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Abstract 

 
 
 
This paper introduces a new methodology for measuring and analyzing capital structure 
effects on prices of call options on stocks of individual firms in the economy.  By focusing 
on individual firms we examine the cross sectional effects of leverage on option prices.  
Our methodology allows the market value of each firm and thus the firm’s debt to be 
implied directly from contemporaneous, liquid, nearest to at-the-money option prices 
without the use of any historical price data.  We compare Geske’s parsimonious model to 
the alternative models of Black Scholes (BS) (1973), Bakshi, Cao, and Chen (BCC, 1997) 
(stochastic volatility (SV), stochastic volatility and stochastic interest rates (SVSI), and 
stochastic volatility and jumps (SVJ)), and Pan (2002) (no-risk premia (SV0), 
volatility-risk premia(SV), jump-risk premia (SVJ0), volatility and jump risk premia (SVJ)) 
which allows state-dependent jump intensity and adopts implied state-GMM econometrics. 
These alternative models do not directly incorporate leverage effects into option pricing, 
and except for Black-Scholes these model calibrations require the use of historical prices, 
and many more parameters which require complex estimation procedures.  The 
comparison demonstrates that firm leverage has significant statistical and economic cross 
sectional effects on the prices of individual stock options.  The paper confirms that by 
incorporating capital structure effects using our methodology to imply the market value of 
each firm and thus the firm’s debt, Geske’s model reduces the errors pricing options on 
individual firms by 60% on average, relative to the models compared herein (BS, BCC, 
Pan) which omit leverage as a variable.  However, we would be remiss in not noting that 
after including leverage there is still room for improvement, and perhaps by also 
incorporating jumps or stochastic volatility at the firm level would result in an even better 
model. 
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1. Introduction 

Ross (1976) demonstrated that almost all securities and portfolios of securities can be 

considered as options.  Black and Scholes (BS) showed that all options are actually levered 

investments in the underlying optioned security or asset.  It is well known that most 

corporations have some form of direct or indirect leverage.1  Thus, it seems puzzling that in 

the asset pricing literature, there have been few detailed examinations or tests for leverage 

effects using a model which directly incorporates leverage, based on economic principles.  

 

In three recent papers, Geske and Zhou (2006, 2007a,b) have demonstrated that by 

including a new measure of implied market leverage in a parsimonious methodology using 

contemporaneous equity and equity option prices, they can significantly improve on the 

pricing of individual stock options and index options.  Furthermore, they also show (2007) 

that their methodology allows an implied equity volatility measure that dominates the 

CBOE’s VIX, and several GARCH techniques for forecasting future volatility. 

 

Empirically, researchers have documented a negative correlation between stock price 

movements and stock volatility, which was first identified by Black (1976) as the 

“leverage" effect.  A few papers have confirmed that debt is related to the observed 

negative correlation (Christie (1993), and Toft and Pruyck (1998)).  Toft and Prucyk (TP) 

(1997) adapt a version of Leland and Toft (1996) to individual stock options, and using 

ordinary regression in cross-sectional tests they demonstrate significant correlations 

between their model’s debt variables and the volatility skew for a 13 week period in 1994 

for 138 firms in their final sample.  However, TP do not investigate the extent of option 

pricing improvement attributable to leverage by comparison to more complex models 

                                                 
1A firm not directly issuing bonds has many indirect promised payouts (loans, receivables, taxes, etc).    
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which omit leverage.  Instead they examine the cross-sectional correlations between 

volatility skew for individual stocks and their model debt variables which are: (i) LEV, the 

ratio of book value (not implied market value) of debt and preferred stock to debt plus all 

equity, and (ii) CVNT, ratio of short maturity debt (less than 1 year) to total debt, as a 

proxy for a protective covenant.   

 

Some option pricing papers have modeled and tested this negative correlation between a 

stock’s return and its stochastic volatility.  Among these papers are the stochastic volatility 

models of Heston (1993), Bakshi, Cao, Chen (BCC) (1997) and Pan (2002), which is a 

more complex extension of Bates (2000).  However, these papers all assume arbitrary 

functional forms for the correlation between a stock’s return and changes in the stock’s 

volatility. None of them provides the economic motivation of leverage for this correlation.  

If this negative correlation is partially caused by debt as identified first by Black, then the 

variations in actual market leverage should be both statistically and economically 

important to pricing equity options. Thus, it is important to isolate and analyze the 

magnitude of the leverage effect independent of other assumed possible complexities such 

as stochastic volatility, stochastic interest rates, and stochastic jumps. Otherwise, these 

additional assumed stochastic parameters may be estimated with error because of a 

relevant omitted variable. In order to incorporate debt into asset pricing, we adopt Geske’s 

(1979) no arbitrage, partial equilibrium, compound option model.  

 

Geske’s model provides a unique method to imply the market value of debt.  His leverage 

based stochastic equity volatility model does not assume any arbitrary functional form, and 

it provides the economic reason for the negative correlation between volatility and stock 

returns. The stock return volatility is not a constant as assumed in the Black and Scholes 

theory, but is a function of the level of the stock price, which also depends on the value of 
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the firm. As a firm’s stock value declines, the firm’s leverage ratio increases. Hence the 

equity becomes more risky and its volatility increases.  This model can explain the negative 

correlation between changes in a stock’s return and changes in the stock’s volatility.  

Geske’s option model also results in the observed fatter (thinner) left (right) tail of the 

stock return distribution.  

 

By incorporating the implied market value of each firm and thus each firm’s debt directly 

and modeling its economic impact, Geske’s option model uses Modigliani and Miller 

(M&M) to take the option pricing theory deeper into the theory of the firm.2  His model 

incorporates the differential implied market value of stochastic debt, differential default 

risk, and differential bankruptcy. Thus, the Geske approach gives rise to stochastic equity 

volatility naturally, and this has the advantage of a direct economic interpretation for the 

stochastic volatility.  This paper demonstrates the parsimonious Geske model performs 

much better with far fewer parameters and less difficult estimation than the more complex 

parameterized models of BCC and Pan which omit debt but include parameters for 

stochastic equity volatility, stochastic interest rates, and stochastic equity jumps.  Geske 

also is shown to dominate Black-Scholes. 

 

Both the size of the implied market value of debt and the duration of debt effect the 

stochastically changing shape of each firm’s stock return distribution. It is the shape of the 

conditional equity return distribution at any point in time that determines the model values 

for options with different strike prices and different times to expiration. Thus, the omission 

of an important and measurable economic variable, debt, causes the return distribution to 

be mis-specified.  This paper shows that the omission of debt is partially responsible for 

options valued with either BS or the more complex models of BCC and Pan to exhibit 

                                                 
2Since the stock price is known input, given M&M, the solution is actually for the market value firm debt. 
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greater errors.  However, after including leverage there is still room for improvement, and 

perhaps by also incorporating jumps or stochastic volatility at the firm level would result in 

an even better model. 

 

This is the first paper in the existing literature to empirically examine capital structure 

effects on the pricing of individual stock options by using Geske’s closed-form compound 

option model.  In a related papers, Geske and Zhou (2007) present the first evidence of the 

time series effects of leverage on prices of S&P 500 index put and call options. Since an 

index has no cross sectional variation in leverage, the paper examines the changes in 

aggregate index debt with time.  The index paper shows that by including the time 

variations in leverage as a variable, Geske’s model is superior for pricing index put and call 

options to the models of BS (1973) and BCC (1997) which omit leverage.  Furthermore, 

the advantage of including debt is monotonic in the changing amount of leverage over time, 

and in time to option expiration.   

 

This paper is related to many papers in the option pricing literature.  For example,  an 

implied bimonial tree lattice approach was developed (by Rubinstein (1994) and others) to 

better fit the cross-sectional structure of option prices wherein the volatility can depend on 

the asset price and time.  This lattice approach to an implied binomial tree produces a 

deterministic volatility function (DTV), and these implied tree lattice approaches have 

been shown to work no better than an ad hoc versions of Black-Scholes where the implied 

volatility is modified for strike price and time.  

 

 

The negative correlation between equity return and volatility has been modeled by Heston 

(1993) and others.  Heston develops a closed-form stochastic volatility model with 
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arbitrary correlation between volatility and asset returns and demonstrates that this model 

has the ability to improve on the Black-Scholes biases when the correlation is negative. 3   

Heston and Nandi (2000) develop a closed-form GARCH option valuation model which 

exhibits the required negative skew and contains Heston’s (1993) stochastic volatility 

model as a continuous time limit. They demonstrate that their out of sample valuation 

errors are lower than the ad hoc modified version of Black-Scholes which Dumas, Fleming 

and Whaley (1998) developed. Liu, Pan and Wang (2005) attempt to further disentangle 

the rare-event premia by separating the premia into diffusive and jump premia, driven by 

risk aversion, and then adding an intuitive component driven by imprecise modeling and 

subsequent uncertainty aversion. All of the latter three papers test their models on S&P 500 

index options. In all cases, these more generally specified models with many more input 

parameters outperform the (ad hoc) Black-Scholes solutions.   

 

In this paper we focus primarily focus on the following three papers: Black-Scholes, 

Bakshi, Cao and Chen (1997), and Pan (2002).4  BCC (1997) formulate a series of nested 

models which include stochastic volatility (SV), and additionally either stochastic interest 

rates (SVSI), or jumps with constant jump intensity (SVJ).  BS model is a special case of 

both Geske and BCC models.  BCC test their model by comparing the implied statistical 

parameters to those of the underlying processes, as well examining out-of-sample pricing 

and hedging performance for S&P 500 index options.  Pan (2002) examines the joint time 

series of the S&P 500 index and near-the-money short-dated option prices with a 

no-arbitrage model to capture both stochastic volatility and jumps. She introduces a 

parametric pricing kernel to analyze the three major risk factors which she assumes effect 

                                                 
3See Scott (1987), Stein and Stein (1991) and Wiggins (1987). With respect to Heston (1993), Pan (2002) 
says “Our first set of diagnostic tests indicates that the stochastic volatility model of Heston (1993) is not rich 
enough to capture the term structure of volatility implied by the data." 
4 Eraker, Johannes and Polson (2003) extend Pan(2002) by assuming uncertainties in both the jump timing 
and jump size in both the volatility and the returns, with either simultaneous arrivals with correlated jump 
sizes or independent arrivals with independent jump sizes. 
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the S&P 500 index returns: the return risk, the stochastic volatility risk and the jump risk. 

Pan (2002) extends Bates (2000) by allowing the jump premium to depend on the market 

volatility by assuming that the jump intensity is an affine function of the volatility for a 

state-dependent jump-risk premium so that the jump risk premium is larger during volatile 

periods. She also indicates that this jump risk premium dominates the volatility risk 

premium.  

 

However, by omitting debt as a variable and instead assuming arbitrary functional forms 

for volatility, correlation and jump processes, the existing literature fails to address directly 

the importance of capital structure in asset pricing. This paper directly tests the extent of a 

leverage effect in individual stock options by measuring and using the actual daily implied 

market firm value and thus debt for each individual firm. The Geske model requires the 

current total market value of the firm’s debt plus equity, and the instantaneous volatility of 

the rate of growth of this total market value, neither of which are directly observable. This 

problem is parsimoniously circumvented by observing contemporaneous, liquid market 

prices, one for the individual stock price and the second for the price of a call option on the 

individual stock.  Then solving three simultaneous equations for the total market values, V 

= S + D, market return volatility, Vσ  and the critical total market value, V*, for the option 

exercise boundary.  

 

We first show that Geske’s model improves the net option valuation of over 2.5 million 

listed in-the-money and out-of-the-money individual stock call options on over 11,500 

firms by on average by about 60% compared to other models. Furthermore, we show for 

each firm’s options this improvement is directly and monotonically related to both the 

firm’s debt and the time to expiration of the option. The pricing improvement is monotonic 

with respect to time to expiration because leverage has a longer time effect.  It may not be 
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completely surprising that Geske dominates simple Black-Scholes when pricing equity 

options if the data quality for measuring leverage is good.  However, when we compare 

Geske’s model with more complex competing models which require more parameters 

(Bakshi, Cao and Chen (1997) and Pan (2002)), we find that Geske’s model produces the 

best performance in both absolute and relative pricing error measures.  

 

The rest of the paper proceeds as follows.  Section 2 describes the Geske model and its 

relatively parsimonious implementation. Section 3 describes the data and explains in detail 

how the necessary data inputs are calculated.  Section 4 compares the Geske results with 

the BS model and reports both statistical and economic significance. Section 5 describes 

and compares the three BCC model versions, SV, SVSI and SVJ with Geske.  Section 6 

describes and compares Pan’s four model versions, SV0, no-risk premia, SV, 

volatility-risk premia, SVJ0, jump-risk premia, and SVJ, the volatility and jump risk 

premia model with Geske.  Section 7 concludes the paper.  

