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Prepayment and the Valuation of Mortgage-
Backed Securities

EDUARDO 8. SCHWARTZ and WALTER N. TORQUS*

ABSTRACT

This paper puts forward a valuation framework for mortgage-backed securities. Rather
than impasing an optimal, value-minimizing call condition, we assume that at each
point in tite there exists a prohability of prepaying; this conditional probability depends
upon the prevailing state of the economy. To implement our valuation procedure, we
use maximum-likelihood techniques to estimate a prepayment function in light of recent
aggregate GNMA prepayment experience. By integrating this empirical prepayrment
function into our valuation framework, we provide a complete maodel to value mortgage-
hacked securities.

(GIVEN AN OPTIMAL, VALUE-MINIMIZING call policy, a mortgage should never he
called when its market value is less than its call price. Similarly, a mortgage
should be called if it is worth mare than its call price. However, mortgagors often
call their loans when the prevailing refinancing rate exceeds the contract rate an
the loan (Dunn and McConnell (1981}). In addition, some mortgagors do not call
their loans when the loan’s contract rate exceeds the prevailing refinancing rate.

The purpose of this paper is to put forward a valuation framework for mortgage-
backed securities consistent with these stylized facts associated with mortgage
prepayments. The mortgagor’s prepayment decision is integral to our valuation
framework. However, we do not impose an optimal, value-minimizing call con-
dition to price these securities. Rather, we assume that at each point in time
there exists a probability of prepaying, this conditional probability depending
upon the prevailing state of the economy. By integrating this prepayment
function into our valuation framework, we provide a complete model to value
mortgage-backed securities.

To implement our valuation procedures, we estimate a prepayment function
given recent GNMA prepayment experience. We follow Green and Shoven (1986)
by using a proportional-hazards model to estimate the influence of various
explanatory variables or covariates on the mortgagor’s prepayment decision.
Distinct from Green and Shoven, we explicitly model the effects of seasoning, as
well as investigating the influence of interest cost savings from refinancing. In
addition, we also consider the effects of lagged refinancing rates, heterogeneity

* Both authors from Anderson Graduate School of Management, University of California, Los
Angeles, We thank Michael Brennan, Richard Roll, Chester Spatt, and the editor, René Stulz, as
well as seminar participants at Freddie Mac, the University of Alherta, UBC, the University of New
Mexico, UCLA, and Wharton for helpful comments and suggestions. Bruno Gerard provided excellent
research assistance.
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in mortgagors, and seasonality. We provide maximum-likelihood estimates of gur
proportional-hazards model given limited prepayment data over the period Jan-
uary 1978 to November 1987 for a number of GNMA thirty-year Single-Family
pools,

The point of departure for our mortgage-backed security valuation model is
Brennan and Schwartz’s (1982, 1985) twa-factor model for valuing default-free
interest-dependent claims. This model assumes that all information about the
term structure of interest rates can be summarized by two state variables: the
instantaneous riskless rate of interest and the yvield on a default-free consol hand.
We add state variables underlying the posited prepayment function, thereby
allowing us to integrate the prepayment function into this valuation framework,
resulting in a complete model to value mortgage-backed securities. Monte Carlo
simulation methods are used to solve the resultant second-order partial differ-
ential equation subject to the boundary and terminal conditions which charac-
terize the particular mortgage-backed security.

We apply our valuation procedures to the pricing of default-free, fully amortiz-
ing mortgages. A majority of the mortgage loans which back GNMA securities
are fully amortizing. We highlight the importance of prepayment behavior by
comparing mortgage values assuming that prepayments accur according to our
estimated prepayment function with mortgage values assuming an optimal, value-
minimizing eall policy and mortgage values assuming that prepayments occur
according to FHA experience.

The plan of this paper is as follows. Since the mortgage prepayment function
is central to our valuation procedures, Section I carefully details our proportional-
hazards model. We discuss its maximum-likelithood estimation and investigate
the significance of various covariates in influencing a mortgagor's prepayment
decision given recent GNMA prepayment experience. Section II presents our
mortgage-backed securities valuation model. We illustrate the application of the
model to the valuation of default-free, fully amortizing mortgages in Section III.
By integrating the estimated prepayment function into this valuation framework,
we help explain a number of the stylized facts associated with the pricing of
mortgages. Section IV presents our summary and conelusions.

I. Prepayment

A variety of economic, demographic, and geographic factors influence a mortga-
gor's prepayment decision. In this section, we model this propensity to prepay in
light of actual GNMA prepayment experience. Statistical estimation of the
resultant prepayment function allows us to investigate the significance of a
number of these factors in influencing a mortgagor’s prepayment decision. We
first describe our prepayment data as this motivates both the specification of our
prepayment function and its statistical estimation. We conclude this section with
our empirical results.

A. Data

Our data are annualized monthly conditional prepayment rates over the period
January 1978 to November 1987 for a number of GNMA thirty-year Single-
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Table I
Characteristics of Sampled GNMA Single-Family Pools

We pravide coupon rates, issue years, and remaining term-to-maturity af our sampled GNMA Single-
Family paols. Far each poal we also tabulate corresponding maximum and minimum annualized
manthly prepayment rates aver our sample period. Data were eompiled by Salomen Brothers.

