Now consider the valuation at time zero of  a contingent claim with a payoff 
B ( V  r)  at time T depending only on V r, the time-T value of V. Since V is not the 
price of  a traded asset, we allow for the possibility that volatility risk is priced by 
the market. Consistent with Wiggins (1987), Stein and Stein (1991), and others, 
we make the assumption that the expected premium for volatility risk is propor- 
tional to the level of  volatility, {V. We note that this assumption is similar to the 
implications of  general equilibrium models such as Cox et al. (1985), Hemler and 
Longstaff (1991), and Longstaff and Schwartz (1992), in which risk premia in 
security returns are proportional to the level of  volatility. We also make the usual 
assumptions that markets for securities are perfect, frictionless, and are available 
for continuous trading. Furthermore, we assume that the riskless interest rate r is 
constant. 

It is important to note that the basic nature of  our results is unaffected by 
whether V can be expressed as a non-linear function of  other security prices as in 
the case where V is the implied volatility of  an option. This is because V cannot 
be replicated by a self-financing portfolio of  the option and the index, even though 
a non-self-financing portfolio can be constructed which replicates V exactly. The 
intuition for why this is true is related to the fact that all securities must earn the 
riskless rate of  return in the risk-neutral economy. Thus, all self-financing 
portfolios must earn the riskless rate. As implied by (1), however, the 'expected 

3 The geometric Brownian motion process for V used by Hull and White (1987) implies that V is 
non-stationary. Similarly with the constant elasticity of variance process assumed by Johnson and 
Shanno (1987). The Ornstein-Uhlenback process used by Scott (1987) and Stein and Stein (1991) 
implies that negative values of V are possible. 
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return' on V, can be either positive or negative and generally will not equal the 
riskless rate. This means V cannot be the value of  a self-financing portfolio of  
securities and that standard hedging arguments are not applicable. Note that this 
issue is different from the issue of  whether we can substitute out the value of V in 
the pricing expressions using the non-linear mapping between V and observed 
market prices. This latter issue is simply whether it is possible to make a change of  
variables. If  so, the change of  variables is mathematically neutral and does not 
affect any of  the properties of  the pricing expressions. 

Given this framework, the current value of  this claim, A(V,T) ,  satisfies the 
fundamental valuation equation 

o- 2 
- - V A v v  + (et - 13V)A v - rA = AT, (2) 
2 

where 13 = K + 4, subject to the expiration-date condition 

A( V r ,0)  = B ( V r ) .  (3) 

Let D ( T )  denote the current price of  a T-maturity riskless unit discount bond. The 
solution to this partial differential equation can be expressed as 

A ( V , T )  = D ( T )  E[ B ( V r )  ] , (4) 

where the expectation is taken with respect to the risk-adjusted process for V 

dV=  (,,  - 13V)dt + ~ dZ. (5) 

From Feller (1951) and Cox eta]. (1985), this risk-adjusted process implies that 
yV T is distributed as a non-central chi-squared variate with v degrees of freedom 
and non-centrality parameter h, where 

413 
3' = ¢r2(1 _ exp( - 13T)) ' 

40~ 
v -  ~r 2 , ( 6 )  

h = "y exp( - 13T) V. 

The non-central chi-squared distribution is described in Ch. 28 of Johnson and 
Kotz (1970). With this representation of solutions to the partial differential 
equation in (2), valuation expressions for volatility derivatives can be obtained by 
directly evaluating the expectation in (4). 

3. Volatility futures 

In this section, we derive futures prices for futures contracts on volatility and 
examine some of  the properties of  these prices. 4 

4 Since the riskless interest rate is not stochastic, volatility futures and lbrward prices are identical. 
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3.1. The volatility futures model 

Let F(V,T)  denote the futures price for a futures contract on V with maturity 
T. Following (4) and Eq. (46) of  Cox et al. (1981), the futures price can be 
expressed as the expected value of  V at time T 

F ( V , T )  = E[VT],  (7) 

where the expectation is taken with respect to the risk-adjusted process for V. 
Evaluating this expectation gives the following expression for the volatility futures 
price 

F ( V , T )  = ( a / [ 3 ) ( l  - exp( - [3T)) + exp( - fST)V. (8) 

In this model, volatility futures prices are exponentially weighted averages of  
the current value of  V and the long-run mean a / J3  of  the risk-adjusted process. 
As T ~ 0, the futures price converges to the current value of  V. As T ~ oo, the 
futures price converges to ~x/[3. Note that since the futures price is the expected 
value of  V taken with respect to the risk-adjusted process for V, the futures price 
generally will be a biased estimate of  the actual expected future spot value of  V. 