 

2. Compound Option Model 

In this section, we briefly review the model of Geske (1979), and in later sections we 

review BS, BCC, and Pan.  Recall that Geske’s option model, when applied to listed 

individual equity options, transforms the state variable underlying the option from the 

stock to the total market value of the firm, V, which is the sum of market equity and market 

debt. In this case the volatility of the equity of the individual stock will be random and 

inversely related to the value of the individual stock equity. This interpretation of the 

Geske’s model introduces a method which enables the  measurement of each individual 

firm’s implied market debt value from both option and equity prices, which permits better 
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 measurement of individual firm’s debt value and credit risk.5  Geske’s model is consistent 

with Modigliani and Miller, and allows for default on the debt and bankruptcy.  In Geske’s 

model the partial equilibrium, self-financing, risk free no arbitrage portfolio is formed with 

the option, the firm, and a risk free bond.  This differs from the Black-Scholes model where 

the partial equilibrium, self-financing, risk free no arbitrage portfolio is formed with the 

option, the stock, and a risk free bond.  Black-Scholes is a special case of Geske’s model 

which will reduce to his equation when either the dollar amount of leverage is zero or when 

the leverage is perpetuity.  In Geske the boundary condition for exercise of an option is 

transformed from depending on the stock price and strike price to depending on the value 

of the firm, V, and on a specific exercise critical firm total market value, V*.  In 

implementation we allow both Geske and Black-Scholes to have a term structure of 

volatility.6  Given the above, if the firm value is described by a relative diffusion process, 

the following equations result for pricing individual stock call and put options: 

 

ܥ ൌ ܸ ଶܰሺ݄ଵ ൅ , ௩்ଵߪ ݄ଶ ൅ ;௩்ଶߪ ሻߩ  െ ௥೅మሺି݁ܯ మ்ି௧ሻ
ଶܰ ሺ݄ଵ , ݄ଶ; ሻߩ  െ ௥೅భሺି݁ ܭ భ்ି௧ሻ

ଵܰሺ݄ଵሻ    (1) 

 

ܲ ൌ ௥೅మሺି݁ܯ మ்ି௧ሻ
ଶܰሺെ݄ଵ, ݄ଶ; െߩሻ െ ܸ ଶܰ൫– ሺ݄ଵ ൅ ,௩்ଵሻߪ ݄ଶ ൅ ;௩்ଶߪ െߩ൯ ൅ ௥೅భି݁ܭ ଵܰሺെ݄ଵሻ   (2) 
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5 We thank Leland for pointing out that Toft-Prucyk (1997) and other models which take option valuation to 
the firm level are also able to imply the market value of each firm’s debt.  
6 A term structure of volatility is known to exist in the equity option market.  Implementing Geske and 
Black-Scholes with a volatility term structure allows their models to have a similar number of parameters as 
the more complex models of BCC and Pan which cannot accommodate a volatility term structure. 
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Here V*, the critical firm value for option exercise, depends on each option’s strike price, 

Kj, and each options expiration date, T1, for all strikes j and option expirations T1, and can 

be more fully described as V*(Kj, T1).  All options expire at specific dates T1 which occur 

before the debt matures at T2 , and options with specific days to expiration are valued with 

the relevant implied volatility from term structure bucket i.  Thus, all call and put options 

depend on four unknowns, C[ V, V*(Kj,T1i), σvT1i , σvT2d] and (P[V, V*(Kj,T1i), σvT1i , 

σvT2d]).  At each specific option expiration T1, if V < V*, C = 0 (P = K-E), and if V > V*, C 

= E-K (P = 0).  The firm implied volatility to each option expiration date T1i in the relevant 

volatility term structure bucket i, is σv T1i , and the firm implied volatility to the debt 

maturity date, T2d , is σv T2d.  The face value of a firm’s debt outstanding is M and T2d is the 

maturity of this debt. 7   The events of exercising the call option and the firm defaulting are 

correlated.  If a firm is more likely to default at T2d, where V is less than M at T2d, then V 

will also be more likely to be less than V* at T1, which makes call options expiring at T1 

less likely to be exercised.  For Geske’s compound option there are two correlated exercise 

opportunities at T1 for the call option expirations and at T2 for the debt maturity. This 

correlation is measured by )/()( 21 tTtT di −−=ρ  where individual stock option expiration 

T1i is always less than or equal to debt maturity, T2d. 

 

In order to solve for these four unknowns,  V, V*(Kj,T1i), σvT1i, σvT2d, we utilize equations 

(1) and (2) above, and we use Merton’s (1974) equation for stock as an option on the firm 

assets V in order to solve for the firm implied volatility over the debt maturity, T2d.  

 

S = VN(d1) – Me –rT2d  N(d2)                                                (3) 

 

                                                 
7 We follow the standard practice from Merton (1974) implementing corporate debt as a zero coupon bond 
maturing at the duration of all promised payments outstanding.  This is more explicitly described and detailed  
in section 3. 
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where 

d1 =  [ln(V/M) + (r + ½ σ2
v T2d ) T2d ] / (σ v T2d √T2d)  and  d2 = d1 -  σv T2d √T2d . 

 

Equation (3) does not depend on V* or σvT1i , but does depend on V and σv T2d . 8  

The notation for these three equations is summarized as follows: 

 

C = current market value of an individual stock call option, 

P = current market value of an individual stock put option, 

S = current market value of the individual firm stock, 

D = current market value of the individual firm debt, 

V = current market value of the firm’s securities (debt B + equity S), 

V* = critical total market value of the firm where V ≥  V* implies S≥K, 

M =  face value of market debt (debt outstanding for the firm), 

K  = strike price of the option, 

rFt = the risk-free rate of interest to date t, 

σv T1i   the instantaneous volatility of the firm return at expiration T1 and volatility bucket i, 

σv T2d   the instantaneous volatility of the firm return at expiration T2 and volatility bucket d, 

t = current time, 

T1 = specific expiration date of the option, 

T2 = maturity of the market debt, 

N 1 (.) = univariate cumulative normal distribution function, 

N2(…) = bivariate cumulative normal distribution function, 

ρ     = correlation between the two option exercise opportunities at  and  T1 and T2. 

                                                 
8 If we set the firm volatility over the maturity of the debt equal to the implied volatility from the last 
expiration bucket, σvT2d = σ v T1i=4 , instead of using the Merton (1974) equity option equation, this does not 
change our results.  Either method uses the market price of equity, S, in the solution, so our numbers are 
always consistent with the equity market prices. 
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The solution involves solving Equation (1) twice while equations (2) and (3) are used once 

to give us four equations for four unknowns, and all equations are used at the same point in 

time for options with the same time to expiration.  At any date t, Equations (1) is used with 

a most at-the-money (MATM) call option, Ct (Vt ,Vt*(K2, T1).  Then equations (1) is used 

again with equation (2) for an option pair, Ct (Vt,Vt*(K1, T1i)  and Pt (Vt,Vt*(K1, T1i), of a 

slightly in-the-money (ITM) call (K2 >K1) and thus out-of-the-money (OTM) put at the 

same expiration T1 as the first call option. 9  Thus, at any time t, all three options expiring at 

the same T1, are subject to the same firm value Vt, the same firm implied volatility for 

option expiration at T1 from volatility bucket i, σvT1i , the same firm implied volatility for 

debt maturing at T2d , σvT2d , but different critical firm expiration values, V*, which changes 

only because the strike price Kj changes.  The critical firm values for option exercise, V*, 

are comprised of two components, S* and D*, where V*=S*+D*.  At each option 

expiration, T1, Sj* must equal to the known relevant strike price, Kj, while D* is the same 

across strikes.  Thus at any t, Vt*(K1, T1i) = St K1
* + Dt

* = K1 + Dt
*, and   Vt*(K2, T1i) = St K2

* 

+ Dt
* = K2 + Dt

*.  So the solution for critical V* is actually a solution for D* since S* is 

known to equal to the relevant strike, K.  Thus, the four equation and four unknowns are: 

 

(1) Ct (Vt,Vt*(K1, T1i), σ v T1i , σ v T2d) =  Ct (Vt,Vt* = K1 + Dt
* , σ v T1i , σ v T2d) 

(2) Ct (Vt,Vt*(K2, T1i), σ v T1i , σ v T2d) =  Ct (Vt,Vt* = K2 + Dt
*, σ v T1i , σ v T2d) 

(3) Pt (Vt,Vt*(K2, T1i), σ v T1i , σ v T2d) =   Pt (Vt,Vt* = K2 + Dt
*, σ v T1i , σ v T2d) 

(4) St (Vt , σ v T2d)                                =    St (Vt , σ v T2d)  

 

The four unknowns in the above equations are Vt, Dt
*, σ v T1i , σ v T2d.  The critical stock 

prices, St K1
* equals known strike K1 while St K2

* equals known strike K2.  Vt and σvT2d are in 
                                                 
9 While both the call and put options are American, the call options are valued only for time periods when 
there is no dividend.  We set the put options to be slightly out-of-the-money and valued them with both the 
Geske-Johnson (1984) approximation for the American put for two exercise possibilities and with equation 
(2). We implement the simple European  approach which adds noise but our results remain very significant.   
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all four equations, while V* and σvT1i, are only relevant to the three option equations.  Note 

now that the Geske model has four explicit parameters at each option expiration and 

additional implicit parameters in the imbedded stochastic process for the stock stochastic 

volatility.  At any point in time the parameters V and σvT2d are the same across all options, 

while the parameters V* and σvT1i are the same only across options of the same 

expiration.10  

 

There are other ways to implement the Geske model which we discuss in a footnote below.  

We have used these alternate implementation methods and they do not change our results 

at all. 11 Because the Geske model constructed using a portfolio of three securities, the 

option, the firm, and a bond, that is both risk neutral and self-financing, the stock does not 

enter the argument.  The firm value critical for exercise, V*, must be constrained so that the 

equity component of V* is set equal to the know strike price K (K=S*).  In the next section 

we describe the sources and data necessary implement BS and G with a term structure of 

volatility and to test for the presence of any leverage effects in individual stock call option 

prices. 

3. Data Collection and Variable Construction 

3.1. Option Data 

The Ivy DB OptionMetrics has the Security file, the Security_Price file and the 

Option_Price file. The OptionMetrics data was collected in June 2007. It contains option 

                                                 
10 Here, BS has 4 parameters (not 1 as in BCC (1997) and G has 6 unconstrained parameters across options.   
The maturity of the debt is also an important variable that differs across firms and contributes to the impact of 
leverage which has much stronger effects on long dated options. 
11 First, we could omit the use of the Merton equation (3) and use another option equation.  Then we must use the longest 
expiring option implied volatility as the volatility to the debt maturity.  We could also minimize the sum of squared option 
errors as the method of solving for the parameters while still using the MATM term structure of volatility to price all the 
options in a given expiration bucket.  The term structure buckets can be varied both in number and in time intervals. 
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data from January, 1996 through December, 2005. This 120-month sample period covering 

10 years has about 2500 observation days.  

From the Security file, we obtain Security ID (The Security ID for the underlying securities. 

Security ID’s are unique over the security’s lifetime and are not recycled. The Security ID 

is the primary key for all data contained in Ivy DB.), CUSIP (The security’s current CUSIP 

number), Index Flag (A flag indicating whether the security is an index. Equal to ‘0’ if the 

security is an individual stock, and ‘1’ if the security is an index.), Exchange Designator (A 

field indicating the current primary exchange for the security: 00000 - Currently delisted, 

00001 - NYSE, 00002 - AMEX, 00004 - NASDAQ National Markets System, 00008 - 

NASDAQ Small Cap, 00016 - OTC Bulletin Board, 32768 - The security is an index.). We 

choose all the securities that are equities and we exclude all indices. An exchange-traded 

stock option in the United States is an American-style option. We further select the 

securities that are actively traded on the major exchanges. Now we have a sample of 11,539 

securities whose stock options are American-style options.  

 

From the Security_Price file, we obtain Security ID, Date (The date for this price record) 

and Close Price (If this field is positive, then it is the closing price for the security on this 

date. If it is negative, then there was no trading on this date, it is the average of the closing 

bid and ask prices for the security on this date.). We select the security price records when 

there are definitely trades on the dates.  

 

From the Option_Price file, we obtain Security ID, Date (The date of this price), Strike 

Price (The strike price of the option times 1000), Expiration Date (The expiration date of 

the option), Call/Put Flag (C-Call, P-Put), Best Bid (The best, or highest, closing bid price 

across all exchanges on which the option trades.), Best Offer (The best, or lowest, closing 

ask price across all exchanges on which the option trades.), Last Trade Date (The date on 
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which the option last traded), Volume (The total volume for the option), and Open Interest 

(The open interest for the option).  

 

We merge the selected datasets from the Option_Price file and the Security_Price file, and 

we further merge the newly generated dataset with the selected dataset from the Security 

File. We keep all the options on the securities that are present in both files. In order to 

minimize non-synchronous problems, we keep the options whose last trade date is the 

same as the record date and whose option price date is the same as the security price date. 

Next we check to see if arbitrage bounds are violated ( TrTeKSC −−≤ ) and eliminate these 

option prices. If non-synchronicity occurred because the stock price moved up after the 

less liquid in or out of the money option last traded, then option under-pricing would be 

observed, and some of these options would be removed by the above arbitrage check. If 

non-synchronicity occurred because the stock price moved down after the less liquid in or 

out of the money option last traded, then option over-pricing would be observed. Because 

we cannot perfectly eliminate non-synchronous pricing for the in and out of the money 

options with this data base we keep track of the amount of under and over-pricing in order 

to relate this miss-pricing to the resultant under (over) pricing of in (out of) the money 

individual stock call options.  

3.2. Dividends 

The dividend information is obtained from CRSP. From CRSP, we collect the following 

dividend information: CUSIP, Closing Price (to cross check with the security price from 

OptionMetrics), Declaration Date (the date on which the board of directors declares a 

distribution), Record Date (on which the stockholder must be registered as holder of record 

on the stock transfer records of the company in order to receive a particular distribution 

directly from the company) and Payment Date (the date upon which dividend checks are 
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mailed or other distributions are made).  

 

A dividend paid during the option’s life reduces the stock prices at the ex-dividend instant 

and reduces the probability that the stock price will exceed the exercise price at the option’s 

expiration. Because of the insurance reason and time value of the money, it is never 

optimal to exercise an American call option on a non-dividend-paying stock before the 

expiration date. Therefore, we use the collected dividend information to restrict the sample 

to be all the eligible call options on stocks with no dividend prior to the option expiration.  

 

Thus, all the stocks in the sample can be separated into two groups: the first group of stock 

never pays any dividend between January 4, 1996 and December 30, 2005; the second 

group of stock pays dividends in that period at least once. For the first group of stock, we 

use all the options written on these stocks in the whole sample period; for the second group 

of stocks, we use all the options whose expiration dates are before the first ex-dividend date 

and all the options whose expiration dates are after the previous ex-dividend dates and 

before the next ex-dividend dates. There are typically four days between the ex-dividend 

day the record date for the individual stocks in U.S. As we cannot obtain the ex-dividend 

dates directly from CRSP but we can obtain the record date from CRSP, we assume that the 

ex-dividend date occurs 4 trading days prior to the record date to get the ex-dividend dates. 

For the options on the second group of stocks, the options selected are not subject to 

dividend payment and can be taken as the American call option on non-dividend-paying 

stocks; the underlying security prices are the daily closing prices of the securities and we 

do not need to take into account of dividends.  