Maximum Minimum
Remaining Term-to-Maturity Annualized Annualized
Coupon (%)  Issue Year  (in years, as of December 1987)  Prepayment  Prepayment
75 1977 19.4 0.101 0.005
8.0 1976 18.8 0.111 0.007
8.0 1977 193 (.101 0.607
8.0 1978 20.2 0.104 0.004
8.25 1978 20.5 0.107 0.003
8.5 1976 18.2 0.140 0.012
9.0 1978 20.9 0.118 0.001
940 1979 21.3 0.112 0.003
9.5 1979 21.7 0.134 0.003
10.0 1979 219 (0.183 0.002
11.0 1980 225 (1.3566 0.002
11.5 1980 22.7 0.384 0.002
11.5 1983 264 0.488 0.004
12.0 1983 25.6 0.512 0.006
12.5 1980 22.7 0.462 0.003
12.5 1983 25.9 0.552 0.004
13.0 1981 233 0.462 0.603
13.0 1982 24.8 0.626 0.001
13.0 1983 25.7 0.555 0.008
13.5 1981 23.4 0.522 0.002
14.0 1982 24.5 0.699 0.001
15.0 1982 241 (.467 0.003
16.0 1982 250 (.563 0.004
12.0 1984 26.3 0.468 0.003
12.5 1984 26.6 0.554 0.005
13.0 1984 26.8 0.551 0.001
13.5 1984 26.7 0.550 0.001

Family pools. The data are compiled by Salomon Brothers. Single-Family pools,
which comprise the largest number of GNMA pools and have the largest out-
standing balance, contain long-term fixed rate fully amortizing mortgages on
residential properties. A conditional prepayment rate gives the proportion of
principal outstanding at the beginning of a particular period that prepays during
that period.

Table I characterizes our sample of Single-Family pools. The sample contains
only those pools which, if issued prior to January 1978, have prepayment data
available from January 1978 or, if issued subsequent to January 1978, have
prepayment data available from their issue date. Coupons on the poals range
from 7.5 percent to 16 percent, while their remaining terms until maturity as of
December 1987 range from 18.2 years to 26.8 years. Table I also gives for each
sampled pool its maximum and minimum annualized monthly prepayment rates.
Prepayment rates varied considerably within our sample period, especially for
high coupon pools.

We calculate manthly prepayment rates for each pool. A monthly prepayment
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rate, m, is obtained from a given annualized monthly prepayment rate, q,
according ta

m=1-(1—- a)2 (1)

Multiplying a pool’s monthly prepayment rate by its outstanding balance as of
the end of the preceding month gives the dollar amount of mortgages which
prepaid during a particular month. In addition, we calculate the dollar amount
prepaid prior to January 1978 for pools issued prior to that date. For these cases,
prepayment occurs prior to our ohservation period. Qur prepayment data also
give the dollar amount outstanding of each pool as of the end of November 1987.
Therefore, for each pool, there exists a possibility of prepayment beyond our
observation period.

B. Prepayment Function

A prepayment function gives the probability of a mortgagor prepaying a
mortgage during a particular period, conditional on the mortgage not having been
prepaid prior to that period. By expressing this conditional probability as a
function of various explanatory variables or covariates, we may assess statistically
the significance of these covariates in influencing a mortgagor's prepayment
decision.

Let T'be a continuous random variable representing the time until prepayment
of a mortgage, and let ¢t denote its realization. Let y = (v,, vy, - - -, 1,} be a vector
of explanatory variables or covariates upon which the time until prepayment
may depend, while 8 = (4, 6, - - -, 8} is a vector of parameters to be estimated.
The prepayment function = {¢; v, f) is defined by

t=T<t+ =
r(t; v, 8) = lim = AlT=1)
At Af

s
where F(t; uy, 8) represents the survivor function

Fltw, 8y =P(T=tly 4) (3)
and f(t; u, #) ia the probability-density function of T

Pit=T<t+ At
flt;u, 8) = lim ¢ )
At—a* Af

dF(t)
=T (4)
The prepayment function x(t; u, 8) specifies the instantaneous rate of prepay-
ment at T' = t conditional upon the mortgage not having been prepaid prior to
time t.
Our GNMA prepayment data do not include mortgages of every possible age.
Recall that the minimum term to maturity as of December 1987 of a pool included
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in our sample is 18.2 years. Consequently, our posited prepayment function must
be sufficiently flexible so as to allow inferences on the prepayment of mortgages
with maturities differing from observed maturities, By contrast, Green and
Shoven’s sample of 3938 mortgages issued by large California Savings and Loan
Associations over the period 1947-1976 includes mortgages of every possible age.
Green and Shoven then employ observations on mortgages of a particular age to
make inferences on the probability of prepaying at that age.
We model the prepayment function by a proportional-hazards model:

w(tip, 8} = m(L; v, plexp{Bu), (5)

where the base-line hazard function =,(¢; v, p) is given by the log-logistic hazard
function

_p(yt)?!

T 1+ ()P @)

To(t; v, p)

The hase-line hazard function measures the probability of prepayment under

homogeneous conditions, u = 0. The log-logistic hazard function admits a variety

of relationships hetween the probability of prepayment and the age of the

mortgage. In particular, for p > 1, the probability of prepayment increases from
Zero to a maximum at

t*=(p—1)""ly (7)

and decreases to zero thereafter. For this specification, there exists a mortgage
age at which the prabability of prepayment is maximum. This is consistent with
the observation that, all other things being equal, conditional prepayment rates
are typically low in the early years of a mortgage, increase as the age of the
mortgage increases, and then diminish with further seasoning (Askin (1985)).!
By modeling the base-line hazard function, as opposed to employing an arbitrary
specification, we incorporate our prior knowledge of seasoning’s influence on
mortgage prepayments. This improves our prepayment function’s predictive
ability and, as a result, improves the pricing accuracy of our resultant mortgage-
backed securities valuation model.