3.2. Properties of volatility futures prices 

Volatility futures prices have a number of  interesting properties. For example, 
as V ~ 0, the volatility futures price does not converge to zero. Thus, volatility 
futures prices are bounded above zero. The intuition for this is related to the mean 
reversion of the volatility process. When V reaches zero, V immediately returns to 
positive values. Thus, the expected value of  V r is strictly greater than zero even 
when the current value of  V is zero. This feature of volatility futures prices 
contrasts with those of  futures prices on traded assets. The lower bound on futures 
prices also has important implications for pricing futures options which is dis- 
cussed later. 

Another important property of  volatility futures prices is that their hedging 
effectiveness is a function of  their maturity. In particular, the partial derivative of  
F(V,T)  with respect to V is exp( - [3T) .  This means that volatility futures prices 
do not move in a one-to-one ratio with changes in V. Furthermore, as T increases, 
a change in V has less of  an effect on the futures price. In the limit as T ~ oo, 
futures prices approach the long-run mean a / [ 3  of  the volatility process and are 
unaffected by the current value of  V. For this reason, longer-term futures contracts 
may not be effective instruments for hedging volatility risk. The intuition for this 
is again related to the mean reversion of  V. Any change in the current value of  V 
is expected to be partially reversed prior to the expiration of  the contract. Hence, 
volatility futures prices move sluggishly in response to volatility shocks. 5 

5 Brenner and Galai (1989) and Whaley (1993) describe how volatility futures can be used to hedge 
volatility risk, but do not provide explicit solutions for volatility futures prices. 
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The basis for volatility futures is given by 

(e~/13 - V ) (  1 - exp( - 13T)). (9)  

The basis converges to zero as T ~ 0, and converges to the difference between the 
current value of V and the long-run mean a/13 as T ~  ~. An implication of this 
is that the volatility futures basis can be either negative or positive, depending on 
whether the current value of V is above or below its long-run mean c~/13. This 
again contrasts with the properties of  futures on traded commodities or assets. 

Finally, it is also useful to derive the dynamics of the futures price. This is 
important since if volatility futures prices were to become observable, one might 
suspect that it would be easier to value derivatives on volatility in terms of the 
futures price rather than V. The dynamics for the futures price are given by a 
simple application of l to 's  Lemma to (8), 

d F  = cr exp( - [ 3 ( T -  t ) )  V/V dZ. (10) 

Not surprisingly, since (7) implies that F(V,T) is an expectation, the futures price 
is a martingale. Inverting (8) and substituting in for V gives 

d F  = cr exp( - 13(T - t ) )  

×v/Fexp(~3(T-t))  --(eL/~)(exp(13(T--t))  -- 1) dZ. (11) 

Since F is a Markov process, derivatives on V can be valued using the futures 
price as the underlying state variable. Note, however, that the market price of  risk 
still appears in the dynamics for F via the 13 parameter. Thus, using the futures 
price rather than V does not eliminate the need to use risk-adjusted parameters in 
the model. In addition, the dynamics for F are now time dependent and more 
complex than the dynamics of  V given in (5). Furthermore, since F is not 
lognormally distributed, the Black (1976) framework is not applicable in pricing 
derivatives. These considerations suggest that there may be limited benefits to 
using the futures price rather than the volatility index in valuing volatility 
derivatives. 

4. Volatility options 

In this section, we derive valuation expressions for volatility options and 
examine their implications for the properties of  these securities. We focus first on 
European options since current proposals for volatility option prices have Euro- 
pean exercise features. 

4.1. Valuation expressions 

Let C(V,K,T) denote the current value of a call option on V, where K is the 
strike price of  the option and T is the time until expiration. From (4), the value of 
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the call can be expressed as 

C ( V , K , T )  = D ( T )  E[max(0,V r - K) ] .  (12) 

Evaluating this expectation gives the following closed-form expression for the 
value of a volatility call option 

C ( V , K , T )  = D ( T )  exp( - fST) VQ(',/KIv + 4,h) 

+ D(T)(oL/ f3)(1  - exp( - [3T)) Q('yKIv + 2,h) 

- D ( T )  g o ( ' v g l v , h ) ,  (13) 
where Q(. Iv + i,h) is the complementary distribution function for the non-central 
chi-squared density with v + i degrees of freedom and non-centrality parameter 
h. 6 The volatility call price is an explicit function of V and T, and depends on the 
exercise price K, the riskless interest rate r through D(T), and the parameters of 
the risk-adjusted volatility process c~, 13, and or. 