3.3. Balance Sheet Information 

From the COMPUSTAT Annual database (collected as of June 10, 2007), from year 1996 
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to 2005, by CNUM (CUSIP Issuer Code), there are 95,769 single firm-year observations 

and 293 duplicate firm-year observations due to mergers. These duplicate firm-year 

observations have different values for each data item because they are different firms 

before the merger and acquisition. CNUM (CUSIP) is the only way to merge the 

COMPUSTAT database with IVY OptionMetrics. If firms are duplicates on CNUM, we 

cannot differentiate two (or more) firms by CNUM, we am not able to know which options 

belong to which firms. Therefore, we excluded those 293 duplicate records from the 

COMPUSTAT sample and the options written on these firms from the IVY OptionMetrics 

data sample. The 95,769 single firm-year observations from COMPUSTAT is composed 

of the following records: 1996: 10,604; 1997: 10,328; 1998: 10,654, 1999: 10,685, 2000: 

10,221, 2001: 9,645, 2002: 9,192, 2003: 8,899, 2004: 8,411, 2005:7130.  

 

The balance sheet information we collect from COMPUSTAT is the book debt outstanding. 

The debt to be matured in one year is defined as the sum of debt due in one year (Data 44: 

not included in current liabilities Data 5), the current liabilities (Data 5), the accrued 

expense (Data 153), the deferred charges (Data 152), the deferred federal tax (Data 269), 

the deferred foreign tax (Data 270), the deferred state tax (Data 271) and the notes payable 

(Data 206). The debt of maturity of the 2nd years is Data 91. The debt maturing in the 3rd 

year is the total of the reported debt maturing in the 3rd year (Data 92) and the capitalized 

lease obligation (Data 84). The debt of maturity of the 4th years is Data 93. The debt to be 

matured in the 5th year is the total sum of the reported debt maturing in the 5th year (Data 

92), the consolidated subsidiary (Data 329), the debt of finance subsidiary (Data 328), the 

mortgage debt and other secured debt (Data 241), the notes debt (Data 81), the other 

liabilities (Data 75) and the minority interest (Data 38). The debt categorized to be due in 

the 7th is either zero or the total of debentures (Data 82), the contingent liabilities (Data 

327), the amount of long-term debt on which the interest rate fluctuates with the prime 



18 
 

interest rate at year end (Data 148), and all the reported debt with maturity longer than 5 

years (Data 9 - Data 91 - Data 92 - Data 93 - Data 94).12 In addition, we delete firms whose 

convertible debt is (Data 79) more than 3% of total assets (Data 6) and/or finance 

subsidiary (Data 328) is 5% of total assets. Among all these annual data items, Data 5, 75 

and 9 are updated quarterly from the COMPUSTAT quarterly data file as Data 49 (Q), 54 

(Q) and 51 (Q). This structure of debt outstanding permits the computation of the daily 

duration of the corporate debt and the daily amount due at the duration date.  

 

In order to make sure that the key debt information is not missing from the COMPUSTAT 

data, we check Data 44, Data 9, Data 91 to Data 94. If all of the six data items are missing, 

then we do not include this company’s record. If only some of the data items are missing 

while others have positive values, then we set the missing items as zero and keep this 

company’s record. For the other data items besides the above six ones, if they are missing, 

we set them as zero. We also need to make sure that Data 25 (Common Shares Outstanding) 

is not missing, as the market leverage will be calculated on a per share basis. We exclude 

all utility firms (DNUM=49), financial and non-profit firms (DNUM60).  

3.4. Interest Rate and Discount Rate 

Estimating the present value of debt and duration requires estimates of the riskless interest 

rates and the discount rates. The riskless rate and discount rate appropriate to each option 

were estimated by interpolating the effective market yields of the two Treasury Bills of U.S. 

Treasury securities at 6-month, 1-, 2-, 3-, 5-, 7- and 10-year constant maturity from the 

Federal Reserve for government securities. The interest rate for a particular maturity  is 

computed by linearly interpolating between the two continuous rates whose maturities 

straddle.  

                                                 
12The mean duration of issued US corporate debt was 7 years (1982–1993). See Guedes and Opler (1996). 
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3.5. Characteristics of the Final Sample 

We divide the option data into several categories according to either term to option 

expiration or moneyness. Five ranges of time to expiration are classified:  

1. Very near term (21 to 40 days)  

2. Near term (41 to 60 days)  

3. Middle term (61 to 110 days)  

4. Far term (111 to 170 days)  

5. Very far term (171 to 365 days)  

Options with less than 21 days to expiration and more than 365 days to expiration were 

omitted.13 The five ranges of option maturity classification are set such that the numbers of 

each category are relatively even.  

 

The ratio of the strike price to the current stock price is defined as the moneyness measure. 

The option contract can then be classified into seven moneyness ranges:  

1. Very deep in-the-money (0.40 to 0.75)  

2. Deep in-the-money (0.75 to 0.85)  

3. In-the-money (ITM) (0.85 to 0.95)  

4. At-the-money (ATM) (0.95 to 1.05)  

5. Out-of-the-money (OTM) (1.05 to 1.15)  

6. Deep out-of-the-money (1.15 to 1.25)  

7. Very deep out-of-the-money (1.25 to 2.50)  

We omit options with a  ratio less than 0.40 or larger than 2.5 because their light trading 

frequency and thus possible non-synchronicity of trading. The coverage of the term to 

expiration and moneyness is the largest in all the literature on individual stock options. 

                                                 
13Rubinstein (1985) also used this practice. 
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After the dividend restrictions, the final sample is composed of nearly 3.5 million eligible 

individual stock call options on 1,683 firms.  

 

Table 1 describes the sample properties of the eligible individual stock call option prices. 

we report summary statistics for the average bid-ask mid-point price, the average effective 

bid-ask spread (i.e., the ask price minus the bid-ask midpoint), the average trading volume 

and the total number of options, for all categories partitioned by moneyness and term of 

expiration. Note that there are a total of 3,487,894 call option observations. ITM consists 

26.5% of the sample; ATM takes up 27.8% of the total sample and OTM consists 45.7% of 

the sample. There are almost twice as many OTM as ITM or ATM individual stock call 

options. The very near term ATM has the largest number per category (272,856).  

 

With the longer term to expiration, the average call option prices in all moneyness 

categories increase monotonically. With the larger ratio of K/S, the average call option 

prices in all terms of expiration categories decrease monotonically. The most expensive 

average option price is in the category of the very deep in-the-money and the very far 

expiration term options. The least expensive average option prices are from the deep and 

very deep out-of-the-money options and of the very near terms of expiration. Very deep 

in-the-money options (0.40 <= K/S<0.75) are the most expensive with the average price 

across all terms to expiration around $17.11 while very deep out-of-the-money (1.25 <= 

K/S<2.50) are the least expensive with the average price across all terms to expiration 

around $0.25. The average price of ATM options is $3.45.  

 

The average effective bid-ask spreads also decrease monotonically with the increase of  

from $0.22 to $0.08. The average effective bid-ask spreads are about $0.12 for all the terms 

of expiration. In fact, they do not vary too much across terms to expiration given any level 
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of moneyness.  

 

The very near term ATM options have the highest average trading volume 253.01 in 

contracts (on 100 shares). Across all terms to expiration, the ATM options have the 

average trading volume 150.61. ITM options’ average trading volumes are from 31.28 to 

80.00 and OTM options’ average trading volumes are from 68.89 to 132.47. The deeper the 

moneyness and the further the expiration terms are, the less the average trading volumes of 

the options are, which has been reported by the previous papers.  

 

Table 2 describes the distribution of options in each moneyness and term to expiration 

category for each year covered by the sample. From 1996 to 2003, the average number of 

options is around 320,000 per year. In 2004 and 2005, the average number is 450,000 per 

year. At the money options contain almost 30% the total options. The numbers of options 

decrease with respect to time to expiration and moneyness. This table also shows that in 

each category, we have sufficient amount for data to draw statistical conclusions.  

 

 

3.6. Final Inputs and Implementation 

As previously mentioned, we want to implement the models in a way that  i) does not give 

a model more parameters and thus an unfair advantage, and is ii) consistent with the data.  

These two implementation goals are related.  First, without a term structure of volatility, 

BS must fit all available options on any specific day for each strike price KJ and time to 

expiration T1i, with only 1 parameter estimate, the MATM equity implied volatility, σS.14  

Similarly, G must fit all the available option prices with two parameter estimates, V and σv.   

                                                 
14 See Appendix II, Table 3 from BCC where BCC dominates BS. 
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However, the more complex BCC models can fit these prices with either 9 parameter  

estimates for BCC’s best model, SVJ, 8 parameters for SVSI, and 5 parameters for SV.  It 

would be a surprise if a model with far fewer parameters could compete with a model with 

many more parameters.  It is not possible to implement BCC (or Pan) with a volatility term 

structure, but if it were possible BCC’s models would have an even greater parametric 

advantage.  Second, if the model is intended to value options of different maturities and the 

implementation is to be consistent with the data, then the option data and literature is 

unambiguous on the importance of a term structure of volatility.  Pan (2002) suggests that 

“to accommodate a richer term structure of volatility, one solution is to allow for multiple 

volatility factors”, which she (and many others, Duffie (2000)) have argued is necessary “if 

one is trying to price both short and long dated options”. 15    

 Thus, on each day we estimate only four volatilities to accommodate the term structure of 

volatility, using the MATM options with expiration closest to 25 days, 50 days, 100 days, 

and 160 days.  Since index options expire monthly on the third Friday of each month, this 

generally means the term structure of volatility will be constructed from options that have 

one month, two months, four months, and six months to expiration.  In the matched pair 

comparisons of the models each valuing the same matched options, we analyze the pricing 

errors by grouping all the options into the previously mentioned time buckets.   We use the 

four volatilities estimated for this term structure for all the options in each relevant group, 

and for the two longest expiration time buckets we use the same volatility parameter. 16     

BCC choose to model the underlying equity distributional complexity by adding additional 
                                                 
15 The numbers of articles are numerous and growing which show that both option price and volatility data 
suggest the importance of a term structure of volatility.  See Pan (2002), p. 32, especially footnote 29, for 
more references and details regarding the necessity of a term structure of volatility when pricing both short 
and long dated options.  The volatility term structure, like other term structures (c.f. interest rates or default 
probabilities), contains important information.  A term structure of model implied volatility is consistent with 
the market belief that the relevant risk is different for future time periods of exposure to different option 
expirations.  While this idea is quite intrinsic, the notion that risk exposure is different for options on the same 
underlying and same expiration but different strikes is neither intuitive nor consistent. 
16 The grouping follows Rubinstein (1985).  Longer expiration options have less daily volume across strikes. 
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stochastic processes, which increases the data requirements to test their model.  For 

example, BCC’s stochastic equity volatility process requires four additional parameters, 

while G obtains an implied stochastic equity process implicitly from the economics of 

leverage without any additional stochastic equity volatility process parameters.17  Thus, 

G’s model performs well with fewer explicit parameters because of the implicit ones.  

Now the importance of including BS in these model comparisons becomes more evident, 

because this allows us to conclude that it is leverage and not only the term structure of 

volatility that is important for the model differences.  We will see this clearly when we 

examine the model errors relative to the market prices for matched pairs of options for 

these models together on the same graphs and in tables.  Any observed differences between 

BS and G cannot be attributed to a term structure of volatility since both BS and G models 

have the exact same implementation, both using the same term structure buckets for 

volatility.  Thus, the observed differences between BS and G must be attributed to leverage, 

because if there is no leverage the two models would be identical.  In the same graphs, the 

comparison of BCC and BS shows that BCC is closer on average to the market prices, even 

though BS is using a volatility term structure.  So when leverage is added to the BS model 

already using a volatility term structure, and then BS becomes the G model, we now 

observe that BS with leverage (i.e. G) is on average much closer to the market prices than 

BCC.  Thus, it cannot be the term structure of volatility that causes the BS model to 

improve when leverage is added, and then BS becomes the G model and improves relative 

to BCC.  Instead this improvement must be due to the addition of leverage. 

                                                 
17 In Section 4’s discussion of the reasons for G’s improvements with so few additional parameters, recall 
that G has an implied stochastic equity process with stochastic equity volatility, negative volatility-return 
correlation, and the equity distribution has a fat left tail and thin right tail indicative of asymmetry (skew) and 
different kurtosis [more (less) mass left tail (right tail)] relative to the normal distribution, and the tail mass 
differentials change as the leverage changes.  Thus, for a given equity value, E, the probability of being above 
or below any give strike price is different for G relative to BS, and as E changes, for a fixed F, the leverage 
changes, and the volatility and shape of  G’s implied equity distribution changes. 
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As previously mentioned, the three versions of BCC models, SV, SVSI, and SVJ, and the 

four versions of Pan models, SV, SV0, SVJ0 and SVJ, have many additional parameters to 

be estimated for the stochastic processes assumed. To estimate these additional parameters 

it is necessary for BCC to use most of the options present on each day in order to find 

volatility that day that minimizes the sum of squared errors across all those options. Thus, 

in order for BCC’s parameter estimates to remain “out of sample", researchers typically 

estimate the required parameters from prices lagged one day, and then use the parameter 

estimates to price options the next day.  To estimate all the parameters for Pan’s model, one 

option per day is chosen for all the days in the sample and all options are pooled as one 

single set.  The option series is combined with a daily stock return set to set up the optimal 

moment conditions of return and volatility. The daily volatilities are implied from the daily 

options chosen. Pan specifically mentioned that by using her method, the complexity of a 

time dependency in the option-implied volatility due to moneyness and expiration is 

compromised. To compare Geske’s model with BCC and Pan’s models, we implement 

Geske’s model using the MATM term structure of volatility, we follow the BCC’s 

estimation technique by minimizing the sum of squared errors as described in Section 5,  

and we follow Pan’s estimation technique by using implied state–GMM as described in 

Section 6. Given the data and estimates described, we can now examine what improvement, 

if any, Geske’s leverage based option model may provide.  

4. Comparison with the Black-Scholes Models 

In this section, we start with Black-Scholes and present more details about the model 

comparison methodology, graphs of the model errors with respect to the option’s time to 

expiration and moneyness. Also presented are tables illustrating both the statistical and 

economic significance of the Black-Scholes errors and Geske’s improvements with respect 
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to moneyness and time to expiration by calendar year and by leverage.  