However, the probability of prepayment does not depend solely upon a mort-
gage’s age. Qur posited prepayment function, expression (5), takes into account
the fact that various explanatory variables, v, influence the prepayment decision.
These covariates may include the cost of refinancing, demographic variables
characterizing moartgagors, and geographic factors particular to local mortgage
markets. According to the proportional-hazards model, these explanatory vari-
ables have an equipraportional impact at all mortgage ages. That is, if covariates
v make prepayment more likely at a particular mortgage age, they make prepay-

! FHA survivalship tables indicate that eventually prepayments increase with increasing mortgage
age. However, in constructing these tables, mortgage loans issued at different points in time with
different contragt rates are combined, so that the incentives to prepay mortgages with the same
number of elapsed years are vastly different. Furthermore, these tables are based on few, if any
observations of mortgages over twenty years old. For example, the 1984 FHA survivalship table is
hased on mortgages at most fifteen years old.
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ment more likely at any other mortgage age. The vector of regression coefficients,
B =(8y, Ba, -+, B.), measures the effect of the cavariates upon the prepayment
decision.

To empirically implement our prepayment function requires that we specify
explicitly the covariates influencing the mortgagor's prepayment decision. The
fact that we have aggregate prepayment data precludes our use of demographic
or geographic explanatory variables. We therefore restrict our attention to
covariates with cbserved values that are not particular to a specific mortgagor or
geographic location and, further, can be embedded within a partial-equilibrium
valuation framework.

A mortgagor’s prepayment decision is dependent upon the relationship hetween
rates at which the mortgage may be refinanced and the contract rate on the
mortgage, ¢. If an available refinancing rate is less than the contract rate, there
exists an incentive to prepay. We proxy refinancing rates by long-term Treasury
rates, {.? Mortgages included in GNMA Single-Family pocls have FHA, VA, or
FmHA default guarantees and, as such, may be viewed as long-term default-free
securities. We rely on long-term Treasury rates in our empirical analysis since
they do not vary across geographical locations. To investigate the effect of
refinancing costs on the mortgagor's prepayment decision, we employ the co-
variate u,(¢), where

pi{f)=ec—It—3), s=0. (8)

Since preparing a mortgage requires time, current prepayment decisions may be
influenced by past refinancing rates. Our later empirical analysis will determine
the extent to which lagged refinancing costs, s > 0, affect current prepayment
decisions. Notice that v;(¢t) Z 0 if and only if ¢ & I{t — 5). If v;(t) = 0, there
exists an incentive to prepay which, by the proportional-hazards model, is
assumed to be equiproportional across mortgages of all ages. The larger v, (t) is,
the greater is this incentive to prepay. We therefore expect that £, > 0.

To allow the possibility that prepayments may further accelerate when refi-
nancing rates are sufficiently lower than the mortgage’s contract rate, we also
consider the covariate;

uglt)y = (e = I{t — 8))3, s=0. (9)

The further acceleration in prepayments reflects transaction costs which make
prepayment less profitable when interest cost savings are small. This covariate
allows the possibility that, for sufficiently low refinancing rates, the resultant
prepayment speed may be greater than the prepayment speed predicated by the
difference ¢ — I{t — s) only. Since for ¢ > I{t — s) there is an incentive to prepay,
we expect 3, > 0.

The proportion of a GNMA Single-Family pool previously prepaid may also
influence the probability of further prepayments. With greater past prepayment

? Long-tarm Treasury rates approximate prevailing long-term interest rate conditions and hence
approximate refinancing rates. Since our goal is to integrate the empirical prepayment function into
a partial-equilibrium valuation framework, we do not employ prevailing mortgage rates as refinancing
rates. To do so would take as given the price of a security we wish to value, Further, the empirical fit
of the prepayment madel is not improved by using prevailing mortgage rates.
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activity, mortgagors less prane to prepay remain in the pool. We define this
covariate, U3 (£), hy

va(t) = In(AO,/AO)), (10)

where AO, represents the dollar amount: of the poal outstanding at time ¢, while
AQY is the pool’s principal which would prevail at ¢ in the absence of prepayments
but reflecting the amortization of the underlying mortgages. The greater the
amount previously prepaid, and hence the smaller v;(t} is, the less likely are
further prepayments across all mortgage ages. We therefore expect that 8, > 0.

Finally, seasonality may influence prepayment activity. We represent this
covariate by the dummy variable, v,(t), defined by

_ )41 if ¢t = May-August,
velt) = ]f 0 if ¢ = September-April. ()

More residential real estate transactions occur in the spring and summer than
in the fall and winter. Hence, we expect greater prepayment activity across all
mortgage ages in the spring and summer, implying that g, > 0.

C. Maximum-Likelihood Estimation

Given the assumed prepayment function and available GNMA prepayment
data, we can estimate statistically the significance of seasoning as well as the
posited covariates in influencing a mortgagor’s prepayment decision. We employ
the method of maximum likelihood. That is, we determine the prepayment
function’s parameter values that are most plausible in light of the observed
prepayment activity.