In some ways, this expression for the value of a volatility call resembles the 
yield option formula derived in Longstaff (1990). This is because Longstaff 
assumes that the short-term interest rate follows a square-root process similar to 
(1). Despite this, however, there are many differences between the two models. In 
particular, the discount factor is uncorrelated with the expected payoff of the 
option in this model. In contrast, the discount factor and the expected payoff of the 
option are perfectly negatively correlated in the Longstaff yield option model. This 
distinction leads to significant differences between the pricing behavior of volatil- 
ity options and yield options. For example, the delta of a volatility call is always 
positive while the delta of a yield call can be negative. Thus, the similarity 
between this model and the Longstaff yield option model is largely superficial. 

The price of a European put P(V,K,T)  is given by the following put-call 
parity relation for volatility options 

P(  V , K , T )  = C( V ,K ,T )  - O( T) F( V,T)  + O( T)  K. (14) 

This put-call parity relation differs from the put-call parity relation for options on 
traded assets. The reason for this is that the present value of a portfolio that pays V 
at time T is not equal to the current value of V. Rather, it equals the present value 
of the futures price. Thus, the put-call parity relation for volatility options differs 
from the usual put-call parity relation by the substitution of D(T)F(V,T)  for V 
on the right-hand side of (14). 

Computing call and put prices requires calculating the complementary non- 
central chi-squared distribution. While this function is straightforward to evaluate, 
it is often more convenient to calculate its value using the highly accurate normal 
approximation suggested by Sankaran (1963). This approximation is 

Q( ~KIv,h ) = 1 - U( d) ,  (15) 

6 The derivation is available upon request from the authors. 
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where N(. ) is the cumulative standard normal distribution function and 

- t ) ,  

h = 1 - + + 3X)(v + 2X)-2 

k={h22(v+ 2k) [ 1 - ( 1 - h ) ( 1 -  3h)(v+ 2h)(v+ h)-2]} -'/2 
x)2 

v + 2 X  ( v W 2 X )  2 
l = l + h ( h - 1 ) ( v + k )  2 h(h 1 ) ( 2 -  h)(1 3h) 2(v+h)4 

An advantage of this approximation is that call and put prices can be calculated 

using the same types of programming routines used to compute Black and Scholes 
(1973) option prices. Examples of the accuracy of this algorithm are presented in 
Ch. 28 of Johnson and Kotz (1970). 

4.2. Properties of volatility calls 

Taking the limit of the volatility call valuation expression in (13) shows that the 

solution satisfies the expiration date condition C(V r, K,0) = max(0,V r - K). This 
follows since Q('yKlv,h) converges to zero when K < V, and converges to one 

when K > V. 
The first major difference between the properties of volatility calls and calls on 

traded assets is that C(V,K,T) does not converge to zero as V ~ 0. This is shown 
in Fig. 1, which graphs the values of volatility calls as a function of V for various 

values of T. The parameters used in Fig. 1 imply a long-run mean and standard 
deviation for V of 0.15 and 0.05, respectively. 7 The reason why the call price 
does not converge to zero as V --* 0 is related to the mean-reverting behavior of V. 
If the value of V ever reaches zero, the process for V immediately returns to 

non-zero values. Consequently, the value of a volatility call is not zero when 
V = 0 since the call could still be in the money on its expiration date. In contrast, 
if the price of a traded asset equals zero, there is no possibility that the price of the 
asset will eventually become non-zero (otherwise the present value of the asset 
could not be zero). This is also the reason why there are three terms in (13) rather 
than the usual two terms in models such as the Black and Scholes (1973) equation. 

7 The parameters used in the figures are consistent with findings in the literature. We assume a 
long-term volatility of 0.15, which is similar to estimates reported by Harvey and Whaley (1992) for 
implied volatilities on the OEX. The same holds for o -2 which is equal to 0.133 in the figures. We 
assume a half-life of 90 trading days for volatility shocks. This is consistent with many recent papers 
which find that shocks in volatility are highly transitory. 
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Fig. 1. The value of a volatil i ty call graphed as a function of the underlying volatility. T denotes the 
maturity of the option in years. The parameters used are a = 0.60, 13 = 4.00, ~2 = 0.133, r = 0.05, and 

K =  0.15. 