4.1. Model Pricing Error Comparison 

Figure 1 presents a graph of individual stock call option market prices, Black-Scholes 

model values, and moneyness, K/S, which is representative of most research findings for 

the individual stock call options.  

 

Black-Scholes model under values most in the money call options (low K) and overprices 

most out of the money call options (high K) on the individual stock. Since the individual 

stock level, S, is the same for all  at any point in time during or at the end of any day, as  

varies in Figure 1, ITM individual stock call options (low K) are shown to be under-valued 

and OTM individual stock call options (high K) are shown to be over-valued by the 

Black-Scholes model relative to the market prices.18  

 

Figure 1 shows that Geske’s compound option model has the potential to improve or even 

eliminate these Black-Scholes valuation errors because of the leverage effect. Leverage 

creates a negative correlation between the individual stock level and the individual stock 

volatility. This interaction between the individual stock level and individual stock 

volatility implies that the individual stock volatility is both stochastic and inversely related 

to the level of the individual stock, and that the resultant implied individual stock return 

distribution will have a fatter left tail and a thinner right tail than the Black-Scholes 

assumption of a normal return distribution. Thus, Geske’s compound option model 

produces option values that are greater (less) than the Black-Scholes’s values for in (out of) 

the money European individual stock call options, and could potentially eliminate the 
                                                 
18Figure 1 presents the most ubiquitous result. There are 15 different model distance comparisons: both over 
market, both under, one over while the other is under, one equal to the market while the other is either over or 
under, both equal to each other but either over or under, both equal to each other and equal to the market, and 
there are multiple cases for each situation when the models are not equal to each other.  
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known Black-Scholes bias.  

Figure 1 presents how we measure the amount of improvement Geske’s model provides for 

stock individual stock call options during this sample period. For each option, we calculate 

the compound model value and the Black-Scholes model value. The improvement of 

Geske’s compound option model compared to the Black-Scholes is calculated with the 

following formula:19  

BS error – CO error    =      (Market - BS)  -  (Market - CO)                             (7) 
            BS error                                   (Market - BS)  
 

We present this analysis for all matched pairs of options for a variety of categories with 

different times to expiration, different moneyness, and for the different market leverage 

exhibited during the sample time period. This is the first paper to report on Geske’s 

compound option model and its potential to correct these errors when used to price 

individual stock call options.  

4.2.  Error Significance by Year, Leverage, Expiration and Moneyness 

In the following tables, we present a more detailed analysis of the above results relating 

these ITM and OTM Black-Scholes pricing errors and Geske’s improvements to the 

option’s time to expiration by calendar year and by leverage. We also present the number 

of options available in these categories during this time period, and examine both the 

statistical and economic significance of Geske’s model relative to Black-Scholes. The 

ATM option region is considered to be within 5% of the individual stock price.  

 

Consider the number of matched pairs of traded ITM call options presented in Table 3 

Panel A. Year 1999, 2000, 2004 and 2005 contain 451,100 out of 923,353 total options, 

                                                 
19 Care must be taken with the sign of the variety of matched pair errors, especially if one model value 
distance is above and the other distance is below the market, when computing the average error across all 
matched pairs. However, the result depicted in Figures 1 is found for the vast number of all options. 



27 
 

which is about 50%. As expected, the table shows that ITM very near term to expiration 

category is traded more heavily than the far expiration ones in every year. The very near 

term to expiration category (21-40 days) contains 223,509 of the 923,353 total options, 

about 24%.  

 

Table 3 Panel B presents the net pricing error improvement of Geske’s model relative to 

Black-Scholes by calendar year for the various times to expiration for all ITM individual 

stock option matched pairs. The improvement of Geske’s model with respect to time to 

expiration varies on average across all leverages from 14% for shortest expirations  to 47% 

for longest expirations, and is strictly monotonic across all years.  The leverage effect is 

greater the longer the leverage has to act on the option. 

 

Next, consider the number of matched pairs of traded ITM call options presented in 

Table 4. Panel A presents the ITM individual stock call options by time to expiration and 

by debt/equity (D/E) ratio.20  The D/E ratio during this time period ranges between 0% and 

200%. Panel A shows that about 50% of this sample of ITM options traded when the D/E 

ratio ranged from 30% to 200%. Each option expiration category has at least 20% of the 

total options.  

 

Panel B presents the net pricing error improvement of Geske’s model relative to 

Black-Scholes by D/E ratio for the various times to expiration for all ITM call individual 

stock option matched pairs during this sample period. As in Table 3 Panel B, the 

improvement of Geske’s model with respect to time to expiration varies from 14% for 

shortest expirations to 47% for longest expirations, and is strictly monotonic across all 

                                                 
20 Note leverage is D/E, not D/V, and the model numbers are consistent with empirical data.  Also note that D 
is a pure discount bond and can never exceed the face value M.  We confirmed this empirically.   
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ranges of leverage. Relative to Black-Scholes, the improvement of Geske’s model’s 

increases with the D/E ratio monotonically across time to expiration. From the lowest D/E 

category to the highest D/E category, the improvement increase from an low of 4% for the 

shortest expiration lowest leverage category to a high of 96% for the longest expiration 

highest leverage category.21   

 

Table 5 presents similar data to Table 3 for out of the money (OTM) individual stock call 

options. First consider the number of traded individual stock calls presented in Table V 

Panel A for OTM options. Panel A shows the most active trading years for OTM individual 

stock options during the sample period are 2000, 2001, 2004 and 2005. Each option 

expiration category has about 20% of the total options.  

 

Table 5 Panel B demonstrates that Geske’s compound option model’s pricing error 

improvement for each year. Almost monotonically for every time to expiration, the 

improvement of Geske’s model with respect to time to expiration varies from 49% for near 

term expirations to 65% for longest expirations, and is strictly monotonic across all years 

and ranges of leverage. Year 1996, 1997, 1999, 2000 and 2005 exhibit more than 70% 

pricing error improvement and the smallest yet substantial improvement around 30% 

happen in the year 2002 and 2003. Similar patterns also can be found in the Table 3 

and  4’s Panel Bs for ITM individual stock options.  

 

Table 6 presents similar data to Table 4 for OTM individual stock call options. First 

consider the number of traded individual stock calls presented in Table 6 Panel A for OTM 

options. Panel A shows that about 50% of this sample of OTM options traded when the 

                                                 
21 Thus, as the D/E ratio declines, G becomes similar to BS, especially for near term options.  Also ratings and 
D/E ratios are not perfect substitutes since low (high) rated firms can have a low (high) D/E ratio.   
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D/E ratio ranged from 30% to 200%. 22% of options have D/E ratios from 30% to 60%, 

and 20% of options have D/E ratios higher than 60%. Each option expiration category has 

about 20% of the total options.  

 

Table 6 Panel B demonstrates that Geske’s compound option model’s improvement also 

increases with the D/E ratio, almost monotonically for every time to expiration, the 

improvement of Geske’s model with respect to time to expiration varies from 49% for 

shortest expirations to 65% for longest expirations, and is strictly monotonic across all 

years and ranges of leverage. Relative to Black-Scholes the improvement of Geske’s 

model’s increases with the D/E ratio almost monotonically for every time to expiration 

from 20% to 83%.  

 

4.3. Alternative Testing 

We also tried a different volatility methodology of basing the aggregate net pricing errors 

and improvement of Geske’s model compared to Black-Scholes on the volatility that 

minimizes the sum of squared errors. We find that this does not change the characteristics 

of the results. This result is not surprising because finding the volatility that minimizes the 

sum of squared errors moves the “pricing volatility” away from ATM toward either the 

ITM or OTM and this will exhibit a more than off-setting effect.22  

 

4.4. Statistical Significance 

Here we use non-parametric statistics to test the significance of the differences between 

Black-Scholes and Geske’s model. As can be seen in Table 3 and 4 Panel C for ITM 

                                                 
22 This is discussed in more detail in Appendix I. 
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options and Table 5 and 6 Panel C for OTM options, we find Geske’s model improvements 

are all significant at -value smaller than the 0.001% by rank-sum test.  

The rank-sum test (also called Wilcoxon test or Mann-Whitney test) is a nonparametric or 

distribution-free test which does not require any specific distributional assumptions. We 

first list all observations from both samples in a increasing order, label them with the group 

number, create a new variable called “rank". For ties, we give them the same rank. Then we 

sum up the ranks for each group. The sum of the ranks is called T.  

 

The test statistics is Z – statistic = [T – Mean(T)]/SD(T), Where T : the sum of the ranks, 

Mean (T ):  n times the mean of the whole (combined) sample, SD(T): the standard 

deviation of Mean (T ). A p-value is the proportion of values from a standard normal 

distribution that are more extreme than the observed Z -statistic. The p-values which are all 

0 lead us to conclude that there is significant difference between Black-Scholes and 

Geske’s model.  

 

We also did other non-parametric tests: signed rank test, sign test and Kruskal-Wallis test 

(for two independent samples, i.e. Mann-Whitney  U Test). All of them yield the same 

results that Geske’s model improvements are all significant at p -value smaller than the 

0.001% for all terms to expiration and calendar years and leverage ratios.  

5. Comparison with Bakshi, Cao and Chen (1997) 

In this section, we present more details about the model comparison methodology, graphs 

of the model errors with respect to the option’s time to expiration and moneyness.  Also 

included are tables of the statistical and economic significance of the Bakshi, Cao and 

Chen’s SV, SVSI and SVJ errors and Geske’s improvements with respect to moneyness 

and time to expiration by calendar year and by leverage.  
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5.1. BCC Description and Structural Parameter Characteristics 

To conduct a comprehensive empirical study on the relative advantages of competing 

option pricing models, we further compare Geske’s model with the three competing BCC 

models: the stochastic-volatility (SV) model, the stochastic-volatility and 

stochastic-interest-rate (SVSI) model, and the stochastic-volatility random-jump (SVJ) 

models (Bakshi, Cao and Chen (1997)).  These models relax the log-normal stock return 

distributional assumptions and do correct some of the bias of the Black-Scholes model. 

The implicit stock return distribution is negatively skewed and leptokurtic.  

 

To derive a close-form jump diffusion option pricing model, BCC specify a stochastic 

structure under a risk-neutral probability measure. Under this measure, the dynamics of 

stock return process, the volatility process and the interest rate process are:  

)()()()(])([
)(
)( tdqtJtdwtVdttR

tS
tdS

SJ ++−= λμ                                            (8)  (

)()()]([)( tdwtVdttVtdV vvvv σκθ +−=                                                          (9) 

)](1ln[ tJ+ ~ ),
2
1])1(ln[ 22

JJJN σσμ −+                                                             (10) 

)()()]([)( tdwtRdttRtdR RRRR σκθ +−=                                                        (11) 

 

whereas )(tR  is the instantaneous spot interest rate; λ  is the jump frequency per year;  Jμ

is the mean relative jump size; V(t) is the diffusion component of return variance 

(conditional on no jump occurring); )(),( tt vS ωω is standard Browning motion with 

correlation ρ ; )(tq  is a Poisson jump counter with intensity λ ; vκ is the mean-reversion 

rate of the  process;  vθ / vκ  is the long-run mean of the V(t) process; vσ   is the variation 

coefficient of the diffusion volatility V(t);  )(tJ  is the percentage jump size (conditional on 
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a jump occurring) that is the iid  distributed with mean  Jμ  and variance 2
Jσ ;  Jσ  is the 

standard deviation of )](1ln[ tJ+ ;  Rκ  is the mean-reversion rate of the R(t) process;  Rθ /

Rκ  is the long-run mean of the R(t) process; Rσ  is the variation coefficient of the R(t)  

process.  

 

Under the risk-neutral measure, the option price is a function of the risk-neutral 

probabilities recovered from inverting the respective characteristic functions. For detailed 

expression, please refer to Bakshi, Cao and Chen (1997).  

 

The SV model is by setting  λ =0 and Rθ = Rκ = Rσ =0. The SVSI model is by setting λ =0. 

The SVJ model is by setting Rθ = Rκ = Rσ =0.  The SV model assumes that there exists a 

negative correlation between volatility and spot asset returns and the volatility follows a 

stochastic diffusion process. The negative correlation produces the skewness and the 

variation coefficient of the diffusion volatility controls the variance of the 

volatility–kurtosis. The SVJ model assumes that the discontinuous jumps causes negative 

skewness and high kurtosis. SVSI model assumes that the interest-rate term structure is 

stochastic to reduce the pricing error across option maturity. This is not related to the 

implicit stock return distribution, but to improve the valuation of future payoffs. All three 

models are implemented by backing out daily, the spot volatility and the structural 

parameters from the observed market option prices of each day.  

 

In order to measure the latent structural parameters of the SV, the SVSI and the SVJ 

models, we adopt the Bakshi, Cao and Chen (1997)’s approach method of minimizing the 

sum of squared dollar pricing errors. We collect all the options for a firm in one day, for 

any option number greater or equal to one plus the number of parameters to be estimated. 
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For each option with a term to expiration and strike price, we calculate the model price. 

The difference between the model price and the market price is the dollar pricing error. 

Then we sum all the squared dollar pricing errors as the objective function to minimize to 

imply the latent structural parameters and the volatility.  In implementing the above 

procedure, we first use all individual stock call options available for each firm on each 

given day, provided that the option number is greater or equal to the one plus the number of 

parameters to be estimated, regardless of maturity and moneyness, as inputs to estimate the 

latent structural parameters and the volatility.  

 

Table 7 reports that daily average and the standard error of each latent parameter and 

volatility, respectively for the BS, and BCC’s SV, SVSI and SVJ models. The first 

observation is that the implied spot volatility is quite different among the four models. The 

BS model has the highest implied volatility (55%), which is not so different from the 

second highest SV and SVSI implied volatilities (52%), while SVJ model has the lowest 

implied volatility (49%).  

 

The second observation is that the estimated structural parameters for the spot volatility 

process differ across the SV, the SVSI, and the SVJ models. Note that all the three models 

have the similar estimated vκ , the implied speed-of-adjustment vθ , which is around 1.67. 