The likelihood function gives the probabhility of the observed GNMA prepay-
ment data conditional upan parameter values of the assumed prepayment func-
tion, 8 = (v, p, B1, B2, Bs, Ba). It is important to recognize that the assumed
prepayment function invelves time-varying covariates, v{t) = (v (£}, va(£), v3(2),
v (£)). In general, the entire path of a time-varying covariate influences the
probability of prepayment. (See Kalifleisch and Prentice (1980).) For example,
the probability of a mortgagor prepaying a mortgage today may depend not only
upon the past history of martgage rates but also upon the mortgagor’s expectation
of the future course of mortgage rates. However, for empirical tractability, we
follow Green and Shoven (1986) and assume that a mortgagor considers only
current values of the covariates, as opposed to their past or future values, in
deciding whether to prepay. Nevertheless, current values of certain covariates do
provide information regarding a martgagor's past environment. In particular, v,
and u, include lagged refinancing costs while the proportion of a pool outstanding,
Uy, summarizes the history of past prepayments.

For the jth mortgage within the ithpool,t =1, .., I,j=1, - -, J,, we have
data of the form (4;,, £;, A{t; }). Here §,; = (5,50, 8,1, -+ -, dius 8.;541) 18 & vector
of indicator variables where §;,, = 1 only if the jth mortgage within the ith pool
is prepaid prior to the beginning of our observation period (left-censored) and
8,0 = 0 otherwise; &, = 1 only if the jth mortgage within the ith pool is prepaid
during the kth period (k= 1, -. -, K) and §,;,, = ¢ otherwise; while 4, 4., = 1 only
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if the jth mortgage within the ith pool is not prepaid prior to the end of our
observation period {right-censored) and é;;x,. = 0 otherwise. The variable ¢;
represents the number of months from the issue date of the jth mortgage within
the ith pool to the beginning of our observation period, to the end of our
observation period, or to the mortgage’s prepayment month according to whether
this mortgage is left-censored, right-censored, or not censored. As hefore, u(t;)
is a vector of the s posited covariates evaluated at ;.

Assuming the conditional independence of prepayment decisions across time
and across mortgages (given the posited covariates p(¢;)i=1, ..., L,j=1, -+,
J.}, the resuitant logarithmic likelihaod function is given by®

ln L{&léﬂ) él: Sty QK! QK-H.}

= Zf=1 Ef‘=1 Oi0ln(l — (1+ 4t;;)7) — exp( Y~ Aroa(ty))
+ 3K silny+Inp+(p—Din(yty )~ In(l + (yt;)*?)

+ N1 Ban(ty) ~exp( Yot Baba (80l + (vt ) 7))
— b1 €XD(T ey Batn (b, (1 + (vt )P)J. (12)

Whereé\k: {{S,;jk},.i= 1, "‘,I,j_—' 1, "',Ji, k= 1, "',K.

Notice that the logarithmic likelihood function requires as input the number
of mortgages which prepaid during a particular time period. However, as men-
tioned earlier, we have data only on the dollar values of mortgages which prepaid.
In order to operationalize our estimation procedures, we assume that all mortgage
principals are equal. The values of the resultant maximum-likelihood estimates
are unaffected by the assumed common principal; however, the statistical signif-
icance of these estimates, as given either by the square root of the corresponding
diagonal elements of the negative of the inverse of the resultant logarithmic
likelihoad function’s Hessian matrix or the corresponding likelihood ratio test
statistic, is indeterminate.! To the extent that we do not know the number of

31If a mortgage is left-censored, that is, prepaid prior te the beginning of our observation period,
its contribution to the likelihood function is 1 — Fit; u, #). If a mortgage is prepaid within cur
cbservation period, its contribution to the likelihood funetion is £ (t; v, # ). If a mortgage is potentially
prepayable beyond our cbservation petiod, its contribution to the likelihood equation is F(z; u, 8.

* Ta see this, notice that, by increasing by a factor of w > ( the number of mortgages which prepaid
during a particular time period, we increase the corresponding logarithmic likelihood function by a
factor of w:

In L(8 | who, -+, whpr] = @ In LOA [ do, -y doer)e

Clearly, the parameter values which maximize the logarithmic likelihood function are unaffected by
the choice of w. However, since the value of the logarithmic likelihood function increases by a factor
of @, likelihood ratio statistics to test the statistical significance of these maximum-likelihood
estimates will increase by a factor of . Also, as partial derivatives of the logarithmic likelihood
function increase by a factor of w, corresponding asymptotic standard errors decrease by a factor of
the square root of . Intuitively, hy increasing «, we increase the numher of mortgages which prepaid
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Table IT

Maximum-Likelihood Estimates of

Prepayment Function

We provide maximum-likelihood estimates, with jackknifed stan-
dard deviation estimates in parentheses, of the prepayment function
7 = ((yp{rt UL + (4¢))iexp(Ti-. Bnun). The estimated age at
which the base-line hazard function is maximized, t* = (g — 1)Y7/+,
is alse tahulated. We also pravide sample statistics—&3, the upper
quantile, the median, and §1, the lower quantile—of the resultant
distribution of prepayment errorsa.

