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Abstract 
 
 

 
This paper examines a volatility estimation bias that may be commonly exhibited by all 

option pricing models on all underlying sources of risk.  Black-Scholes (1972) were the 

first to illustrate the bias by showing that their model under priced options on relatively 

low variance stocks and over priced options on relatively high variance stocks.  The bias 

is always observed in cross section among individual stocks.   We think this bias might 

have nothing to do with Black-Scholes or any option pricing model but instead might be 

attributable to sampling error.  Thus, this bias should be observed with any option pricing 

model on any underlying, not just equity, but also fixed income securities, foreign 

exchange, and commodities.  To test this idea, we use shrinkage estimators of James-

Stein detailed in Efron-Morris (1976) and Ledoit-Wolf (2004a).  While both shrinkage 

estimators utilize the covariance matrix, Ledoit-Wolf (or LW hereafter) is unique because 

it does not require matrix inversion.  We show that the variance bias can be eliminated 

using these improved estimators.   
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1.  Introduction 
 
 
The Black-Scholes (1973) option pricing model exhibits systematic mis-pricing of 

options on individual stocks and options on indexes of stocks.  This mis-pricing has been 

related to moneyness (S/K), time to expiration, and volatility.  The mis-pricing has also 

been related to the Black-Scholes distributional assumption, to their assumption of no 

dividend payouts, and to the model’s European rather than American nature.1 

 

This paper’s concern is the volatility bias observed in cross-section when pricing options 

on individual stocks.  Black-Scholes (1972) were the first to report that their model 

under-priced options on low variance stocks and over-priced options on high variance 

stocks.  Black-Scholes used over the counter option (OTC) data when they reported this 

variance bias because listed options did not commence trading until April, 1973.  OTC 

options are quasi-European because OTC dividend protection eliminates the probability 

of early exercise. 2  Black (1975) later reported that the model also under-priced out-of-

the-money options and near maturity options, while it over-priced in-the-money options 

on individual stocks.   MacBeth-Merville (1979), Rubinstein (1985), Whaley (1982), 

Sterk (1982), Geske-Roll (1984a), and others discuss these biases but do not focus on the 

volatility bias. 

 

There have been many theoretical papers concerned with Black-Scholes assumption of 

constant or deterministic stock return volatility. (Cf. Merton (1976), Cox-Ross (1976), 

                                                 
1 See Black-Scholes (1972), Black (1975, Macbeth-Merville (1979), Rubinstein (1985), Whaley (1982), Sterk (1982), 
Geske-Roll (1984a). 
2 See Geske, Roll, Shastri (1983). 
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Geske (1979), Hull-White (1987), Heston (1993),  Bakshi, Cao, Chen, (1997), Heston-

Nandi (2000).)  However, these papers would potentially alter the prices of options on all 

individual stocks without a particular focus on the observed cross-sectional mis-pricing 

of options on low and high variance stocks.  Thus, in this paper it is our thought to see 

whether this variance bias observed in individual option cross-sectional prices can be 

attributed to estimation error in the sample variance. 

 

There is some a priori reason to suspect estimation error in the sample variance rather 

than the model as the source of this particular mis-pricing.  The reason is that this 

variance related mis-pricing always arises in the context of an inter-stock comparison.  

This is in contrast to other biases (moneyness, time to expiration), which can be detected 

in an inter-option comparison.  Unlike the strike price and time until expiration 

parameters, the true variance is identical for all identical expiration options on the same 

stock on a given date.  Thus, investigation of the variance related mis-pricing cannot rely 

on either the implied variance or other more sophisticated option pricing models, but 

must instead be based on historical estimates of actual stock return volatility. 

 

There are many techniques to improve the accuracy of the volatility estimate for 

individual stocks.  (Cf. Boyle-Ananthanarayan (1977), Parkinson (1980), Garman-Klass 

(1980), and Butler-Schacter (1986), ARCH, GARCH.)  However, the essence of the 

present problem is that a number of variances are estimated simultaneously, one for each 

stock, and then option mis-pricing is related cross-sectionally to these multitudinous 

estimates. 
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The problem of simultaneously estimating multiple parameters has become well-known 

in statistical theory.  The cross-sectional sampling distribution consists of two parts, 

variability in the true underlying population parameters and variability in the estimation 

error.  In any sample, larger estimates relative to the cross-sectional mean are more likely 

to contain positive sampling errors and vice versa for relatively smaller estimates.  Thus, 

in a cross-sectional comparison of option mis-pricing, estimation error alone will cause 

stocks with larger estimated variances to over-price the market and stocks with smaller 

estimated variances to under-price the market.  The Black-Scholes model price, being a 

positive function of the sample variance, should display a positive cross-sectional mis-

pricing.  This is exactly the observed mis-pricing phenomenon. 

 

When many variances are being estimated, one for each stock, a James-Stein (1961) 

estimator is unambiguously superior to the standard univariate estimator.  The James-

Stein estimator reduces estimation risk on average over all stocks.  Such an estimator 

“shrinks” each individual variance estimate toward a target such as the grand mean of all 

estimates.  Since the variance bias is characterized by over-pricing options on high 

volatility stocks and under-pricing options on low volatility stocks, adjusting each 

estimated volatility toward the average volatility for all stocks obviously has the potential 

to reduce the observed variance bias.  In the multiple variance estimation setting, the 

superior James-Stein estimation technique has the potential to eliminate this problem. 