The SV, SVSI and SVJ models have  estimates that are not significant, indicating the 

long-run mean of the diffusion volatility is ignorable. Recall that in the SV model, the 

skewness and kurtosis levels of stock returns are controlled by the correlation ρ and 

volatility variation coefficient vσ . The variation coefficient vσ   is significant for all three 

models and is the highest for SV model, followed by SVSI model and the lowest for SVJ 

model. The magnitudes of correlation ρ   are similar for all three models, around  and 
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significant. Rθ  is significant for the SVSI models while the speed of adjustment of interest 

rate Rκ  and the interest variation coefficient  Rσ  are not significant. For the SVJ models, 

none of the four parameters are significant: the jump frequency per yearλ , the mean 

relative jump size Jμ , the standard deviation   Jσ and the instantaneous variance of the 

jump components JV .   For the SV model, the variation coefficient vσ  and the correlation 

ρ  seem to control the skewness and kurtosis levels of stock returns more strongly. For the 

SVSI model, the variation coefficient vσ  and the correlation ρ  seem to control the 

skewness and kurtosis levels of stock returns, along with the additional flexibility provided 

by Rθ .  For individual stock returns, the SVJ model allowing price jumps to occur, should 

absorb more negative skewness and higher kurtosis without changing the stochastic 

volatility parameters too much.  It is true that the stochastic volatility parameters do not 

change too much for the SVJ model, but the jump parameters’ insignificance has led us to 

conjecture that for the individual stock option pricing, the SVJ model may not perform as 

well as a stochastic equity volatility model based on the leverage as the economic reason 

for the negative correlation between the volatility and the individual stock price.  

5.2. Pricing Error Analysis of G vs. BS, and BCC’s SV, SVSI and SVJ 

In order to show that the implied implementation method is not the only reason for 

dominance of the leverage model, Table 8 and 9 report the out-of-sample absolute and 

relative pricing errors using BCC’s technique.  To generate the out-of-sample result, for a 

given model, we compute the price of each option using the previous day’s implied 

parameters.   

To be more specific, for the BS model, we use the one-day-lagged volatility to calculate 

current day’s price.  For the SV, SVSI and SVI models, we lagged the set of parameters by 

one day for each day of each firm, and we use this lagged set of parameters to calculate 
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current day’s model prices. For the G model, we lagged vσ –the volatility of the return of 

the market firm value by one day.  In order to calculate the model price, given the vσ , we 

obtain current day’s firm value V by solving the Merton’s equation in which S is an option 

on the firm value. We also solve for  through the  boundary equation. Then we further use 

the set of V, *V  and  vσ  to calculate today’s model price. (See Appendix 1) 23   

 

Out-of-sample Geske’s model has the lowest absolute pricing errors and the lowest relative 

pricing errors for most of the moneyness and terms-to-expiration categories, indicating the 

best fit. The second best is the SVJ model overall, and the SV and SVSI are similar in terms 

of the absolute pricing errors, but the SV model has lower relative pricing errors than those 

of the SVSI models. The BS model has the worst absolute and relative pricing errors, 

indicating that incorporating stochastic volatility does produce the most significant 

improvement over the BS model, lending validity of the stochastic models. Averaging the 

whole sample, the absolute pricing error for G is $0.04, for SV is around $1.00, for SVSI 

and SVJ is around $1.50 and for BS is around $1.30. For the whole sample average, the 

relative pricing error for G is around 0.4%, for SVJ is around 50% and for SV and SVSI are 

around 100%, and for BS is higher than 150%.  

 

For options on individual stocks, both pricing error measures rank the G model first and it 

is far better than the rest of the models, the SVJ as the second, the SV and the SVSI the 

third and the BS model the last. The SV, SVSI and SVJ model price OTM individual stock 

call options far worse than ITM individual stock call options, but SVJ does surpass SV and 

SVSI in pricing OTM options.  

                                                 
23Notice here the BS and G model parameters are not implied as preferred but are calculated by minimizing 
sum of squared errors, to show that G’s superiority is independent of implementation.   
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5.3. Graphs of Errors with respect to Time to Expiration 

Figure 2/ 3 presents the absolute/relative pricing errors for all models of in-the-money 

individual stock options. The average is across all strike prices for the same time to 

expiration. Here G is shown to be superior to the BS, SV, SVSI and SVJ models. For the 

absolute pricing errors, G is always less than $0.50, SVJ and SVSI is from $1.00 to $2.00, 

SV is from $1.00 to $3.00 and BS is from more than $1.00 to as high as $5.00. For the 

relative pricing errors, G is always less than 0.05, SVJ and SVSI is from 0.10 to 0.20, SV is 

from 0.10 to 0.30 and BS is from more than 0.20 to as high as 0.50.  

 

Figure 4/ 5 presents the absolute/relative pricing errors for all models of out-of-the-money 

individual stock options. The average is across all strike prices for the same time to 

expiration. G is again shown to be superior to the BS, SV, SVSI and SVJ models. For the 

absolute pricing errors, G is always less than $0.50, SVJ and SVSI is from $1.00 to $2.00, 

SV is from $1.00 to $3.00 and BS is from more than $1.00 to as high as $6.00. For the 

relative pricing errors, G is always less than 0.25 (25%), SVJ and SVSI is from 1.5 to 2, SV 

is from 2 to 2.5 and BS is from more than 3.25 to 4.  

5.4. Graphs of Errors with respect to Moneyness 

Figure 6/ 7 presents the absolute/relative pricing errors for all models of in-the-money 

individual stock options. The average is across all strike prices for the same moneyness. 

Here G is shown to be superior to the BS, SV, SVSI and SVJ models. For both 

absolute/relative pricing errors, G is closest to the market price and is far below the rest, 

indicating the best fit. SV, SVSI and SVJ cluster in the middle while BS’s line is far above.  

Figure 8/ 9 presents the absolute/relative pricing errors for all models of out-of-the-money 

individual stock options. The average is across all strike prices for the same moneyness. G 
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is again shown to be superior to the BS, SV, SVSI and SVJ models. Similar to 

in-the-money options, but in even more prominent ways, for both absolute/relative pricing 

errors, G is closest to the market price and is far below the rest, indicating the best fit. SV, 

SVSI and SVJ cluster in the middle while BS’s line is far above.  

5.5. Economic Significance of G Improvements Compared to BS, and BCC’s 

SV, SVSI and SVJ models 

In this section, we report the economic significance24 of G’s improvements for ITM in 

Table 10 and Table 11. We report the economic significance of G’s improvements for 

OTM in Table 12 and Table 13. Tables 10 to Tables 13 show results when G’s model is 

compared to BS, SV, SVSI and SVJ models on three dimensions: i) by the number of 

matched pairs that G is a closer absolute distance to the market price, ii) by the dollar value 

of this G’s improvement, and iii) by the basis points (bp) that G’s improvement implies for 

an option portfolio. These comparisons are categorized by both calendar year and by 

leverage.  

 

First, consider Table 10 comparing G, BS, SV, SVSI and SVJ models for ITM options. The 

columns left to right represent the year, the present value of all ITM matched pairs for that 

year, the total number of the matched pairs that year, the number of those matched pairs 

where an alternative model price is closer to the market price in absolute distance, the 

number of matched pairs where the G model price is closer to the market price, the dollar 

value of the alternative model price improvement, the dollar value of G improvement, and 

the net basis point advantage of G’s model for that year.  

 

                                                 
24Economic improvement (bp) herein is relative to the model not the market, and thus “beating the market" is 
not being tested. Furthermore, economic improvement is based on a portfolio of one of each option per day 
when the actual daily volume experienced by market makers (or dealers) is greater. 
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Table 11 presents the same information categorized by the D/E ratio instead of by year, 

where D/E ranges from 0-200%. The totals for each column and each row are also 

presented.  

 

The total number of ITM matched pairs of options is presented in Table 10. Geske’s model 

is closer to the market price than the Black-Scholes model for 340,208 of these ITM 

matched pairs and Black-Scholes is closer on 145,429 pairs. The G model is closer to the 

market price than the SV/SVSI model for 209,916/210,462 of these ITM matched pairs and 

SV/SVSI is closer on 41,037/40,492 pairs. The G model is closer to the market price than 

the SVJ model for 169,754 of these ITM matched pairs and SVJ is closer on 81,195 pairs. 

Notice that the total numbers are different for BS and for SV, SVSI and SVJ model prices. 

This is because the matched SV, SVSI and SVJ pairs are calculated from a set of options 

whose number is equal or greater than 9 because of the number of parameters to be 

estimated while the number of options to estimate BS model is equal or greater than 6. 

Thus the number of matched pairs of the BS model is larger the number of matched pairs of 

the SV, SVSI and SVJ models.  

 

In the following we explain in more detail the computation of the dollar and basis point 

improvement. More specifically, dollar improvement for each model is measured by 

considering all those matched pairs where a specific model is closer to the market price 

than the alternative model in absolute distance measured in dollars. The basis point 

advantage of Geske’s model is then computed by dividing the net dollar improvement for 

that year or leverage category by the total value of options in that category. For example, in 

Table 10, across the sample years 1996-2005 the Geske’s compound option model has a 

total dollar improvement of $611,870.16 and Black-Scholes has a dollar improvement of 

$19,990.32. Thus, the net dollar improvement of Geske’s model is $591,879.84, and that 
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divided by the total value of each option in this ITM portfolio, $3,972,966.56, produces the 

1490 net basis point improvement.  

 

Table 10 shows that by G being closer to the market price than BS on 70% of the ITM 

option matched pairs results in a basis point (bp) net improvement of on average 1490 bp 

for ITM options in an one of each option portfolio of options. The bp improvement are 

1153 for SV, 1044 for SVSI and 705 for SVJ models. These numbers are calculated by 

constructing a one of each option portfolio containing one option for each strike price and 

time to expiration for each day and finding the market value of that one of each option 

portfolio each day for all days in a year. The basis point and dollar value improvements 

would generally be much larger for professionals who do not hold a one of each option 

portfolio, but instead hold all options in multiple amounts based on each dealer’s share of 

the daily volume. Each option at a specific strike price and time to expiration generally has 

a much larger volume of trading which professionals will capture.  

In Table 11, while the percentage pricing error of G’s improvement relative to BS is 

monotonic in leverage as demonstrated Table 4 and Table 6, basis point improvement need 

not be since this depends on the dollar value of the options.  

 

Next, consider Table 12 comparing G, BS, SV, SVSI and SVJ models for OTM options. 

The columns left to right represent the year, the present value of all OTM matched pairs for 

that year, the total number of the matched pairs that year, the number of those matched 

pairs where an alternative model price is closer to the market price in absolute distance, the 

number of matched pairs where the G model price is closer to the market price, the dollar 

value of the alternative model price improvement, the dollar value of G improvement, and 

the net basis point advantage of G’s model relative to all the other models for that year.  
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Table 13 presents the same information categorized by the D/E ratio instead of by year, 

where D/E ranges from 0-200%. The totals for each column and each row are also 

presented.  

 

The total number of OTM matched pairs of options is shown in Table 12. Geske’s model is 

closer to the market price than the Black-Scholes model for 540,870 (70%) of these OTM 

matched pairs and Black-Scholes is closer on 227,871 pairs. The G model is closer to the 

market price than the SV/SVSI model for 358,553/346,300 (90%) of these OTM matched 

pairs and SV/SVSI is closer on 41,156/53,411 pairs. The G model is closer to the market 

price than the SVJ model for 285,086 (70%) of these OTM matched pairs and SVJ is closer 

on 114,621 pairs.  

The net dollar improvement of G’s model is 1, 257, 142.33−43, 403.70 = 1, 213, 738.63, 

and that divided by the total value of each option in the OTM portfolios $1,240,907.82 

produces a 9781 basis point improvement. Table 11 shows that by G being closer to the 

market price than BS in a basis point net improvement of on average 9781 bp for OTM 

options in a one of each option portfolio of options. The basis point improvement are 8504 

for SV, 6573 for SVSI and 5470 for SVJ models.  

 

In Table 13, while the percentage pricing error of G’s improvement relative to BS is 

monotonic in leverage as demonstrated Table 4 and Table 6, basis point improvement need 

not be since this depends on the dollar value of the options.  

In this section we have demonstrated the considerable economic improvement of G’s 

model relative to the BS, SV, SVSI and SVJ models for pricing the individual stock 

options. We have shown that the data necessary to implement G model for valuing 

individual stock options are readily available. In the next section, we compare Geske to 

Pan’s (2002) models.  
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6. Comparison with Pan (2002) 

6.1. Pan Description and Structural Parameter Characteristics 

Pan (2002) extends the models of  Heston (1993) and  Bates (2000) by estimating the 

volatility and jump risk premia imbedded in options.  Pan (2002) examines the joint time 

series of the S&P 500 index and near-the-money short-dated option prices with an 

arbitrage-free model which prices all three risk factors, including the volatility risk and the 

jump risk. An important feature of the jump-risk premium considered in Pan's model as 

compared with BCC's model is that the jump-risk premium is allowed to depend on the 

market volatility: when the market is more volatile, the jump-risk premium is higher. 

 

Under the physical measure P , the dynamics of ),,,( qrVS  are of the form  

dtVSdZdWSVdtSVVqrdS ttttttttt
s

ttt λμμμλη −++−++− (1)* )]([=    (12) 

)1()(= (2)2(1)
tttvtvt dWdWVdtVvdV ρρσκ −++−                                (13) 

)()(= r
ttrtrt dWrdtrrdr σκ +−                                                                  (14) 

)()(= q
ttqtqt dWqdtqqdq σκ +−                                                               (15) 

 

Under the risk-neutral measure Q , the dynamics of ),( VS  under Q  are of the form  

dtVSdZQdWSVdtSqrdS tt
Q
ttttttt

Q
t λμ*(1) )(][= −++−                               (16) 

))(1)(()(= (2)2(1) QdWQdWVdtVVvdV tttvt
v

tv
Q

t ρρσηκ −+++−             (17) 

 Under the risk-neutral measure, the option price is a function of the risk-neutral 

probabilities recovered from inverting the characteristic functions. 
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The notation is as the following: vκ , rκ  and qκ  are the mean-reversion rates; v , r  and q  

are the constant long-run means; vσ , rσ  and qσ  are the volatility coefficients; ρ  is the 

correlation of the Brownian shocks to price S  and volatility V ; λ  is the constant 

coefficient of the state-dependent stochastic jump intensity tVλ ; μ  is the mean jump size 

under the physical measure; sη  is the constant coefficient of the return risk premium; vη  

is the constant coefficient of the volatility risk premium; *μ  is the mean jump size of the 

jump amplitudes SU  under the risk-neutral measure; Jσ  is the variance of the jump 

amplitudes SU  under the risk-neutral measure; r  is a stochastic interest-rate process; 

TWWW ],[= (2)(1)  is an adapted standard Brownian motion in P ; 

TQWQWQW )](),([=)( (2)(1)  is an adapted standard Brownian motion in Q ; Z  is a 

pure-jump process in P ; )(QZ  is a pure-jump process in Q ; )(rW  and )(qW  are 

independent adapted standard Brownian motions in P , independent also of W  and Z . 