A: With Seasonality  B: Without Seasonality
¥ 0.01496(0.00110) 0.01572(0.00187)

D 2.31217(0.13919) 2.35014(0.12103)
N {.38089((.06440) 0.39678(0.043486)
B 0.00333(0.00134) 0.00266(0.00126)
B 3.57673(0.34504) 3.74351(0.44697)
B4 (1L.26570(0.232870)

£ 6.265 years 6.0234 years

93 0.01518 0.01629

median —0.02177 —0.02069

Q1 —0.07663 —(.07668

mortgages which actually prepaid during a particular time period, we cannot use
these parametric methods to assess the statistical significance of our maximum-
likelihood parameter estimates.

Jackknifing (Efron (1982)) pravides a nonparametric means of assessing the
variability of our maximum-likelihood parameter estimates.® The jackknife var-
iance estimate tends to be conservative in the sense that its expectation is greater
than the true variance. Furthermore, since jackknifing requires only the inde-
pendence of prepayment decisions across time periods, any dependence in pre-
payment decisions between the various pools will be taken into account when
calculating jackknife estimates of variance.

during a particular time period for a given economic environment, thereby inereasing our confidence
in the parameter estimates.
# The jackknife estimate of the variance of 8, is given by

VAR, = ((K - 1}/K) TE, (éjm — 441
where

é:(] =YK éame

and 8,4, is that value of 4, which maximizes
o L(4 | Qm T Qk—l, Burty s QK+1)‘

In words, 6, is that value of 6, which maximizes the likelihood of the chserved prepayment data
once prepayment data are excluded for all pools during the kth time period. Assuming the independ-
erce of prepayment decisions across time periods, this resampling plan allows us to derive estimates
of the variability of our parameter estimates, Extensive Monte Carlo evidence confirms that VAR
tends to be biased moderately upward. (See Efron (1982), especially Chapter 4.)
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D. Empirical Results

Necqssary conditions for the existence of maximum-likelihood estimators § =
('i;! 161 ,611 r82! 63’ 64] are prOVided by

d1nL{4)

28, = 0. (13)

Since these likelihood equations are nonlinear, we employ a multidimensional
Newton-Raphson procedure to solve (13).°

Resultant maximum-likelihood parameter estimates of the full model together
with jackknifed estimates of their standard deviations are presented in Panel A
of Table II. Our empirical analysis is based on refinancing rates lagged three
months.” Notice that all the posited covariates affect a mortgagor’s prepayment
decision in the expected directions. In particular, the conditional probability of
prepayment increases significantly when refinancing rates are less than the
mortgage's contract rate. The proportion of a pool outstanding also significantly
influences the conditional probahility of prepayment. As the size of the pool
decreases, this probability decreases significantly as mortgagors more likely to
prepay have already done so. In addition, prepayments accelerate significantly
when refinancing rates are sufficiently lower than the mortgage'’s cantract rate.
However, while the conditional probability of prepayment increases during the
summer months, this covariate does not appear to be significant in our sample.
The resultant estimated base-line conditional probability of prepayment initially
increases with the mortgage’s age, reaches a maximum at t* = 6.265 years, and
diminishes thereafter with age. Panel B presents maximum-likelihood parameter
estimates together with jackknifed estimates of their standard deviations when
seasonality is excluded. As expected, the results are similar to those presented in
Panel A.

We assess the fit of the prepayment model at the maximum-likelihood param-
eter estimates by examining corresponding prepayment errors, actual less model
annualized monthly prepayment rates, for each pool and each month for which
we have data. Several sample statistics—the upper quantile, § 3, the median, and
the lower quantile, §1—of the resultant error distribution are also tabulated in
Table II. With or without seasonality, these empirical results are consistent with
the prepayment model at the maximume-likelihood estimates slightly overesti-
mating the actual conditional prepayment rate. Of course, the madel’s fit could
be improved by including additional covariates, for example, the housing turnover

& The logarithmic likelihoad function maximized assumes that mortgages have a common principal
of $100,000, As noted earlier, this assumed value will not affect the values of the maximum-likelihood
estimates,

*For a given common mortgage principal, the maximized value of the logarithmic likelihood
function is larger for s = 3 than for s = 0, 1, 2, 4, 5, or 8. That is, the observed prepayment data are
more likely given that mortgagors’ base current prepayment decisions on refinancing rates lagged
three periods, as opposed to basing current prepayment decisions on contemporaneous refinancing
rates or refinancing rates lagged one, two, four, five, or six periods. Using Akaike's criterion, our
subsequent empirical analysis takes s = 3.
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rate, to capture macroeconomic effects.? However, to the extent that our purpose
is to estimate a prepayment function which can be usged in the valuation of
mortgage-backed securities, we have restricted our attention to thase covariates
which can be embedded within a partial-equilibrium valuation framework.

II. Valuation of Mortgage-Backed Securities

The valuation of mortgage-backed securities must accurately reflect a mortgagor’s
aption to prepay the underlying mortgage. In this section, we derive a continuous-
titme valuation maodel of mortgage-hacked securities which succinctly takes into
account the nature of martgagors’ prepayment decisions, Throughout we assume
no taxes, transaction costs, ar short-selling constraints.

Without loss of generality, we couch our discussion in terms of the valuation
of a default-free fixed-rate fully amartizing mortgage. We assume that at origi-
nation the mortgage has a principal of P(0), a continuous contract rate of ¢, and
a term to maturity of T years. As a result, the total payout rate is

A = cP(0)/(1 — exp(—cT)), (14)
and the principal oustanding at time ¢ ig
P(t) = (A/c)(1 — exp(—c{T — t))). (15)

A. Valuation Model

We make the following assumptions to develop a model to value mortgage-
backed securities.