 

Geske-Roll (1984b) observed the variance bias and were the first to attempt a correction 

based on the idea that the problem was related to sampling error in volatility estimation 

rather than model error.  They originally chose to use a shrinkage version of Stein’s 
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technique described in Efron-Morris (1976) as related to empirical Bayesian estimation. 3  

However, this particular “shrinkage” technique involves two difficult questions..  First, 

how much historical data should be used to estimate individual stock variances?  Second, 

toward what target should individual stock variance estimates be shrunk?  Until recently, 

the first question was usually resolved by constraints on matrix inversion.  The sample 

covariance matrix is non-singular only when the time series sample size, N, exceeds the 

number of stocks, k.4   Because of this requirement, smaller groups of stocks are often 

formed to estimate parameters, and then results from the smaller groups are combined 

and analyzed.   

 

The second question of shrinkage target is more complex.  The target should have 

minimal free parameters (a lot of structure), should have less estimation error, and should 

somewhat reflect the characteristics of the quantity to be estimated.  In three recent 

papers Ledoit-Wolf (2003, 2004a, 2004b) have introduced new techniques that provide 

solutions to these requirements.   

 

Ledoit-Wolf start with the sample covariance matrix because it is unbiased and easy to 

calculate.  They recognize that it is subject to estimation error, especially when there are 

fewer time series observations than individual stocks, which is often the case in financial 

                                                 
 
3 Subsequent to Geske and Roll (1984b), several other papers confront the same volatility problem  Karolyi (1993) uses 
a Bayesian approach.  He describes the difference (p. 583) as follows: “What distinguishes the Bayesian estimator of 
volatility from the “shrinkage” estimator … is in the adjustment process.”  Karolyi considers only call options and he 
reports that the Bayesian approach eliminates the volatility bias for high volatility stocks but there remains a 
statistically significant but small bias for the low volatility stocks.   Karolyi also reports that the Bayesian estimator 
creates an under pricing bias in all the call options.  Geske and Torous (1990; 1991) use robust techniques to treat 
outliers when estimating volatility (1990), and they also examine the effects of a non-normal skewness and kurtosis on 
option prices. 
4 In addition, no two stocks can be perfectly correlated in sample,  Although perfect correlation is rarely an 
issue, very high correlation can cause instabilities in the resulting shrinkage estimates. 
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applications.  They also recognize that an estimator with more structure would have less 

estimation error, but would likely be mis-specified and biased.  Thus, they find a 

compromise by computing an optimal linear convex combination of the sample 

covariance matrix and a structured target.  They provide results for three targets, the 

Sharpe single index model, the identity matrix, and a constant correlation model.  Herein 

we now choose to compare a version of the James-Stein estimator to the Ledoit-Wolf 

technique.  For Ledoit-Wolf we shrink toward the simplest target, the identity matrix, 

which is well conditioned, structured, and parsimonious. 

 

Section 2 describes the data and test calculations.  Section 3 describes alternative 

variance estimators.  Section 4 reports the results and shows that the shrinkage techniques 

of Stein and Ledoit-Wolf both eliminate the variance bias for puts and eliminate or 

substantially reduce the bias for calls, but that the Ledoit-Wolf technique is superior with 

respect to prediction error.  Section 5 concludes. 

 

 

2. Data and Test Calculations 

 

The data come from CRSP for daily stock returns and from Option Metrics (OM) for call 

and put option prices, dividend distributions, and implied volatilities.  The OM data span 

the 100 months from January, 1996 through April, 2004 inclusive.   

 

Stocks are screened one way and options are screened five ways.  To assure that stocks 

are actively traded, we use only the 500 largest stocks by market capitalization on the last 
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trading day of the previous year.  Stocks are limited to common shares with share codes 

10 or 11.  For options, the first screen limits observations to the first trading day of each 

calendar month.  This potentially provides 100 monthly observations of options on 500 

individual stocks and allows estimators of volatility to be computed with return 

observations through the end of each preceding month.  The second screen limits options 

to being near-the-money, which we define as 0.95 < K/S < 1.05 (with K the strike price 

and S the stock price on the first day of the month.)   Near-the-money options are the 

most actively traded of all options with different times to expiration, and since these are 

options on large companies they usually trade many times every day.  Also, near-the-

money options should exhibit less moneyness bias.  The third option screen restricts the 

sample to options expiring on the third Friday of the next month.  Thus, all options have 

the same short time to expiration, which should control somewhat for any time bias.  

Short-maturity options are also the most actively traded of all options with different strike 

prices.  Thus, near-the-money, short-maturity options on large stocks should trade many 

times every day.  The fourth screen restricts options to those that actually did trade on 

each day.  The fifth option screen eliminates any detectable arbitrage violations  (e.g., C 

> S – K e-rT; P > S - K).  After these screens, the sample has on average about 494 call 

options and 488 put options per month. 