 

The no-risk premia SV0 model is obtained by setting 0=λ  and 0=vη . The volatility-risk 

premia model SV is obtained by setting 0=λ . The jump-risk premia SVJ0 model is 

obtained by setting 0=vη . SVJ denotes the volatility and jump risk premia model. 

 

Using Pan (2002) 's notation, under the risk neutral probability measure Q , the jump 

arrival intensity is { 0: ≥tVtλ } for some non-negative constant λ  and the jump 

amplitudes S
iU  is normally distributed with Q -mean *

Jμ  and Q -variance 2
Jσ . 

Conditional on a jump event, the risk-neutral mean relative jump size is 

1/2)(=1))((= 2** −+− JJ
SQ expUexpE σμμ . By allowing the risk-neutral mean relative 
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jump size *μ  to be different from its data generating counterpart μ , Pan accommodates a 

premium for jump-size uncertainty. All jump risk premia will be artificially absorbed by 

the jump-size risk premium coefficient *μμ − . The time- t  expected excess stock return 

compensating for the jump-size uncertainty is )( *μμλ −tV . The linear specification Vλ  

of jump-arrival intensity is to allow for a state-dependent jump-risk premium; when the 

market is more volatile, the jump-risk premium implicit in option prices becomes higher. 

 

Because options are non-linear functions of the state variables ),( VS , the joint dynamics 

of the market observables nS  and nC  are complicated. In order to take advantage of the 

analytical tractability of the state variables ),( VS , Pan proposed an ``implied-state" 

generalized method of moments (IS-GMM) approach. For any given set of model 

parameters θ , a proxy θ
nV  for the unobserved volatility nV  can be obtained by inverting 

),(= θθ
nnn VfSC . Given the parameter-dependent θ

nV , according to  Duffie, Pan and 

Singleton (2000), the affine structure of ),( VlnS  provides us a closed-form solution for the 

joint conditional moment-generating function, from which we can calculate the joint 

conditional moments of the stock return and volatility up to any order. For example, in  Pan 

(2002) 25, she uses seven moments: the first four conditional moments of return, the first 

two conditional moments of volatility and the first cross moments of return and volatility. 

These conditional moments are used to build moment conditions. In this paper, for each 

firm, we first imply the volatility by inverting ),(= θθ
nnn VfSC , then we construct the 

seven moment conditions as performed by  Pan (2002) and use the standard GMM 

estimation procedure afterwards to estimate the parameters. Each firm has a unique set of 

parameters. 

                                                 
25For detailed information on how to implement the IS-GMM, please refer to  Pan (2002) . 
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Following  Pan (2002), for each day of each firm, we first sort the options by time to 

expiration nτ . Among all available options, we select those with a time to expiration that is 

larger than 15 calender days and as close as possible to 30 calendar days.26 From the pool 

of options with the chosen time to expiration, we select all options with a strike price K  

nearest to the stock price S  of this firm on this day. If a day has multiple calls selected, 

then one of these calls will be chosen at random. The combined time series },{ nn CS  is 

synchronized. The sample mean of nτ  is 34 days, with a sample standard deviation of 14 

days. The sample median of nτ  is 32 days. The sample mean of the strike-to-spot price 
S
K  

ratio is 1.014, with a sample standard deviation of 0.08134. The sample median of 
S
K  is 

1.010. 

 

Given the selected near-the-money and short-dated options, for all four models, we adopt 

Pan's IS-GMM method and perform joint estimations of the actual and risk-neutral 

dynamics using the time series },{ nn CS  of the individual stock options. The estimation 

results are reported in Table 14.  Similar to BCC's Table 7, the mean reversion rate vκ  is 

significant across all models, the constant long-run mean v  is not significant except for 

SVJ0 and the volatility coefficient vσ  is significant. The correlation coefficient ρ  is 

significant and it is almost the same as BCC's estimate, which is around 0.60− . sη  is the 

constant coefficient of the return risk premium and vη  is the constant coefficient of the 

volatility risk premium. sη  is only significant for the no-risk premia model SV0. vη  is not 

significant for SV or SVJ models. And also similar to BCC, except the jump intensity 

                                                 
26If the closest time to expiration is longer than 90 days, then it is not included in the sample. 
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coefficient λ , the mean and the variance of the jump sizes are not significant. The 

similarity of both sets of parameters shows the limitation in the current jump process 

assumption for stock returns of individual stocks. 

 

6.2 Pricing Error Analysis of G vs. Pan’s SV0, SV, SVJ0, and SVJ 

Given these estimated parameters and the implied daily volatility for each firm, we further 

solve for the model prices of SV0, SV, SVJ0 and SVJ models in Pan’s paper. we compared 

these prices with the those computed using Geske’s model(from the ATM calibration as in 

Section 4) to find about Geske’s improvements over Pan’s SV0, SV, SVJ0 and SVJ model 

prices with respect to moneyness and time to expiration. For both the absolute/relative 

pricing errors for all models of in-the-money and out-of-the-money individual stock 

options, G is significantly superior to the SV0, SV, SVJ0 and SVJ models.  

6.3. Graphs of Errors with respect to Time to Expiration 

Figure 10/ 11 presents the absolute/relative pricing errors for all models of in-the-money 

individual stock options. The average is across all strike prices for the same time to 

expiration. Here G is shown to be superior to Pan’s SV0, SV, SVJ0 and SVJ models. For 

the absolute pricing errors, G is always less than $0.50, SVJ is from $0.50 to $1.00, SV0 

and SV is from $0.50 to $2.00 and SVJ0 is from more than $1.30 to $1.70. For the relative 

pricing errors, G is always less than 0.05, SVJ is from 0.10 to 0.30, SV0 and SV is from 

0.06 to 0.30 and SVJ0 is from more than 0.18 to as high as 0.58.  

 

Figure 12/ 13 presents the absolute/relative pricing errors for all models of 

out-of-the-money individual stock options. The average is across all strike prices for the 

same time to expiration. G is again shown to be superior to Pan’s SV0, SV, SVJ0 and SVJ 

models. For the absolute pricing errors, G is always less than $0.50, SV0 and SV is from 
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$0.60 to $4.00, SVJ is from $1.80 to $4.50 and SVJ0 is from more than $2.80 to as high as 

$4.80. For the relative pricing errors, G is always less than 0.25 (25%), SV0 and SV is from 

0.25 to 0.85, SVJ0 and SVJ is from 1.00 to 2.00.  

 

6.3. Graphs of Errors with respect to Moneyness 

Figure 14/ 15 presents the absolute/relative pricing errors for all models of in-the-money 

individual stock options. The average is across all strike prices for the same moneyness. 

Here G is shown to be superior to the SV0, SV, SVJ0 and SVJ models. For both 

absolute/relative pricing errors, G is closest to the market price and is far below the rest, 

indicating the best fit.  

 

Figure 16/ 17 presents the absolute/relative pricing errors for all models of 

out-of-the-money individual stock options. The average is across all strike prices for the 

same moneyness. G is again shown to be superior to the SV0, SV, SVJ0 and SVJ models. 

Similar to in-the-money options, but in even more prominent ways, for both 

absolute/relative pricing errors, G is closest to the market price and is far below the rest, 

indicating the best fit.  

6.4. Summary 

In this section, we have demonstrated that Geske’s G model is also superior to Pan (2002)’s 

SV0, SV, SVJ0 and SVJ models. we again show that existing market leverage is both 

statistically and economically important to pricing the individual stock options. Therefore 

it is paramount to separate the economic effects of stochastic leverage and its induced 

stochastic volatility from any other assumed stochastic effects. Leverage is always present 

in the market and leverage has now been shown to be important to pricing individual stock 
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options. Thus, if leverage is not properly treated prior to modeling other assumed 

stochastic effects, then the estimated parameters will be inaccurate because of the omitted 

variable.  

 

7. Conclusions 

In this paper, we present the first empirical evidence that Geske’s compound option model 

can be used to imply the market value of the firm and thus the firm’s debt.  We show that 

this can be accomplished simply and parsimoniously with contemporaneous, liquid market 

prices for the equity and an options on the equity.  We demonstrate with a very large 

sample (ten years with over 11,500 firms and over 2.5 million options) that Geske’s model 

prices individual stock options better than the Black-Scholes (1973), Bakshi, Cao, and 

Chen (1997), or Pan (2002) models.  Geske’s model takes the theory of option pricing 

deeper into the theory of the firm by incorporating the effects of leverage consistent with 

Modigliani and Miller. Geske’s model imbeds a stochastic process for the stock which 

characterizes how debt causes the individual stock risk to change stochastically and 

inversely with the equity price level.  This paper demonstrates that this improvement is 

both statistically and economically significant for all strikes and all times to expiration.  

This paper also shows, as expected,  that the improvements are greater the longer the time 

to expiration of the option, and the greater the market leverage in each firm.  Finally, we 

show that while G’s model is more parsimonious than the other competing option models 

which omit leverage, but incorporate many more parameters for stochastic processes for 

volatility, interest rates and jumps.  We also have implemented G using a method similar to 

BCC by finding the volatility in each term structure bucket that minimizes the sum of 

squared errors of out of sample option prices from the previous day to demonstrate that G’s 

performance is independent of using only contemporaneous ATM options. G’s 
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performance is better for both in and out-of-sample pricing, and avoids the criticisms of 

Ericsson and Reneby (2005).  However, we would be remiss in not noting that after 

including leverage there is still room for improvement, and perhaps by also incorporating 

jumps or stochastic volatility at the firm level would result in an even better  model. 
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Figure  1:  The Pricing Errors of Geske (G) and Black Scholes (BS) Model Prices. 
Black-Scholes model underprices most in the money call options (low K) and overprices 
most out of the money call options (high K) on the individual stock. ITM individual stock 
call options (low K ) are shown to be under valued and OTM individual stock call options 
(high K ) are shown to be over valued by the Black-Scholes model relative to the market 
prices. Geske's compound option model produces option values that are greater (less) than 
the Black-Scholes's values for in (out of) the money European individual stock call options, 
and could potentially eliminate the known Black-Scholes bias. 
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Figure  2:  The Absolute Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
Model Prices of Call ITM vs. Time to Expiration.                                                                            

  

 
 
 

Figure  3:  The Relative Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
Model Prices of Call ITM vs. Time to Expiration. 
 

 
 

Figure  4:  The Absolute Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
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Model Prices of Call OTM vs. Time to Expiration.  
 

 
 
 

Figure  5:  The Relative Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
Model Prices of Call OTM vs. Time to Expiration. 
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Figure  6:  The Absolute Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
Model Prices of Call ITM vs. Moneyness. 

  

 
  
 

Figure  7:  The Relative Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
Model Prices of Call ITM vs. Moneyness.  
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Figure  8:  The Absolute Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
Model Prices of Call OTM vs. Moneyness. 

  

 
 

  
Figure  9:  The Relative Pricing Errors of G, BS, and BCC’s SV, SVSI and SVJ 
Model Prices of Call OTM vs. Moneyness. 
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Figure  10:  The Absolute Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call ITM vs. Time to Expiration. 

  
 

 
 

 
Figure  11:  The Relative Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call ITM vs. Time to Expiration. 
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Figure  12:  The Absolute Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call OTM vs. Time to Expiration. 
 

 
 
  

Figure  13:  The Relative Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call OTM vs. Time to Expiration. 
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Figure  14:  The Absolute Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call ITM vs. Moneyness. 
 

 
 
  

Figure  15:  The Relative Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call ITM vs. Moneyness. 
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Figure  16:  The Absolute Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call OTM vs. Moneyness. 
 

 
 

  
Figure  17:  The Relative Pricing Errors of G and Pan’s SV0, SV, SVJ0 and SVJ 
Model Prices of Call OTM vs. Moneyness. 
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Table 1. Sample Properties of Individual Stock Options. 
The reported numbers are respectively the average bid-ask mid-point price, the average 
trading volume and the total number of options, for all categories partitioned by moneyness 
and term of expiration. The sample period extends from January 4, 1996 through 
December 30, 2005 for a total of 3,487,894 calls.  denotes the spot individual stock price 
and  is the exercise price. ITM, ATM and OTM denote in-the-money, at-the-money and 
out-of-the money options, respectively.  
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   Moneyness    Days-to-Expiration   
 K/S 21-40 41-60 61-110 111-170 171-365 Subtotal

ITM [0.4--0.75) $17.11 $16.36 $16.68 $16.11 $18.33 $16.96
  39.07 32.94 31.39 30.61 25.72 31.28
  23,227 19,013 35,686 34,512 34,896 147,334

ITM [0.75--0.85) $8.82 $9.10 $9.58 $10.08 $11.45 $9.79
  66.32 49.77 46.94 40.01 31.44 47.32
  51,675 36,424 53,061 47,899 44,140 233,199

ITM [0.85--0.95) $5.00 $5.64 $6.23 $7.10 $8.35 $6.30
  127.31 82.03 71.77 53.71 38.20 80.00
  148,720 97,161 110,430 97,337 90,114 543,762

ATM [0.95--1.05] $2.10 $2.77 $3.43 $4.41 $5.56 $3.45
  253.01 157.62 124.47 95.45 54.94 150.61
  272,856 189,277 180,000 166,865 160,515 969,513

OTM (1.05--1.15] $0.90 $1.37 $1.83 $2.59 $3.48 $2.02
  214.53 147.23 125.37 104.18 61.97 132.47
  183,237 151,037 160,659 164,088 162,928 821,949

OTM (1.15--1.25] $0.52 $0.87 $1.21 $1.79 $2.47 $1.48
  137.3 109.12 94 84.3 56.05 92.28
  67,369 58,096 81,249 90,112 94,760 391,586

OTM (1.25--2.50] $0.25 $0.45 $0.66 $1.08 $1.56 $0.94
  91.24 81.15 70.47 67.43 53.82 68.89
  48,214 41,948 87,638 97,511 105,240 380,551

Subtotal [0.40--2.50] $3.00 $3.36 $4.04 $4.52 $5.42 $4.06
  182.65 121.8 95.8 79.33 51.43 107.92
  795,298 592,956 708,723 698,324 692,593 3,487,894
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Table  2:  Annual Distributions of Individual Stock Options. 
 The reported numbers are the total number of options, for all categories partitioned by moneyness K/S and days to 
expiration for each year. ITM, ATM and OTM denote In, At, and Out of-the money options.   