The extra term reflects that the option still has value even when V = 0 (when 
V = 0, the first term in (13) disappears). 

Because the value of  a volatility call is greater than zero when V = 0, the 
volatility call does not satisfy the upper boundary restriction derived by Merton 
(1973) for calls on traded assets. In particular, the value of  a volatility call exceeds 
the numerical value of  the underlying variable V for sufficiently small V. 
Intuitively, the reason for this property is that the expected payoff  for a volatility 
call is higher than the current value of  V when V is small because of  the 
mean-reverting behavior of  volatility. Note that since V is not the price of  a traded 
asset, the violation of  the Merton (1973) upper boundary does not imply the 
existence of  arbitrage opportunities. 

Differentiation shows that volatility calls are increasing functions of  V. In the 
limit, the value of  a volatility call approaches D(T)exp(- [3T)V, which becomes 
infinite as V--* ~. An important property of  this limit, however, is that the value 
of  a volatility call becomes less than its intrinsic value for some value of  V. This 
is also illustrated in Fig. 1, which shows that the price of  a volatility call can be 
less that its intrinsic value when the call is only slightly in the money. The reason 
for this property again follows from the mean reversion of  volatility. When V is 
above its long-run mean, mean reversion implies that the expected future value of  
V will be lower than its current value. This implies that the expected payoff for a 
volatility call can be less than its current intrinsic value - the expected change in 
V is negative. This could not occur if V were the price of  a traded asset since 
negative returns would not be consistent with the absence of  arbitrage. As before, 
the violation of  the Merton (1973) lower boundary restriction by volatility call 
options does not imply the existence of  arbitrage opportunities. 



A. Griinbichler, F.A. Longstaff / Journal of Banking & Finance 20 (1996) 98.5-1001 995 

1 

0"9f~" \ 
0.8 \ 

o.z I ',. 
o.s I ',, 
0.54 "- 

0.3- " . .  

0.2- "'-~'>,, 
0.1- 

0 r , , . . , , , , , , , , ,  ,2 .4 .6 .8 1.0 
TIME TO EXPIRATION 

V = . 1 0  - -  V = . 1 5  . . . . . . .  V = . 2 0  

Fig .  2. T h e  del ta  o f  a vo la t i l i ty  call  g r a p h e d  as a func t ion  o f  its t i m e  until exp i ra t ion  m e a s u r e d  in years .  

T h e  p a r a m e t e r s  used  are ~x = 0.60,  13 = 4.0(I, 0 .2 = 0 .133.  r = 0.05,  and K - 0 .15.  

As with volatility futures prices, the pricing expression for volatility calls has 
implications for the hedging behavior of these options. By inspection of (13), the 
volatility call price depends on V only through the term exp( - [3T) V. This means 
that when exp( - [3T)  is small, V has little influence of the current value of the 
call option. In other words, as T increases, the delta of the call approaches zero 
and the graph of the call value is essentially flat for relevant ranges of V. This can 
be seen in Fig. 1, where the call price flattens out as T increases. Similarly, Fig. 2 
shows that the deltas of at-the-money and in-the-money calls can decrease as T 
increases. For large enough T, the deltas of all calls approach zero. 

An immediate implication of these results is that longer-maturity call options 
have little or no value as hedging instruments since their prices are not affected by 
changes in V. The intuition for why this property holds is related to the half-life of 
deviations in V from its long-term mean. Assume that a sudden increase in V 
occurs. The dynamics of V imply that roughly one-half of the deviation will be 
eliminated in 1/[3 periods. If the horizon of the option T is many times that of the 
half-life, then an increase in V will have little effect of the expected payoff of the 
options and, therefore, on the current price of the call. Thus, the sensitivity of call 
prices to changes in the current value of V is dampened by the effects of mean 
reversion. 

Although longer-maturity calls have deltas near zero, shorter-maturity calls can 
be used to hedge. An important feature of volatility calls, however, is that their 
deltas are bounded above by D(T)exp( - [3T) .  This upper bound on the delta of 
the call can be a significant restriction on the hedging properties of even 
short-term options. This is illustrated in Fig. 3, which plots the delta of a call as a 
function of V for various values of T. For example, the short-term call with 
T =  0.10 has a delta that is never greater than 0.70. The deltas for the longer-ma- 
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Fig. 3. The delta of a vo]atility call graphed as a function of the underlying volatility. T denotes the 

maturity of the option in years. The parameters used are ~ = 0.60, 13 = 4.00, ~2 = 0.133, r = 0.05, and 

K =  0.15. 

turity calls never exceed 0.30. Note that the deltas for the longer-maturity calls are 
also bounded above zero as V ~ 0. 