 

Historical volatilities are computed for each individual stock using 126 days 

(approximately 6 months) of previous CRSP daily data preceding each of the 100 first 

day of month observations for the stock price and option prices.  Stock betas are 

calculated using 504 days (approximately 2 years) of daily data preceding each of the 100 

first day of month observations, using the CRSP value weighted return as the market 
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index.  (Betas are inputs for the particular Stein estimator that assumes a one-factor 

structure for the covariance matrix.)  We also compute the sample covariance matrix for 

all stocks in the sample using the preceding 6 months of CRSP daily data; this is an input 

for the Ledoit-Wolf estimator.  

 

3. Alternative Variance Estimators 

 

The variance estimate should be forward-looking.  An obvious choice for the estimate of 

an expectation is the average from historical data.  Stein (1955) showed that when the 

number of expectations being estimated exceeds two, estimating each of them by its own 

historical average is an inadmissible procedure.  In other words, no matter what the true 

values, there are estimation methods with smaller total risk, where risk is defined as the 

expected value of the squared error of the estimator.  Stein and James provided an 

example of such an estimator.  The James-Stein estimator (1961) is given by an equation 

similar to the following:                                                                                                                                 

                                  )ˆˆ(ˆˆ 2222 σσγσσ −+= jHjjS

2ˆ jSσ 2ˆ jHσ

          (1)  

where  is the Stein estimator for stock j, is an historical estimate for the same 

stock, 2σ̂ jis the grand cross-sectional average of all the historical estimates, and γ  is a 

shrinking intensity factor bounded between zero and one. 

 

As a simple example, assume the grand average of all variances in the stock return 

sample is (0.29)2 annually, that the shrinkage factor is 0.4, and a particular company’s 

standard deviation estimated from historical data is 0.54 annually.  For this relatively 
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high volatility stock the James-Stein estimate of the stock’s true volatility is about 0.41 

instead of 0.54.  Consider another company with volatility estimated from historical 

volatility by traditional methods to be 0.19 annually.  For this relatively low volatility 

stock the James-Stein estimate of the stock’s true volatility would be 0.25.  Recall that 

the Black-Scholes model under prices options on relatively low volatility stocks and over 

prices options on relatively high volatility stocks.  The Stein estimator which has an 

essential process of shrinking all individual estimates toward a less disperse target clearly 

has the potential to remove this bias. 

 

As already mentioned Stein estimators are reminiscent of Bayesian methods.  In the limit, 

as the number of estimates becomes very large, Stein and Bayes’ converge.  In practice, 

the James-Stein estimator is often referred to as an “empirical Bayes” rule.5  In the above 

example, the shrinkage intensity factor, γ, is treated as a constant.  It is potentially a 

function of many things, including the sample averages, the number of stocks in the 

sample, the number of observations for each stock, the estimated historical volatility of 

each stock, and the grand mean of all stock volatilities.  For example, the covariance 

estimator provided by Efron-Morris (1976) is given by 

 

             [ ] 1121
HS )Iˆ()1N/()k/21k(Ŝ)1N/()2kN(ˆ −−− σ−−++−−−=

                                                

S       (2) 

 

where S denotes covariance, with subscripts H and S denoting historical and Stein, 

respectively, N is the time series sample size, k is the number of securities, I is the (kXk) 

 
5 See Efron-Morris (1975).  They discuss Stein’s rule as an empirical Bayes rule, and present applications such as 
predicting baseball batting averages, estimating toxomosis prevalence rates, and estimating the exact size of Pearson’s 
chi-square test.  In equation (2) N>k or grouping is required for Stein, but this is not true for Ledoit-Wolf.  Later we 
group Ledoit-Wolf only to illustrate a similar comparison to Stein. 
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identity matrix and 2σ̂

SŜ 2ˆˆˆ
mji σββ

 is the grand sample mean of historical variances.  In this case, 

shrinkage produces an estimate of the inverse covariance matrix with shrinkage intensity 

approximately (N-k-2) / (N-1). 

 

A major limitation of generalized Stein techniques for financial applications is that the 

sample covariance matrix has too little structure.  If, for example, it is beneficial to use 

the sample covariance matrix of stock returns, but the number of historical returns per 

stock, N, is of the same order of magnitude as the number of stocks, k, then the total 

number of parameters to be estimated is of the same order as the total size of the data 

available.  When k is larger than N, the sample covariance matrix is always singular, even 

if the true covariance matrix is known to be non-singular.  Muirhead (1987) reviews the 

literature on shrinkage estimators of the covariance matrix and shows that they all suffer 

from two major limitations: (i) they break down when k>N and the matrix cannot be 

inverted; (ii) they do not utilize a priori knowledge about correlations between stock 

returns. We can circumvent the second limitation by assuming that asset returns follow a 

factor model, say the single-factor market model akin to the CAPM.  Therefore the off-

diagonal entry i, j of  is simply .  By imposing more structure in this fashion, 

one can make the sample covariance matrix behave.  Ledoit-Wolf techniques circumvent 

both of these problems. 