 

Moneyness Year Days-to-Expiration Year Days-to-Expiration 

 K/S  21-40 41-60 61-110 111-170 171-365 Subtotal  21-40 41-60 61-110 111-170 171-365 Subtotal 

ITM [0.40--0.75) 1996 1,633 1,479 2,670 2,735 2,506 11,023 2001 1,698 1,294 1,944 1,946 2,325 9,207 

ITM [0.75--0.85)  4,387 3,158 4,657 4,302 3,709 20,213  3,888 2,488 3,147 2,832 2,918 15,273 

ITM [0.85--0.95)  13,629 8,944 10,873 9,365 8,214 51,025  11,122 6,427 6,448 5,644 5,644 35,285 

ATM [0.95--1.05]  27,021 18,726 18,918 17,085 15,456 97,206  21,986 14,240 12,442 11,487 10,925 71,080 

OTM (1.05--1.15]  15,972 13,572 15,587 15,894 15,082 76,107  17,623 14,316 13,977 13,814 13,398 73,128 

OTM (1.15--1.25]  5,230 4,520 6,862 7,188 7,088 30,888  7,226 6,384 8,683 9,414 9,910 41,617 

OTM (1.25--2.50]  3,487 2,795 6,902 6,540 6,564 26,288  5,980 5,448 10,733 12,364 14,473 48,998 

Subtotal   71,359 53,194 66,469 63,109 58,619 312,750  69,523 50,597 57,374 57,501 59,593 294,588 

ITM [0.40--0.75) 1997 1,682 1,550 3,558 3,052 2,475 12,317 2002 1,572 1,306 2,012 1,845 2,107 8,842 

ITM [0.75--0.85)  4,586 3,677 5,834 4,974 3,668 22,739  3,723 2,480 3,020 2,685 2,589 14,497 

ITM [0.85--0.95)  14,970 10,259 12,218 10,361 8,439 56,247  11,527 6,957 7,208 6,302 6,038 38,032 

ATM [0.95--1.05]  28,541 19,982 19,209 17,052 14,793 99,577  23,013 15,018 13,784 12,831 12,542 77,188 

OTM (1.05--1.15]  17,296 14,095 15,589 15,087 12,770 74,837  16,815 13,507 14,147 14,612 14,510 73,591 

OTM (1.15--1.25]  5,892 4,691 6,783 6,876 6,143 30,385  6,509 5,743 8,223 9,266 10,152 39,893 

OTM (1.25--2.50]  3,901 2,955 6,411 6,676 5,608 25,551  5,226 4,613 10,484 11,738 13,167 45,228 

Subtotal   76,868 57,209 69,602 64,078 53,896 321,653  68,385 49,624 58,878 59,279 61,105 297,271 

ITM [0.40--0.75) 1998 2,025 1,506 3,170 3,080 3,045 12,826 2003 2,423 1,906 3,578 3,430 3,257 14,594 

ITM [0.75--0.85)  4,835 3,337 5,269 4,736 4,224 22,401  4,911 3,412 5,148 4,570 4,280 22,321 

ITM [0.85--0.95)  15,166 9,569 11,107 9,771 8,599 54,212  14,116 9,070 10,678 9,376 8,477 51,717 

ATM [0.95--1.05]  27,451 18,856 17,231 15,890 14,304 93,732  25,780 18,044 17,950 16,638 16,301 94,713 

OTM (1.05--1.15]  18,550 14,779 15,347 15,017 13,105 76,798  15,305 13,116 14,723 16,009 17,329 76,482 

OTM (1.15--1.25]  6,219 5,310 7,807 7,987 6,564 33,887  4,739 4,479 6,356 7,941 9,767 33,282 

OTM (1.25--2.50]  3,955 3,769 8,753 8,761 6,917 32,155  2,683 2,462 5,195 6,686 9,804 26,830 

Subtotal   78,201 57,126 68,684 65,242 56,758 326,011  69,957 52,489 63,628 64,650 69,215 319,939 

ITM [0.40--0.75) 1999 3,833 2,761 5,900 5,421 4,898 22,813 2004 2,488 2,213 3,635 3,733 4,154 16,223 

ITM [0.75--0.85)  6,987 4,486 6,745 6,030 5,187 29,435  5,994 4,414 6,338 5,698 5,818 28,262 

ITM [0.85--0.95)  17,144 10,613 11,692 10,204 9,143 58,796  18,112 12,896 14,789 13,109 12,826 71,732 

ATM [0.95--1.05]  28,587 18,780 16,886 15,337 14,354 93,944  33,764 25,408 24,791 23,455 23,546 130,964 

OTM (1.05--1.15]  21,265 16,147 15,817 15,339 13,983 82,551  19,467 18,004 20,295 21,932 24,267 103,965 

OTM (1.15--1.25]  8,150 6,532 8,565 9,222 8,279 40,748  6,474 5,983 8,570 10,488 13,145 44,660 

OTM (1.25--2.50]  5,000 4,016 8,204 8,823 8,306 34,349  4,607 4,271 8,439 10,815 12,991 41,123 

Subtotal   90,966 63,335 73,809 70,376 64,150 362,636  90,906 73,189 86,857 89,230 96,747 436,929 

ITM [0.40--0.75) 2000 3,507 2,774 4,931 4,718 5,272 21,202 2005 2,366 2,224 4,288 4,552 4,857 18,287 

ITM [0.75--0.85)  6,450 4,160 5,558 4,986 4,820 25,974  5,914 4,812 7,345 7,086 6,927 32,084 

ITM [0.85--0.95)  14,154 8,800 8,996 8,144 7,694 47,788  18,780 13,626 16,421 15,061 15,040 78,928 

ATM [0.95--1.05]  23,529 15,510 13,518 12,532 12,277 77,366  33,184 24,713 25,271 24,558 26,017 133,743 

OTM (1.05--1.15]  20,082 15,107 13,987 13,556 12,467 75,199  20,862 18,394 21,190 22,828 26,017 109,291 

OTM (1.15--1.25]  9,757 7,949 9,307 9,853 9,088 45,954  7,173 6,505 10,093 11,877 14,624 50,272 

OTM (1.25--2.50]  9,021 7,582 13,288 14,098 13,384 57,373  4,354 4,037 9,229 11,010 14,026 42,656 

Subtotal   86,500 61,882 69,585 67,887 65,002 350,856  92,633 74,311 93,837 96,972 107,508 465,261 

       ITM [0.40--0.75) ALL 23,227 19,013 35,686 34,512 34,896 147,334 

       ITM [0.75--0.85)  51,675 36,424 53,061 47,899 44,140 233,199 

       ITM [0.85--0.95)  148,720 97,161 110,430 97,337 90,114 543,762 

       ATM [0.95--1.05]  272,856 189,277 180,000 166,865 160,515 969,513 

       OTM (1.05--1.15]  183,237 151,037 160,659 164,088 162,928 821,949 

       OTM (1.15--1.25]  67,369 58,096 81,249 90,112 94,760 391,586 

       OTM (1.25--2.50]  48,214 41,948 87,638 97,511 105,240 380,551 

       Subtotal   795,298 592,956 708,723 698,324 692,593 3,487,894 
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Table  3:  Call ITM Pricing Errors by Calendar Year. 
   

   
    PANEL A: Total Number Of Options

  Option Expiration (in Days) 
  YEAR    21-40    41-60  61-110  111-170  171-365    TOTAL
   1996   19,639   13,574   18,186   16,387   14,413    82,199
  1997   21,233   15,478   21,593   18,368   14,558    91,230
  1998   22,001   14,396   19,509   17,547   15,844    89,297
  1999   27,959   17,846   24,296   21,617   19,148    110,866
  2000   24,103   15,718   19,467   17,816   17,738    94,842
  2001   16,703   10,207   11,528   10,412   10,869    59,719
  2002   16,788   10,722   12,216   10,798   10,708    61,232
  2003   21,442   14,379   19,391   17,363   16,001    88,576
  2004   26,586   19,513   24,753   22,521   22,774    116,147
  2005   27,055   20,660   28,045   26,686   26,799    129,245

  TOTAL    223,509    152,493  198,984  179,515  168,852    923,353
    PANEL B: Pricing Error Improvement

  Option Expiration (in Days) 
 

 YEAR    21-40    41-60  61-110  111-170  171-365    TOTAL
   1996   15%   30%   51%   76%   100%    51%
  1997   22%   33%   57%   92%   100%    58%
  1998   16%   24%   29%   33%   51%    30%
  1999   19%   28%   34%   41%   50%    35%
  2000   20%   25%   33%   43%   55%    36%
  2001   13%   13%   19%   24%   37%    22%
  2002   10%   10%   11%   16%   25%    15%
  2003   6%   9%   15%   20%   26%    16%
  2004   8%   20%   24%   32%   44%    27%
  2005   14%   27%   33%   46%   57%    38%

 
 TOTAL    14%    21%  27%  36%  47%    30%

    PANEL C: Rank Sum Test p  Value 
 Option Expiration (in Days) 

 
 YEAR    21-40    41-60  61-110  111-170  171-365    TOTAL

 
  1996   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  1997   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  1998   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  1999   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2000   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2001   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2002   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2003   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2004   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2005   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000

 
 TOTAL    0.0000    0.0000  0.0000  0.0000  0.0000    0.0000
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Table  4:  Call ITM Pricing Errors by Leverage. 
  

   
    PANEL A: Total Number Of Options

 
 Option Expiration (in Days) 

 
 D/E    21-40   41-60  61-110  111-170   171-365    TOTAL

 
  (0.00-0.10]   42,604   29,413   36,324   33,531   32,107    173,979
  (0.10-0.20]   39,326   27,133   33,904   31,550   28,659    160,572
  (0.20-0.30]   30,827   21,262   27,406   24,666   23,892    128,053
  (0.30-0.60]   54,149   36,672   51,041   44,069   42,208    228,139
  (0.60-1.00]   31,314   21,030   28,226   25,226   23,444    129,240
  (1.00-1.50]   17,263   11,603   15,162   14,083   12,881    70,992
  (1.50-2.00]   8,026   5,380   6,921   6,390   5,661    32,378

 
 TOTAL   223,509    152,493  198,984  179,515   168,852    923,353

 
   PANEL B: Pricing Error Improvement

 
 Option Expiration (in Days) 

 
 D/E    21-40   41-60  61-110  111-170   171-365    TOTAL

 
  (0.00-0.10]   4%   7%   9%   13%   18%   11%
  (0.10-0.20]   9%   15%   21%   27%   35%   22%
  (0.20-0.30]   12%   16%   27%   35%   52%   28%
  (0.30-0.60]   19%   28%   37%   51%   72%   42%
  (0.60-1.00]   23%   31%   38%   53%   66%   43%
  (1.00-1.50]   30%   45%   56%   67%   93%   59%
  (1.50-2.00]   36%   51%   70%   77%   96%   64%

 
 TOTAL    14%   21%  27%  36%   47%   30%

 
   PANEL C: Rank Sum Test p  Value 

 
 Option Expiration (in Days) 

 
 D/E    21-40   41-60  61-110  111-170   171-365    TOTAL

   (0.00-0.10]   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  (0.10-0.20]   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  (0.20-0.30]   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  (0.30-0.60]   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  (0.60-1.00]   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  (1.00-1.50]   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  (1.50-2.00]   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000

 TOTAL   0.0000    0.0000  0.0000  0.0000   0.0000    0.0000
 

 TOTAL   0.0000    0.0000  0.0000  0.0000   0.0000    0.0000
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 Table  5:  Call OTM Pricing Errors by Calendar Year. 
   

   
    PANEL A: Total Number Of Options

  Option Expiration (in Days) 
  YEAR    21-40    41-60  61-110  111-170  171-365    TOTAL

 
  1996   24,689   20,887   29,351   29,622   28,734    133,283
  1997   27,089   21,741   28,783   28,639   24,521    130,773
  1998   28,724   23,858   31,907   31,765   26,586    142,840
  1999   34,415   26,695   32,586   33,384   30,568    157,648
  2000   38,860   30,638   36,582   37,507   34,939    178,526
  2001   30,829   26,148   33,393   35,592   37,781    163,743
  2002   28,550   23,863   32,854   35,616   37,829    158,712
  2003   22,727   20,057   26,274   30,636   36,900    136,594
  2004   30,548   28,258   37,304   43,235   50,403    189,748
  2005   32,389   28,936   40,512   45,715   54,667    202,219

 
 TOTAL    298,820    251,081  329,546  351,711  362,928    1,594,086

 
   PANEL B: Pricing Error Improvement

 
 Option Expiration (in Days) 

  YEAR    21-40    41-60  61-110  111-170  171-365    TOTAL
 

  1996   60%   87%   65%   100%   71%    77%
  1997   75%   86%   97%   97%   91%    90%
  1998   42%   64%   70%   66%   81%    64%
  1999   83%   54%   66%   66%   81%    71%
  2000   90%   53%   75%   80%   98%    80%
  2001   48%   37%   39%   42%   52%    44%
  2002   26%   25%   28%   31%   37%    30%
  2003   36%   31%   32%   34%   38%    35%
  2004   89%   42%   48%   44%   55%    55%
  2005   89%   67%   68%   65%   72%    72%

 
 TOTAL    49%    48%  55%  55%  65%    59%

 
   PANEL C: Rank Sum Test p  Value 

  Option Expiration (in Days) 
  YEAR    21-40    41-60  61-110  111-170  171-365    TOTAL

 
  1996   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  1997   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  1998   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  1999   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2000   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2001   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2002   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2003   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2004   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000
  2005   0.0000   0.0000   0.0000   0.0000   0.0000    0.0000

 
 TOTAL    0.0000    0.0000  0.0000  0.0000  0.0000    0.0000
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 Table  6:  Call OTM Pricing Errors by Leverage. 
   