The second derivative of C with respect to V, the gamma of the call, is 
positive. As with options on traded assets, the gamma of a volatility call is highest 
for near-expiration at-the-money options. Consequently, this feature makes it clear 
that hedgers need to monitor the delta of these types of option positions carefully 
since the delta of the position can change significantly in response to small 
changes in V. In contrast, the gamma for a longer-maturity volatility call is near 
zero for all values of V. 

In contrast to the Black-Scholes formula, the value of a volatility call option is 
not always an increasing function of T. In fact, the limit of C(V,K,T) as T ~  
equals zero. This can be seen in Fig. 4, which graphs volatility call prices as a 
function of T. Intuitively, the reason for this property is that V has a long-run 
stationary distribution. Consequently, as T increases, the expected payoff for the 
call option is bounded. However, as T increases, the value of D(T) used to 
discount the expected payoff approaches zero. As a result, the product of D(T) 
and the expected payoff converges to zero. Because of this property, the sign of 
the derivative CT, the theta of the call, is ambiguous. For small T, theta can be 
greater than zero. As T increases, theta ultimately becomes negative. The theta of 
volatility calls is greatest in absolute terms for short-term in-the-money options. 

The effect of an increase in the strike price of a volatility call is always 
negative. Interestingly, an increase in K does not have an effect symmetric to a 
decrease in V. An increase in K has a significant effect on the prices of both 
short-term and long-term calls. In contrast, a decrease in V has little effect on the 
value of a long-term call. Thus, the notion of 'moneyness' is subtly different for 
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Fig. 4. T h e  pr ice  o f  a volat i l i ty  call  g r aphed  as a funct ion  o f  its t ime  to expi ra t ion  m e a s u r e d  in years.  

The  p a r a m e t e r s  used  are a = 0 .60,  13 = 4.00,  or: = 0 .133,  r = 0 .05,  and  K = 0.15.  

these types of calls. The 'moneyness' of a call is a function not only of the 
difference between the current value of V and K, but also of the difference 
between the long-run mean of V and K. 

In the Black-Scholes model, call options are increasing functions of the 
riskless rate r. The intuition for this is that an increase in r increases the upward 
drift of the risk-neutral process for the underlying asset. In contrast, volatility calls 
are decreasing functions of the riskless rate, through the discount factor D(T). 
This is because an increase in r has no effect on the drift of the process for V. 
Consequently, the only effect of an increase in r is to reduce the discount factor 
D(T), which in turn, reduces the value of the volatility call. 

Finally, volatility call prices also depend on the values of the c~, 13, and er 2 
parameters. To examine the sensitivity to changes in these parameters, we 
compute the elasticity of the price of an at-the-money volatility call with strike 
price K = 0.25 and T = 0.25. A one percent increase in the value of a increases 
the call price by 2.7 percent; a one percent increase in 13 decreases the call price 
by 2.8 percent; and a one percent increase in or: increase the call price by 4.0 
percent. 

Brenner and Galai (1989) and Whaley (1993) also present models for volatility 
option prices. Although innovative, these models do not consider the effects of 
mean reversion on the option prices. Hence, the properties of volatility options 
implied by these models are similar to those implied by the Cox et al. (1979) or 
Black (1976) models. 

4.3. Properties of uolatility puts 

As for volatility calls, the price of a volatility put converges to its payoff value 
max(0, K -  VT). Differentiation shows that the deltas of volatility puts are nega- 
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tive. In addition, the value of a put option can again be less than its intrinsic value. 
As in the case of volatility calls, the delta of a put is a decreasing function of T. 
As T increases, the price function for the put flattens out and the delta of the 
option converges to zero. 

The relations between put deltas and T and put deltas and V mirror the patterns 
for volatility calls. These results again imply that longer-maturity volatility puts 
will be of limited use to hedgers since put deltas approach zero as T increases. 
The second derivative of volatility put prices with respect to V is again positive. 