 

For a given (NXk) matrix X of de-meaned observations, Ledoit-Wolf derive an “optimal” 

estimator, S*, that is a linear combination of the sample covariance matrix, S = X X’ / N, 

and a target matrix, whose expected quadratic loss E [║S* - S║2] is a minimum.  When 

the target is the identity matrix, I, they show that S* = γ μ I + (1 – γ ) S depends only on 
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four unobservable scaler functions of the true covariance matrix (μ, ζ, β, α)  which can be 

consistently estimated (→qm  as n→infinity) from their sample counterparts.6 

 Define m ≡ < S, I >.  Then E (mn) = μn for all n, mn – μn →qm 0 as n→infinity       (3) 

 

 Define dn
2 ≡ ║Sn-mnIn║n

2. Then dn
2 – ζn

2 →qm0, and ζn
2 =  E [║Sn - μn In║n

2]   (4) 

  

 Define bn
2 = min (Ъn

2, dn
2), Ъn

2 ≡ 1/n2 Σn(║XXt – Sn║n
2; bn

2 & Ъn
2→qm β          (5)  

 

 Define an
2 ≡ dn

2 – bn
2.  Then an

2–αn
2 →qm 0, and αn

2 = ζ2 - β2                     (6) 

and using these scalers (mn, dn, bn, an) a linear combination of S and I that minimizes the 

expected quadratic loss is: 

 

    Sn*=bn
2/dn

2 mn In + an
2/dn

2 Sn                          (7) 

  

Now, if γ is defined as γ ≡ bn
2 / dn 2, then S* = γ m I + (1-γ) S. 

 

 

4. Experimental Results 

 

We shrink the standard historical volatilities estimates in four ways (two Stein and for 

exact comparisons two for Ledoit-Wolf) and then compare the five estimators (including 

the historical.)  For the Stein estimators, we assume a one-factor structure for the 

covariance matrix.  We form groups of 50 stocks each for Stein because it requires the 

cross-section of individual stocks, k, to be smaller than the time series of observations, N 

(herein N=100).  The two Stein estimators differ because the first groups stocks randomly 

while the second estimator groups stocks to maximize the volatility dispersion within 
                                                 
6 See Ledoit-Wolf (2004a), p.379-380.  The squared Frobenius norm ║ ║2 is a quadratic form whose inner product  is < 
X X’ > = tr( X X’) / N and the four unobservable scalers are μ = <Σ, I>, the expectation of the grand mean of the eigen-
values, β2 = E[║S-Σ║2], the error of the sample covariance matrix, and ζ2 = E[║S-μI║2], the cross-sectional dispersion 
of the sample eigenvalues, α2 = ║Σ-μI ║2, and Σ  is the true covariance matrix, and →qm denotes convergence in 
quadratic mean as n→infinity. 

 11



each group.  To achieve the volatility dispersion, we first sort all the 500 stocks by their 

historical volatilities and allocate the stocks ranked 1, 11 … 481, 491 to the first group, 2, 

12, … to the second group, and similarly for all 10 groups.   

 

At the beginning of months the various volatility estimates are matched near-the-money 

implied volatilities for options that expire the next month.  For example, on January 4, 

1996, we choose the 500 largest stocks by market capitalization at the end of 1995 and 

compute their 6 month historical volatilities using the previous 126 days of daily data.  

Four shrunk volatilities are then computed for each stock for both calls and puts, and the 

implied volatility of the near-the money option expiring the next month (February 20, 

1996) is computed.   

 

Table 1 provides summary statistics for all the volatility estimators. The statistics 

presented are time-series means of the cross-sectional summary statistics. On average, all 

Stein-type estimators have a lower mean than the original historical estimates as well as 

the Ledoit-Wolf estimators. The reason is all the Stein-type estimators involve matrix 

inversions which decrease the average due to the Jensen’s inequality. Moreover, all 

shrinkage estimators exhibit lower cross-section dispersion as expected, consistent with 

the shrinkage process.  The LW estimators still preserves much more cross-sectional 

variation compared with the Stein estimators, which suggests that the LW shrinkage 

intensity is effectively smaller.  

 

Bias can be measured by examining the log ratio of implied to estimated volatility.  Thus, 

for each stock we first compute five bias ratios, one for the historical volatility and four 
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for the shrinkage estimators and then regress each bias ratio on the volatility estimator 

that generated the bias, and on the moneyness of the option as a control.  Specifically, we 

define: 

    Error estimator   =  log(σimplied /σestimator)  (8) 

with estimator = Historical, James-Stein with random groups, James-Stein with large 

dispersion groups, Ledoit-Wolf with no groups and with groups for similar comparison. 

 

Then the following cross-sectional regressions are computed for each month i: 

 

  Errorestimator,,i     =   α +   ω σestimatort,i     + η Si/Ki   + ε,i (9) 

 

Following Fama-MacBeth [1973], time series means of the cross-sectional coefficients 

are compared against time series standard errors computed using a Newey-West 

autocorrelation correction with 8 lags. 