(A1) All information about the term structure of interest rates can be sum-
marized by two state variables. Following Brennan and Schwartz (1979), we take
these state variables to be r, the instantaneous risk-free rate of interest, and /,
the yvield on a default-free consol.

(A2) Dynamics of r and [ are assumed ta be described by

dr ={a, + bl — r)idt + a,rdz,, (186)
dl = (GQ + bp_i + Cg?‘)dt + 62-{()!22, (17)

where 2z, and z; are standardized Wiener processes. Increments to z, and z, are
assumed to be instantaneacusly correlated:

dz,dz, = pdt, (18)

where p denotes the instantaneous correlation coefficient.
This specification assumes that unanticipated changes in both » and [ are
proportional to their respective levels. Consistent with expectations hypotheses

®In addition, our prepayment madel is incomplete because it ignores the possibility that the
mortgagor may default on a loan. Since our sampled martgages are guaranteed by GNMA, a default
is equivalent to a loan prepayment. However, given agaregate prepayment data, we cannot isolate
prepayments due to default.
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of the term structure, the drift of the instantaneous risk-free interest rate process
posits that r reverts to the current value of [, which itself varies stochastically
through time. In addition, we include the coefficient @, to take into account
possible liquidity premia in {. By contrast, for full generality, the drift of the
consol yield process is assumed to be linear in both r and L For further details
regarding this specification, see Brennan and Schwartz (1982).

(A3) Mortagages are prepaid at the instantaneous rate of prepayment:

r=all, x, v, £; C). {19)

For full generality, we assume only that = depends upon the prevailing consol
vield, {(t), relative to the mortgage’s contract rate, ¢, as well as the history of
past interest rates, summarized hy the state variable (¢}, the relative proportion
of the pool previously prepaid, given by the state variable y(¢), and time, ¢.

In particular, following Ramaswamy and Sundaresan (1986}, the state variable
x(t) is defined by

0
x{t) = a f exp(—as)i(t — s} ds, a >0, (20)

an exponential average of past consol yields. Within our continuous-time frame-
work, this state variable captures the effects of past refinancing rates on current
prepayment decisions. The dynamics of x{t) are given by

dx = all — x)dt. (21)

We denote by y(£) the fraction of a pool of these mortgages currently outstand-
ing relative to their principal which would prevail in the ahsence of prepayments
but reflecting amortization. This state variable captures any heterogeneity in
moartgagors. The dynamics of y{t} are given hy

dy = —y(xr + AP™X{t) — c)dL (22)

Time, t, affects the instantaneous rate of prepayment by determining both the
age of the mortgage and the season of the year.

Given the above assumptions, the value of any mortgage-backed security can
he expressed as

B=RB(rt x ¥ t). (23)

Standard arbitrage arguments give the following partial differential equation
which the value of the mortgage must satisfy:

ar262B,, + FpaioaBy + VI263By + (@ + bl — r) — Mo r}B,
+ el +I—r)B, + all — x)B, — ¥(xr + AP} (¢t} — c)B, (24)
+ B, —(r+ B+ «P(t) + A =0,

where A, is the market price of short-term interest rate risk. Since the mortgage
is fully amortizing, the following terminal boundary condition must be satisfied:

B{r,l,x,0,T)=0. (25)



Valuation of Mortgage-Backed Securities 387

Table III

Maximum-Likelihood Estimates of Interest Rate Process
Parameters
We provide maximum-likelihood estimates, with standard errars in parentheses, of
the parameters of the interest rate processes dr = (a,+b ({—r))dt + ardz, and di =
(aprbod+er)dt + addz, with (dz Hdz2,) = pdt.

2, b 2y by 3 a) a2 ]

—0.5300 0.0382 00033 —0.0007 00008 0.0262 0.0173 0.3732
(00359} (0.0174) (0.0063) (0.0019) (0.0016)

Different mortgage-backed securities differ in their specifications of P{t) and A.

Notice that we do not impose an optimal, value-minimizing call condition to
value the mortgage-backed security. Rather, the value of the mortgage-hacked
security reflects the fact that at each point in time there exists a probability of
prepaying, this probability depending upon the current state of the economy as
summarized by the model’s state variables.

B. Estimation of Interest Rate Procesgses

The coefficients of the partial differential equation, expression {24), depend
upon the parameters of the interest rate processes. Estimating these parameters
and the market price of short-term interest rate risk {to be estimated later)
allows us to implement our mortgage-backed security valuation model given the
previously estimated prepayment function.

To estimate the parameters of the interest rate processes requires data on r
and {. The instantaneous risk-free interest rate is approximated by the annualized
one-month CD rate. The consal yield is approximated by the annualized running
coupon vield on long-term U.S. Treasury bonds. The running coupon yield at a
particular point in time is the coupon rate on a newly issued U.S. Treasury hond
if the band is then issued; otherwise, it is the vield on the most recently issued
U.5. Treasury bond. Weekly abservations on » and [ were collected from the week
ending December 28, 1982 until the week ending April 1, 1987, for a total of 223
observations. Salomon Brothers provided the interest rate data.