The relation between put prices and T is similar to that for calls. As T --* ~, the 
put price converges to zero. The rationale for this follows from the boundedness of 
the payoff function and from the fact that the discount factor for the expected 
payoff decreases to zero as T--* ~. This feature implies that the theta of a 
volatility put can be either positive or negative. For some values of V, the 
in-the-money puts are decreasing functions of T, while the opposite is true for the 
out-of-the-money puts. 

The remaining comparative statics parallel those of volatility calls. An increase 
in the riskless interest rate has the effect of reducing the discount factor and 
decreasing the value of the put. In this respect, the prices of volatility puts are 
similar to those implied by the Black-Scholes formula. An increase in the strike 
price tends to make the put option further in the money for all values of V and T. 
Hence, the put is an increasing function of its strike price. 

5. Volatility futures options 

In addition to options on volatility, it is important to consider the valuation of 
volatility futures options. Let CF(V,T , t  + T , K )  and PF(V ,T , t  + T , K )  denote the 
respective prices for a call and put option with maturity T on a futures contract 
expiring at time t + T. These options can be priced directly given the results in the 
previous sections. In particular, recall that the payoff function for a T-maturity call 
option on a futures contract expiring at time t + T can be written as 

max(O,F(VT, t  ) - K ) .  (16) 

Substituting in for F(VT,t)  from the futures price expression in (8) gives 

max(0,exp( - f3t) V r + (ct /[3)(1 - exp( - [3t)) - K) .  (17) 

Rearranging terms and factoring out e x p ( -  [3t) gives 

e x p ( - [ 3 t )  max(0,Vr + (a/13)(exp(13t)  - 1) - Kexp([3t) ) .  (18) 

However, this is equal to exp(-13t)  times the payoff for a simple volatility call 
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option where the strike price differs from K. Thus, the current value of a volatility 
futures call option is 

CF( v,r,t + T, K )  = exp( - 13t) C( V, K exp(13t) 

- (e~/[3)(exp(13t)  - l ) , r ) .  (19) 

Because of the functional form of the volatility futures price, the value of a 
volatility futures call equals a scale factor exp ( -13 t )  times the value of a simple 
volatility call where the strike price of the option is transformed. Because of this, 
the properties of  these options are basically similar to those described in the 
previous section for volatility options. Note, however, that because e x p ( -  [3t) < I, 
volatility futures calls may be even less sensitive to changes in V than simple 
volatility calls. 

One important difference between volatility futures calls and simple volatility 
calls arises because of the transformation of the strike price in (19). Recall that 
even though volatility can take on any positive value, volatility futures prices are 
hounded below. This implies that if the strike price of the volatility futures call is 
small enough, then the call option is guaranteed to expire in the money. Thus. 
when 

K < (~x /6 ) (1  - exp( - [3t)),  (20) 

the call option expires in the money and the valuation expression in (19) becomes 

D(T) exp( - [3 t )  F ( V , T )  + D(T)  (o~/[3) ( 1 - exp( - f3T) ) - K D (  T ) .  

(21) 

This representation of the value of a deep-in-the-money futures call makes it clear 
that the delta of this option is again less than one since the V term in (21) is 
multiplied by an exponential term with value less than one. 

Similar arguments can be applied to derive the value of a volatility futures put. 
The value of this option can be shown to be 

PF(V,T,t + T,K) = e x p ( - [ 3 t )  P(V, Xexp(pt) 

-(c~/13)(exp(13t)- 1 ) , r ) .  (22) 

This time, the lower bound on the value of the futures price implies that if K 
satisfies the inequality in (20), the futures put option is guaranteed to be out of  the 
money at expiration. In this case, the value of the put option is zero even though it 
has a positive strike price. This again demonstrates how different the properties of 
volatility derivatives are from those of more conventional derivative securities. 

6. Conclusion 

Volatility derivatives have the potential to be one of the most important new 
financial innovations of  this decade. In light of  this, this paper develops simple 
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closed-form valuation models for futures and options contracts on stock index 
volatility and examines their implications for the pricing and hedging behavior of 
these securities. We show that the properties of volatility derivatives can be very 
different from those for futures and options on traded assets. 

A major implication of our analysis is that longer-term volatility futures and 
options may be less effective in hedging and managing volatility risk than 
commonly believed. The underlying reason for this is that mean reversion 
dampens the effect of current shocks in volatility on the option or futures price. 
These results have many important implications for the design of volatility 
derivative products. 

7. For further reading 

For further reading, see Abramowitz and Stegun (1970) and Cox and Ross 
(1976). 
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