 

Table 2 presents the main results from these regressions.  The historical volatility column 

reports the coefficients and test statistics for equation 9 when volatility is computed with 

the standard historical method; it shows clearly the extent of the previously-observed 

volatility bias.  For calls (and puts), the vol coefficient is large, negative, -0.437 (-0.474) 

and very significant, t=-7.596 (t=-7.752.)  This is consistent with the finding in Black-

Scholes (1972) that in the cross-section options of low (high) volatility stocks are under 

priced (over priced) by their model.  
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In the next four columns of Table 2 for the panel using calls, the vol coefficients for the 

four shrinkage estimators are (-0.119, 0.010, 0.001, -0.040) and t statistics are (-0.943, 

0.072, 0.019, -1.417) for James-Stein Random, James-Stein High Dispersion, Ledoit-

Wolf No Group, and Ledoit-Wolf Group.  This shows that the volatility bias has been 

eliminated by Stein and by Ledoit-Wolf.  The control for moneyness reveals that the 

moneyness bias is significant and is independent of the volatility bias.  For puts Stein and 

Ledoit-Wolf also eliminate the volatility bias.7  Thus, we conclude that both Stein and 

Ledoit-Wolf shrinkage techniques are able to eliminate this volatility bias of under 

pricing options on low volatility stocks and over pricing options on high volatility 

stocks.8 

 

In Table 3 we present further analysis and comparisons of the historical and shrinkage 

estimators.  This table shows the average prediction errors of the uncorrected historical 

estimator and of the corrected shrinkage estimators.  We wanted to see if the process of 

shrinking the volatility estimators increased the prediction errors even though it 

eliminated the volatility bias.  Row 1 for call options shows that the uncorrected 

historical volatility estimator has the smallest prediction error of 0.042.   The prediction 

errors for both Stein 1 (random) and Stein 2 (disperse) are larger (0.057 and 0.054) and 

very significantly different from the historical estimator (t –stats of 3.473 and 3.163).  

                                                 
7The sample size of nearly 500 calls and puts was obtained by using the mid-point of the bid-ask spread for 
days when options on specific stocks apparently did not trade.  When we eliminated all stocks whose 
options did not trade every day and the resultant sample of calls (puts) was reduced to 302 (205), both 
Ledoit-Wolf and Stein eliminated the volatility bias for both calls and puts. 
8 In unreported results, we also examine other variants of the James-Stein estimators with differing 
assumptions about the covariance matrix target.  One target assumes that all covariances are the same and 
equal to the average sample covariance.  The other target assumes that all covariances are zero.  These 
calculations were again carried out with randomly sorted groups and with groups organized to maximize 
intra-group volatility dispersion.  In all cases, the results are essentially the same as those reported in all 
Tables (1 through 6 inclusive), for the James-Stein estimators.  The authors will be happy to provide 
detailed results to interested readers.  
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However, the prediction error for both the Ledoit-Wolf estimators, No Group and Group, 

0.043, is almost the same size as the uncorrected historical prediction error, 0.042, and 

Ledoit-Wolf is not significantly different from historical.  For put options the results are 

very similar, with the only difference being that the Ledoit-Wolf estimators (No Group 

and Group) now have the lowest prediction errors, both 0.037, but it is not statistically 

different from the uncorrected historical estimator prediction error, 0.039.  Thus, we see 

that while the Stein shrinking does eliminate the volatility bias, it also increases the 

prediction error, and this increased error is statistically significant.  The Ledoit-Wolf 

estimator does not have this problem. 

 

The prediction errors can be elucidated by using Theil’s decomposition, which separates 

the error into three components: (i) the error attributable to bias in the forecasts (UM); (ii) 

the error attributable to low correlation between the actual and the forecast (UR); and (iii) 

the remaining prediction error (UD).  This analysis for call options shows that the portion 

of the prediction error attributable to bias in the forecast (UM) is not significantly 

different from the historical estimator for any of the shrinkage estimators.  The portion of 

the prediction error attributable to low correlation between the actual and the forecast 

(UR) is lowest for the Ledoit-Wolf estimators compared to Stein, 0.001 for both calls and  

puts, and LW is very significantly different from the uncorrected historical estimator.  

The remaining portion of the larger prediction errors for both calls and puts for the Stein 

estimators are significantly different from the uncorrected historical estimate while 

Ledoit-Wolf is not different.   
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 It could be illuminating to examine whether stocks with different percentages of 

systematic and idiosyncratic components of risk are shrunk differently.  Thus, we define 

the following relative indicator of systematic risk for each stock I at the beginning of 

month t, based on approximately two prior years of daily returns: 

   Sysi,t  =  1 – 
2

t,i,historical

t,i,ticidiasyncra

⎟
⎟
⎠

⎞

⎝

⎛

σ

σ
⎜
⎜ ;     (10) 

and the following indicator of relative shrinkage: 

  Shrinkagei,t  =    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
2

,,

2
,,

tihistorical

tishrunkLnAbs
σ

σ
    (11) 

for each shrinkage estimator. 