For empirical purposes, we estimate the parameters given discrete approxi-
mations to the interest rate processes. An iterative Aitken procedure is applied
to the resultant system of equations to yield maximum-likelihood estimates. {For
further details, see Brennan and Schwartz {(1952).) The results are tabulated in
Table III. The estimated parameters a, and b, from the drift of the short-term
interest rate process are statistically significant, while the estimated parameters
iy, by, and ¢, from the drift of the long-term interest rate processes are statistically
insignificant. This is to be expected since, in the absence of arbitrage, long-term
interest rates follow a random walk. The estimated standard deviation of pro-
portional changes in short-term interest rates exceeds the estimated standard
deviation of proportional changes in long-term interest rates, #, > ¢,. That is,
short-term interest rates were more volatile than long-term interest rates over
our sample period. Finally, the estimated correlation coefficient is consistent
with unanticipated proportional changes in r and [ being positively correlated.
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C. Monte Carlo Simulation Methods

Monte Carlo simulation methods (Boyle (1877}) are employed to solve the
partial differential equation, expression {24), subject to the terminal boundary
condition, expression (25). The fact that we have five state variables—r(z), 1{t),
x(t), and y(¢), as well as the deterministic state variable, t—implies that solution
by finite-difference methods will be complicated. Furthermore, Monte Carlo
simulation methods allow us to easily integrate our estimated prepayment func-
tion into the contingent-claims valuation framework.

Monte Carlo simulation methods require that r and { are generated by the
following correlated risk-adjusted processes:

dr=Aa;, + b —r) — Moridt + o,rdz,, {26)
dl = e + 1 — ride + ayidz,. (27)

To value a mortgage-backed security, we generate correlated normal random
variables corresponding to r and {, at every month during the life of the security.
Given the probability that the pool will be prepaid during that month, we
determine the cash flows—contractually obligated and prepayments—to the
mortgage-backed security holder. The present value of these cash flows gives a
particular realization of the mortgage-backed security’s value. By repeating this
procedure, the average of the corresponding realizations gives the solution of the
partial differential equation.

III. Valuation Results

In this section, we illustrate our valuation procedures by pricing under various
prepayment assumptions a twenty-five-year, default-free fully amortizing eleven
percent mortgage originated five years age with ninety percent of the relative
principal of a paal of these mortgages currently outstanding. In particular, we
assume that prepayments oceur according to our estimated prepayment function®
and according to one hundred percent of FHA experience.’® Alternatively, we
assume that an optimal, value-minimizing prepayment policy is followed, and,
for comparison purposes, the mortgage is also assumed not to be prepayable.™
By simulating these prices for various interest rates, we investigate the critical
role prepayment plays in mortgage-backed security pricing.

We use parameter estimates of the underlying short and long interest rate
processes tabulated in Table III to implement our valuation procedures. Given
these parameter estimates, together with interest rate conditions prevailing at
the end of November 1987, we specify the market price of short-term interest

% The insignificant effect of seasonality is excluded. Also, to minimize problems associated with
extrapalation, our Mante Carlo aolution procedure takes the minimum value of AO,/AO: to be 0.11,
the minimurm value observed. in our prepayment sample.

¥ Tn other words, conditional prepayment rates depend only upon the age of the mortgage and
correspond to the historical FHA experience. See Dunn and McConnell {1931).

' Mortgage values assuming optimal prepayments and prepayments according to ane hundred
percent of FHA experience, as well as nonprepayabhle morigage values, are obtained hy the solution
to the appropriate pattial differential equation using numerical methods rather than Monte Carlo
simulation procedures. See Brennan and Schwartz (1985).
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Table IV
Default-Free Mortgage Prices

For a given shart rate r and a given long rate { we pravide for varying prepayment
assumptions the price per $100 principal of an eleven percent, twenty-five-year
default-free fully amortizing mortgage originally issued five years ago with ninety
percent of its relative principal currently outstanding. In particular, we assume that
the mortgage ia not prepayable, that mortgagors follow an optimal, value-minimizing
call policy, that prepayments occur according to ane hundred percent of FHA
experience, and that prepayments occur according to our estimated prepayment

function.
Optimal 100% FHA Empirical
r ! Nonprepayable  Prepayment Prepayment Prepayment
% 7% 144.95 100,00 132.67 117.97
9% 119.79 100.00 114.66 110.49
11% 101.18 95.67 103.88 99.55
13% 86.89 85.19 93.45 88.43
15% 75.48 75.03 84.70 78.08
17% 65.94 66.01 77,15 68.92
11% 7% 144.14 100.00 131.36 116.14
9% 119.34 99.92 116.67 109.22
11% 100.94 9484 103.13 98.99
13% A6.80 84.86 92.87 87.85
15% 76.53 74.97 84,28 7R.58
17% 66.17 66.16 76.89 68.13
15% 7% 143.31 99.50 130.06 114.91
9% 118.87 99.05 114.69 108.06
11% 100.69 93.97 102,38 97.83
13% £6.70 A4.50 92.29 87.57
15% 75.56 74.88 #3.83 75.01
17% 66.36 66.29 6.60 68.58

rate risk by determining iteratively that value of A, such that a thirty-year
default-free nonprepayable fully amortizing mortgage with an eleven percent
contract rate is priced at par for ¥ = { = 11 percent. The resultant estimate of
the market price of short-term interest rate risk is A, = —0.01.12

Table IV provides our pricing results. For a given short interest rate r—seven,
eleven, and fifteen percent--we provide carresponding mortgage values for vary-
ing long rates i—seven, nine, eleven, thirteen, fifteen, and seventeen percent.
Mortgage values are insensitive to the prevailing short rate r. However, it is clear
from Table IV that mortgage values are very sensitive to the prepavment
assumption.