 

Then the following regression is calculated within each monthly cross-section and test 

statistics are taken from the time series of cross-sectional coefficients: 

  Shrinkagei,t  =  αt  +  ωt Sysi,t  +  εi,t.    (12) 

Table 4 presents the results.  The Ledoit-Wolf estimators, No Group or Group, and the 

Stein Random, imply that as the systematic portion of the risk increases, the positive 

coefficient indicates the shrinkage increases and the difference between the corrected and 

uncorrected estimators increases.  However, it appears that for Stein High Dispersion, the 

negative coefficient indicates that the difference between the corrected and uncorrected 

estimators decreases.  

 

The higher prediction errors of the Stein-type estimators might arise because the Efron-

Morris method assumes normality while stock returns distributions are leptokurtic.  In 

order to investigate whether the leptokurtosis increases the prediction errors, we first 
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insert each stock’s 6-month kurtosis into equation 12.  The regression results are 

displayed in Table 5.  Higher kurtosis induces a upward bias in all the volatility estimates 

as evidenced by the significant negative kurt coefficients for all estimators.  The same 

results hold in both call and put options.  However, the coefficients and significance for 

this kurtosis variable are virtually the same across all the estimators, implying that the 

impact of kurtosis is about the same across all estimators and not likely to be the reason 

for the higher prediction errors of the Stein-type estimators.   

 

Table 6 examines the prediction errors in low and high kurtosis stocks.  Each month, we 

sort all the stocks into two halves by their previous 6-month kurtosis and look at the 

prediction errors of all the estimators in each half.  T-statistics for the difference between 

shrinkage estimators and the historical estimator are computed from the 100-month time 

series of each monthly difference in errors with a Newey-West correction for 

autocorrelation using eight lags.   

 

For call options, the prediction errors using the historical and Ledoit-Wolf estimators are 

significantly lower than Stein in the low kurtosis group. For Stein-type estimators, the 

gaps between low and high kurtosis groups are much smaller. Therefore, among low 

kurtosis stocks, the prediction errors for the Stein-type estimators remain significantly 

higher than for the historical and Ledoit-Wof estimators. In the high kurtosis group, all 

estimators have similar prediction errors and the differences are not significant 

statistically.  Hence, the generally higher prediction errors exhibited by the Stein 

estimators can be attributed mostly to low kurtosis stocks.  
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The results for put options are quite similar except that the Stein-type estimators produce 

errors that are also significantly greater than the historical estimator even for high 

kurtosis stocks, though the significance level is higher for low kurtosis stocks as it is for 

calls. 

We also examine whether an optimal shrinkage estimator that minimizes the sum of 

squared errors is important for the particular application of volatility estimation.  To do 

this, we compare LW’s optimal shrinkage to a random average of combining the 

historical product moment sample matrix and the target matrix.  In a similar comparison 

for estimation of the covariance matrix both Jagannathan and Ma (2003) and Disatnik 

and Benninga (2004) report that optimal shrinkage is no better than randomly choosing 

between the sample matrix and the target matrix, and thus optimality is not worth the 

effort.9  We find that the LW optimal shrinkage estimator is much better than the random 

average of the sample matrix and the target. 

 

5. Conclusion 
 
 
A volatility bias in option prices was first uncovered by Black-Scholes (1972).  They 

demonstrated that their model over-priced options on relatively high volatility stocks and  

under-priced options on relatively low volatility stocks.  We thought that this bias might 

have nothing to do with the Black-Scholes model but instead could be attributable to 

sampling error because it is always observed in cross section with inter stock differences.  

If this is true, this bias would be observed with any option pricing model on any 

                                                 
9Jagannathan and Ma (2003), p. 1667, and Disatnik and Benninga (2007), p. 60  report a random average does as well 
as optimal shrinkage.  Disatnik and Benninga state, “Theoretically, the shrinkage estimator should perform better than 
any other weighted average of the two estimators, as the proportions in the weighted average of the shrinkage estimator 
are obtained from minimizing the quadratic risk (of error) function of the combined estimator.  Yet it seems that, in 
practice, estimating these specific proportions gives rise to a new type of error, and overall the shrinkage estimator does 
not perform better than the random average.” 
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underlying, not just equity, but also fixed income securities, mortgages, foreign 

exchange, and commodities.  To investigate this issue, we implemented the alternative 

variance estimators of James-Stein and Ledoit-Wolf, which correct historical volatility 

estimates by shrinking them toward a central value, thereby reducing their cross-sectional 

dispersion.  While both shrinkage estimators utilize the covariance matrix, Ledoit-Wolf is 

unique because it does not require matrix inversion, and thus it does not require grouping 

the random variables because the number of stocks can exceed the number of 

observations.    

 

First, we verify that the same bias Black-Scholes originally observed was present and 

very significant in both put and call option prices for the 100 months during the period 

January, 1996 through April, 2004.  Second, we find that shrinkage variance estimators 

can eliminate this volatility bias, independent of the presence of the moneyness bias.  

Third, we uncover a difference between the Ledoit-Wolf and Stein estimators; the former 

does not increase the prediction error, but the latter significantly increase prediction error, 

especially for stocks with low kurtosis.  Fourth, we demonstrate the Ledoit-Wolf 

estimators and Stein Random, imply that as the systematic portion of the risk increases, 

the positive coefficient indicates the shrinkage increases and the difference between the 

corrected and uncorrected estimators increases.  However, it appears that for Stein High 

Dispersion, the negative coefficient indicates that the difference between the corrected 

and uncorrected estimators decreases.  Finally, we show that the optimal shrinkage 

estimator of Ledoit-Wolf is superior to a random combination of the sample matrix and 

the target for this volatility estimation problem. 
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Table 1: Summary Statistics of Annualized Volatility Estimates

This table shows time series averages of cross-sectional summary statistics of the historical volatility estimates
with 6-months of daily returns and corresponding shrinkage estimators. Stein Random is the volatility
shrunk by the Efron-Morris formula in random groups. Stein High Dispersion is the volatility shrunk by
Efron-Morris formula in groups formed to have larger volatility dispersion. Ledoit-Wolf is the volatility
shrunk by the Ledoit-Wolf method, with and without grouping. The mean is the average across all time
series and cross-sections. The std is the time series average of the cross-sectional standard deviation for
each sample month. Minimum and maximum are the time series averages of, respectively, the cross-sectional
minimum and maximum in each sample month.

Implied Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Mean 0.384 0.400 0.360 0.361 0.411 0.410
Std 0.146 0.167 0.106 0.102 0.142 0.144
Min 0.122 0.153 0.114 0.121 0.224 0.218
Max 1.036 1.146 0.704 0.645 1.108 1.100
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Table 2: Volatility Biases

Fama-MacBeth type tests were conducted for the following cross-sectional specification, log(
σimp,i,t

σ̂i,t
) =

α + βσ̂i,t + γXi,t + ǫi,t . The upper panel is for call options, the lower panel for put options. All t -statistics
are computed from the 100-month time series of cross-sectional coefficients with a Newey/West correction
for autocorrelation using eight lags and are reported below the corresponding coefficient means. The five
columns correspond to different volatility estimators. Historical is the standard estimator. Stein Random is
an estimator shrunk by the Efron-Morris formula in random groups. Stein High Dispersion is an estimator
shrunk by the Efron-Morris formula in groups with large volatility dispersion. Ledoit-Wolf is an estimator
shrunk by the Ledoit-Wolf method, with and without grouping.

Panel A: Call Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Const -0.347 -0.399 -0.458 -0.556 -0.535
(-2.751) (-3.300) (-3.736) (-4.746) (-4.400)

σ̂ -0.437 -0.119 0.010 0.001 -0.040
(-7.596) (-0.943) (0.072) (0.019) (-1.417)

Moneyness 0.481 0.479 0.487 0.480 0.478
(4.145) (3.830) (3.915) (4.085) (4.054)

Ave. R2 0.154 0.053 0.060 0.045 0.041
Ave. Cross-section 494 494 494 494 494

Panel B: Put Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Const -0.275 -0.328 -0.384 -0.479 -0.462
(-2.291) (-2.892) (-3.341) (-4.422) (-4.144)

σ̂ -0.474 -0.170 -0.048 -0.044 -0.084
(-7.752) (-1.299) (-0.352) (-1.150) (-2.670)

Moneyness 0.443 0.445 0.453 0.441 0.442
(3.986) (3.702) (3.790) (4.004) (4.035)

Ave. R2 0.185 0.056 0.062 0.048 0.045
Ave. Cross-section 488 488 488 488 488
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Table 3: Prediction Errors of Volatility Estimators

Average prediction errors are computed for the historical volatility estimator and all four shrinkage
estimators, measured by the root mean square of log(

σimp,i,t

σ̂i,t
). T -statistics for the difference between

shrinkage estimators and the historical estimator are computed from the 100-month time series of each
monthly difference in errors with a Newey-West correction for autocorrelation using eight lags, and are
reported below the corresponding coefficient means. The five columns correspond to different volatility
estimators. Historical is the standard estimator. Stein Random is an estimator shrunk by the Efron-Morris
formula in random groups. Stein High Dispersion is an estimator shrunk by the Efron-Morris formula in
groups with large volatility dispersion. Ledoit-Wolf is an estimator shrunk by the Ledoit-Wolf method, with
and without grouping. In Theil’s decomposition, UM is the proportion due to bias in the forecasts. UR is
the error due to a low correlation between the actual and the forecast. UD is the remaining part. T -statistics
in the parentheses are computed using Newey-West with 8 lags.