As expected, for sufficiently low long rates, the nonprepayable mortgage’s value
can be quite high. For example, for r = eleven percent and [ = seven percent, this
mortgage is priced at $144.14. By contrast, assuming an optimal, value-minimiz-
ing prepayment policy, the mortgage will be prepaid for sufficiently low long
rates. For example, for r = eleven percent and [ = seven percent, the mortgage is

¥ To empirically implement our valuation procedures, we would choase that value of h, which
minimizes the mean squared error between model prices and actual prices of a sample of default-free
Treasury bonds.
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prepaid. By contrast, if { is sufficiently high and, as such, the probability of
prepayment is sufficiently low, the mortgage allowing optimmal prepayments
behaves like the nonprepayable mortgage. For r = eleven percent and { = fifteen
percent, the value of the mortgage assuming optimal prepayments is $74.97,
while the nonprepayable mortgage’s value is $75.53.

Assuming that mortgages are prepaid according to either our estimated pre-
payment function or one hundred percent of FHA experience gives results more
consistent with the stylized facts associated with mortgage pricing than when
assuming that an optimal, value-minimizing prepayment policy is followed. By
using our estimated prepayment function or assuming one hundred percent of
FHA experience, we see that for low long rates the mortgage sells for more than
$100 since some mortgagors will not refinance, which is beneficial to premium
security holders. For high long rates, the mortgage again sells for more than the
price corresponding to an optimal, value-minimizing prepayment policy since
some mortgagors will now prepay, which is beneficial to discount security holders.

Assuming that prepayments occur according to one hundred percent of FHA
experience is consistent with some mortgagors calling their loans when the
prevailing refinancing rate exceeds their contract rate and some mortgagors not
calling their loans when their contract rate exceeds the refinancing rate. However,
this prepayment assumption is not consistent with the fact that mortgagors’
prepayment decisions exhibit interest rate sensitivity. For low lang rates, mort-
gage prices assuming that prepayments occur according to our estimated prepay-
ment function are closer to corresponding mortgage prices assuming an optimal,
value-minimizing prepayment policy since at these refinancing rates most mort-
gagors prepay. Similarly, for high long rates we see that mortgage prices given
our estimated prepayment function are also closer both to mortgage prices
allowing optimal prepayments and to nonprepayable mortgage prices since at
these refinancing rates most mortgagors in fact do not prepay.

Figure 1 graphically summarizes our pricing results for r = eleven percent and
varying lang rates. Mortgage prices given our estimated prepayment function
reflect the fact that if long rates are sufficiently low all mortgages will be prepaid.
These mortgage prices initially increase in response to increases in the refinanc-
ing rate. Intuitively, while increasing the long rate decreases the present value of
future mortgage payments, this is more than offset by the fact that the probability
of prepayment also decreases, which is beneficial to a premium security holder.
Eventually, martgage prices given our estimated prepayment function decrease
with subsequent increases in the refinancing rate as the resultant decrease in the
present value of future mortgage payments more than offsets the pricing effecta
of the resultant dampening in prepayment behavior. However, for sufficiently
high long rates, these mortgage prices still exceed martgage prices assuming an
optimal, value-minimizing prepayment policy since some martgagors will prepay
even though the prevailing refinancing rate exceeds the loan’s contract rate.

These simulation results clearly illustrate the importance of prepayment to
the valuation of mortgage-backed securities. To the extent that our estimated
prepayment function more accurately models mortgagors’ prepayment behavior,
the resultant mortgage-backed security values more accurately reflect the pricing
effects of this prepayment behavior.
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Figure 1. Prices per $100 principal of an eleven percent twenty-five-year default-free
fully amortizing mortgage issued five years ago with ninety percent of its relative principal
currently outstanding as a function of the long rate, I, for various prepayment assumptions.

IV. Summary and Conclusions

It is well known that mortgage-backed security valuation models assuming an
aptimal, value-minimizing prepayment palicy cannot explain a numher of the
atylized facts associated with the pricing of mortgages. In particular, many
mortgagors prepay their loans when the prevailing refinancing rate exceeds their
loan's contract rate and, conversely, other mortgagors do not prepay even when
the contract rate on their loan exceeds the prevailing refinancing rate.

This paper puts forward a valuation framework for mortgage-backed securities
which can help explain these stylized facts. We assume that the value of a
mortgage-backed security reflects the fact that at each point in time there exists
a probability of prepaying, this conditional probahility depending upon the
prevailing state of the economy. Given limited publicly available prepayment
data, we provide maximum-likelikood estimates of our posited prepayment func-
tion. By integrating this estimated prepayment function into our valuation
framework, the resultant mortgage prices are consistent with the premiums at
which mortgage-hacked securities often trade.

The pricing of other mortgage-backed securities such as “stripped” mortgage-
backed securities and CMOs can be explored with this valuation framewark. In
addition, the hedging of these and other mortgage-backed securities can he



392 The Journal of Finance

investigated. Finally, if sufficient price data on mortgage-backed securities be-
come available, future research should include the empirical testing of our
valuation procedures.
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