Panel A: Call Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

MSE 0.042 0.057 0.054 0.043 0.043
(3.473) (3.163) (0.238) (0.276)

UM 0.010 0.012 0.012 0.014 0.014
(0.608) (0.376) (1.003) (0.918)

UR 0.005 0.003 0.003 0.001 0.001
(-1.543) (-2.375) (-6.994) (-7.714)

UD 0.027 0.041 0.040 0.027 0.028
(6.760) (6.241) (0.481) (0.893)

Panel B: Put Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

MSE 0.039 0.056 0.054 0.037 0.037
(3.872) (3.573) (-0.637) (-0.553)

UM 0.010 0.015 0.014 0.012 0.012
(1.648) (1.367) (0.497) (0.464)

UR 0.006 0.004 0.003 0.001 0.001
(-1.974) (-2.979) (-7.789) (-8.266)

UD 0.024 0.037 0.036 0.024 0.025
(7.989) (7.664) (0.569) (1.082)
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Table 4: Shrinkage and Systematic Risk

For each of 100 month, cross-sectional regressions were computed to explain the shrinkage proportion as
a function of the systematic risk estimated over the previous two years (approximately.) T -statistics, in
parentheses, are computed from the time series of cross-sectional coefficients using a Newey-West correction
for autocorrelation with 8 lags. The columns correspond to four alternative shrinkage estimators. Stein
Random is an estimator shrunk by the Efron-Morris formula in random groups. Stein High Dispersion is an
estimator shrunk by the Efron-Morris formula in groups with large volatility dispersion. Ledoit-Wolf is an
estimator shrunk by the Ledoit-Wolf method, with and without grouping.

Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Const 0.146 0.027 0.039 0.133
(5.106) (1.711) (4.472) (13.495)

Sysi,t 0.255 -0.417 0.396 0.056
(2.196) (-5.880) (5.670) (2.418)

Ave. R2 0.110 0.140 0.046 0.007

27



Table 5: Control for Kurtosis

Fama-MacBeth type tests were conducted for the following cross-sectional specification, log(
σimp,i,t

σ̂i,t
) =

α + βσ̂i,t + γXi,t + ǫi,t . The upper panel is for call options, the lower panel for put options. All t -statistics
are computed from the 100-month time series of cross-sectional coefficients with a Newey/West correction
for autocorrelation using eight lags and are reported below the corresponding coefficient means. The five
columns correspond to different volatility estimators. Historical is the standard estimator. Stein Random is
an estimator shrunk by the Efron-Morris formula in random groups. Stein High Dispersion is an estimator
shrunk by the Efron-Morris formula in groups with large volatility dispersion. Ledoit-Wolf is an estimator
shrunk by the Ledoit-Wolf method, with and without grouping.

Panel A: Call Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Const -0.320 -0.384 -0.446 -0.538 -0.516
(-2.620) (-3.319) (-3.812) (-4.799) (-4.413)

σ̂ -0.352 0.013 0.161 0.101 0.057
(-8.010) (0.116) (1.324) (2.822) (2.315)

Moneyness 0.477 0.475 0.484 0.477 0.475
(4.282) (3.944) (4.033) (4.231) (4.200)

Kurtosis -0.009 -0.010 -0.010 -0.009 -0.009
(-23.032) (-16.650) (-16.061) (-20.776) (-21.268)

Ave. R2 0.241 0.121 0.134 0.136 0.131
Ave. Cross-section 494 494 494 494 494

Panel B: Put Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Const -0.251 -0.316 -0.375 -0.464 -0.445
(-2.176) (-2.918) (-3.419) (-4.490) (-4.178)

σ̂ -0.395 -0.044 0.094 0.050 0.007
(-8.162) (-0.374) (0.765) (1.542) (0.325)

Moneyness 0.442 0.445 0.453 0.440 0.441
(4.170) (3.862) (3.953) (4.200) (4.238)

Kurtosis -0.009 -0.009 -0.009 -0.008 -0.008
(-28.256) (-16.760) (-16.355) (-23.332) (-24.646)

Ave. R2 0.267 0.124 0.134 0.139 0.135
Ave. Cross-section 488 488 488 488 488
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Table 6: Prediction Errors for Low and High Kurtosis Stocks

Average prediction errors are computed for the historical volatility estimator and all four shrinkage
estimators, measured by the root mean square of log(

σimp,i,t

σ̂i,t
) for stocks grouped by kurtosis over the previous

six months. T -statistics for the difference between shrinkage estimators and the historical estimator are
computed from the 100-month time series of each monthly difference in errors with a Newey-West correction
for autocorrelation using eight lags. These t -statistics are given in parentheses below each mean prediction
error. The five columns correspond to different volatility estimators. Historical is the standard estimator.
Stein Random is an estimator shrunk by the Efron-Morris formula in random groups. Stein High Dispersion
is an estimator shrunk by the Efron-Morris formula in groups with large volatility dispersion. Ledoit-Wolf is
an estimator shrunk by the Ledoit-Wolf method, with and without grouping. In Theil’s decomposition, UM
is the proportion due to bias in the forecasts. UR is the error due to a low correlation between the actual
and the forecast. UD is the remaining part. T -statistic in the parentheses are computed using Newey-West
with 8 lags.

Panel A: Call Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Low-Kurt 0.032 0.055 0.051 0.033 0.033
(4.258) (4.088) (0.317) (0.306)

High-Kurt 0.052 0.058 0.058 0.053 0.053
(1.349) (1.306) (0.198) (0.255)

Panel B: Put Options

Historical Stein Stein Ledoit Ledoit

Random High Disp No Group Group

Low-Kurt 0.031 0.056 0.052 0.028 0.037
(4.329) (4.077) (-1.206) (2.268)

High-Kurt 0.047 0.056 0.055 0.046 0.047
(1.914) (1.861) (-0.323) (-0.085)
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