   
    PANEL A: Total Number Of Options

 Option Expiration (in Days) 
 

 D/E    21-40   41-60  61-110  111-170   171-365    TOTAL
 

  (0.00-0.10]   50,291   40,911   44,782   47,783   47,619   231,401
  (0.10-0.20]   52,491   44,018   53,393   57,570   59,084   266,606
  (0.20-0.30]   38,976   32,660   43,367   46,347   49,459   210,849
  (0.30-0.60]   74,469   63,909   88,884   92,458   96,955   416,762
  (0.60-1.00]   44,040   37,109   53,653   58,130   59,828   252,822
  (1.00-1.50]   25,338   21,291   29,753   32,488   33,164   142,057
  (1.50-2.00]   13,215   11,183   15,714   16,935   16,531   73,589

 
 TOTAL   298,820    251,081  329,546  351,711   362,640    1,594,086

 
   PANEL B: Pricing Error Improvement

 
 Option Expiration (in Days) 

 
 D/E    21-40   41-60  61-110  111-170   171-365    TOTAL

   (0.00-0.10]   20%   15%   18%   21%   24%   20%
  (0.10-0.20]   56%   35%   37%   38%   45%   41%
  (0.20-0.30]   87%   43%   53%   48%   62%   55%
  (0.30-0.60]   61%   67%   67%   68%   81%   70%
  (0.60-1.00]   44%   70%   77%   70%   87%   72%
  (1.00-1.50]   26%   92%   91%   92%   96%   81%
  (1.50-2.00]   24%   89%   91%   88%   73%   83%

 
 TOTAL    49%   48%  55%  55%   65%   59%

 
   PANEL C: Rank Sum Test p  Value 

 
 Option Expiration (in Days) 

 
 D/E    21-40   41-60  61-110  111-170   171-365    TOTAL

   (0.00-0.10]   0.0005   0.0003   0.0000   0.0000   0.0006   0.0000
  (0.10-0.20]   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  (0.20-0.30]   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  (0.30-0.60]   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  (0.60-1.00]   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  (1.00-1.50]   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  (1.50-2.00]   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000

 TOTAL   0.0000    0.0000  0.0000  0.0000   0.0000   0.0000
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        Table  7:  Implied Parameters and In-Sample Fit. 
The structural parameters of a given model are estimated daily by minimizing the sum of 
squared pricing errors between the market price and the model price for each option. The 
first line is the sample average of the estimated parameters; the second line is the standard 
errors in parentheses. Following Bakshi, Cao, and Chen (1997), the structural parameters' 
definitions are as the following: vκ , vv κθ / , and vσ  ( Rκ , RR κθ / , and Rσ ) are respectively 
the speed of adjustment, the long-run mean, and the variation coefficient of the diffusion 
volatility )(tV  (the spot interest rate )(tR ). The parameter ρ  represents the correlation 
between volatility and spot return. The parameter Jμ  represents the mean jump size, λ  
the frequency of the jumps per year, and Jσ  the standard deviation of the logarithm of one 
plus the percentage jump size. JV  is the instantaneous variance of the jump component. BS, 
SV, SVSI, and SVJ, respectively, stand for the Black-Scholes, the stochastic-volatility 
model, the stochastic-volatility and stochastic-interest-rate model, and the 
stochastic-volatility model with random jumps. (See Appendix 2 for comparison) 

  
   Parameters    BS   SV  SVSI  SVJ  

 vκ      1.67  1.64  1.67 
      (0.75)  (0.55)  (0.28) 
vθ      0.09  0.06  0.05 
      (0.14)  (0.08)  (0.05) 
vσ      0.51  0.48  0.41 
      (0.27)  (0.22)  (0.12) 
ρ      −0.66  −0.69  −0.68 
      (0.20)  (0.16)  (0.11) 
λ          0.77 
          (0.48) 
Jμ          −0.06 
          (0.10) 
Jσ          0.12 
          (0.12) 
JV          0.14 
          (0.15) 
Rκ        0.59   
        (0.45)   
Rθ        0.02   
        (0.01)   
Rσ        0.55   
        (0.74)   

 Implied 
Volatility (%)  

 54.65   52.21   51.92   49.06  

   (0.20)   (0.18)  (0.14)  (0.10) 
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Table  8:  Out-of-Sample Pricing Errors (we). 
For a given model, we compute the price of each option using the previous day's implied parameters and 
implied stock volatility. The reported absolute pricing error is the sample average of the absolute error. G, BS, 
SV, SVSI, and SVJ, respectively, stand for the Geske, Black-Scholes, the stochastic-volatility model, the 
stochastic-volatility and stochastic-interest-rate model, and the stochastic-volatility model with random 
jumps.    

    Panel A: Absolute Pricing Error 
    Moneyness         Days to Expiration     
   K/S    Model    21-40   41-60   61-110   111-170   171-365    Subtotal 

 ITM   [0.4--0.75)   G   0.06   0.08   0.10   0.13   0.19   0.11  
    BS   0.14   0.29   0.59   0.94   2.05   0.94  
    SV   0.12   0.13   0.19   0.27   0.55   0.22  
    SVSI   0.30   0.44   0.48   0.58   1.23   0.57  
    SVJ   0.31   0.39   0.49   0.62   1.22   0.61  

 ITM   [0.75--0.85)   G   0.08   0.11   0.14   0.18   0.26   0.14  
    BS   0.55   0.99   1.69   2.42   3.66   1.86  
    SV   0.28   0.41   0.64   0.80   1.21   0.56  
    SVSI   0.52   0.74   1.08   1.41   2.10   1.03  
    SVJ   0.51   0.70   1.03   1.35   2.06   1.04  

 
ITM   [0.85--0.95)   G   0.10   0.14   0.17   0.21   0.29   0.16  

    BS   1.46   2.10   2.95   3.84   4.72   2.86  
    SV   0.55   0.83   1.22   1.50   1.90   1.01  
    SVSI   0.84   1.24   1.73   2.19   2.89   1.54  
    SVJ   0.82   1.20   1.67   2.10   2.80   1.55  

 
ATM   [0.95--1.05]   G   0.10   0.13   0.16   0.22   0.31   0.17  

    BS   1.30   1.86   2.26   3.08   4.26   2.47  
    SV   0.83   1.21   1.61   1.99   2.42   1.43  
    SVSI   1.08   1.58   2.08   2.68   3.42   1.95  
    SVJ   1.06   1.54   2.03   2.58   3.32   1.95  

 
OTM   (1.05--1.15]   G   0.08   0.11   0.15   0.21   0.30   0.15  

    BS   1.63   2.46   3.41   4.71   5.83   3.68  
    SV   0.63   0.98   1.38   1.81   2.20   1.27  
    SVSI   0.85   1.31   1.83   2.48   3.20   1.79  
    SVJ   0.84   1.29   1.78   2.40   3.12   1.78  

 
OTM   (1.15--1.25]   G   0.06   0.09   0.13   0.19   0.28   0.14  

    BS   0.77   1.31   2.28   3.50   4.98   2.86  
    SV   0.35   0.56   0.89   1.25   1.66   0.88  
    SVSI   0.51   0.80   1.32   1.89   2.67   1.40  
    SVJ   0.52   0.80   1.29   1.85   2.66   1.40  

 
OTM   (1.25--2.50]   G   0.06   0.07   0.09   0.14   0.23   0.12  

    BS   0.25   0.49   0.93   1.59   2.90   1.55  
    SV   0.18   0.25   0.39   0.58   0.91   0.45  
    SVSI   0.24   0.36   0.60   0.95   1.64   0.79  
    SVJ   0.24   0.36   0.61   0.96   1.64   0.81  

 
Subtotal   [0.40--2.50]   G   0.09   0.12   0.14   0.20   0.28   0.04  

    BS   1.20   1.79   2.29   3.20   4.35   1.29  
    SV   0.52   0.80   1.03   1.34   1.75   0.99  
    SVSI   0.76   1.14   1.44   1.94   2.65   1.48  
    SVJ   0.75   1.12   1.41   1.88   2.59   1.48  
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Table  9:  Out-of-Sample Relative Pricing Errors (II). 
 
For a given model, we compute the price of each option using the previous day's implied 
parameters and implied stock volatility. The reported relative pricing error is the sample average of 
the model price minus market price, divided by the market price. G, BS, SV, SVSI, and SVJ, 
respectively, stand for the Geske, Black-Scholes, the stochastic-volatility model, the 
stochastic-volatility and stochastic-interest-rate model, and the stochastic-volatility model with random 
jumps.  

  
 

    Panel B: Relative Pricing Error 
    Moneyness        Days to Expiration     
   K/S    Model    21-40    41-60    61-110    111-170   171-365    Subtotal  

 ITM   [0.4--0.75)   G   -0.64%   -0.63%   -0.46%   -0.18%   0.41%   -0.22%  
    BS   0.07%   1.39%   3.53%   6.22%   12.15%   5.53%  
    SV   0.30%   0.48%   1.05%   1.65%   3.04%   1.04%  
    SVSI   0.58%   0.88%   1.70%   2.48%   4.07%   1.73%  
    SVJ   0.31%   0.09%   -0.22%   -0.47%   -0.38%   -0.23%  

 
ITM   [0.75--0.85)   G   -0.77%   -0.94%   -0.60%   -0.12%   0.89%   -0.30%  

    BS   5.16%   9.80%   16.09%   22.47%   31.65%   17.00%  
    SV   3.52%   5.23%   7.55%   8.83%   11.38%   6.33%  
    SVSI   4.56%   6.44%   8.97%   10.65%   13.02%   7.82%  
    SVJ   2.06%   2.20%   1.74%   2.26%   3.11%   1.84%  

 
ITM   [0.85--0.95)   G   -1.08%   -1.44%   -0.71%   0.06%   1.43%   -0.45%  

    BS   26.84%   36.06%   45.22%   53.80%   61.77%   42.99%  
    SV   11.27%   16.84%   21.68%   23.37%   25.49%   17.89%  
    SVSI   12.98%   19.34%   24.01%   26.28%   27.96%   20.19%  
    SVJ   2.54%   5.20%   4.26%   8.34%   9.68%   5.05%  

 
ATM   [0.95--1.05]   G   0.17%   -0.94%   -0.10%   0.77%   2.19%   0.39%  

    BS   77.98%   77.36%   70.51%   73.91%   81.48%   76.39%  
    SV   52.67%   56.25%   58.40%   53.94%   52.73%   55.72%  
    SVSI   58.22%   62.14%   62.48%   59.28%   55.95%   60.18%  
    SVJ   13.74%   19.10%   13.15%   21.79%   22.63%   20.25%  

 
OTM   (1.05--1.15]   G   1.07%   0.59%   1.35%   2.26%   3.26%   1.77%  

    BS   359.06%  336.39%  308.52%  271.69%  237.24%   300.58%  
    SV   165.10%  151.26%  139.96%  112.82%  95.34%   145.57%  
    SVSI   201.04%  179.34%  155.46%  125.76%  102.04%   161.54%  
    SVJ   37.05%   51.47%   31.47%   51.84%   47.96%   67.14%  

 
OTM   (1.15--1.25]   G   -0.79%   -0.06%   0.99%   2.65%   3.45%   1.68%  

    BS   452.65%  403.70%  420.29%  393.65%  371.78%   404.52%  
    SV   203.33%  185.68%  197.32%  163.33%  137.15%   191.44%  
    SVSI   249.48%  225.82%  234.66%  192.02%  149.96%   216.18%  
    SVJ   87.75%   66.48%   61.31%   78.31%   79.83%   109.46%  

 
OTM   ((1.25--2.50]  G   -2.08%   -1.07%   -0.32%   1.43%   2.56%   0.95%  

    BS   252.04%  331.82%  376.53%  355.86%  414.18%   362.14%  
    SV   167.28%  156.64%  173.96%  154.83%  187.77%   175.16%  
    SVSI   170.42%  146.00%  155.68%  147.90%  163.09%   161.57%  
    SVJ   159.46%  98.97%   94.30%   86.14%   129.92%   128.53%  

 
Subtotal   [0.40--2.50]   G   -0.12%   -0.69%   0.04%   1.03%   2.24%   0.38%  

    BS   141.78%  154.31%  163.82%  165.37%  177.61%   154.91%  
    SV   94.04%   95.31%   103.61%  92.65%   94.91%   96.85%  
    SVSI   109.66%  108.10%  110.25%  101.40%  94.38%   104.70%  
    SVJ   44.99%   42.55%   36.45%   44.65%   55.39%   50.17%  
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Table  10: In the Money Option Basis Point Improvement of G vs. BS, SV, SVSI and SVJ by Year. 
 
The columns left to right represent the year, the present value of all matched pairs for that year, the total 
number of the matched pairs that year, the number of those matched pairs where an alternative model price is 
closer to the market price in absolute distance, the number of matched pairs where the G model price is closer 
to the market price, the dollar value of the alternative model price improvement, the dollar value of G 
improvement, and the net basis point advantage of G's model for that year. 

    
YEAR PV NUMBER NUMBER NUMBER    

  TOTAL BS G BS G BP 
1996 338,731.04 43,904 15,025 28,879 1,922.28 46,347.79 1312 
1997 390,477.02 45,449 14,849 30,600 2,255.64 57,683.90 1420 
1998 410,362.05 45,267 14,090 31,177 2,206.80 65,360.25 1539 
1999 596,078.97 53,883 17,538 36,345 3,172.49 60,913.38 969 
2000 463,607.30 40,662 14,177 26,485 2,824.13 35,936.64 714 
2001 239,251.05 31,561 9,550 22,011 1,285.91 32,561.97 1307 
2002 217,488.91 32,001 9,407 22,594 1,229.67 34,230.91 1517 
2003 330,128.05 50,510 14,288 36,222 1,456.23 60,254.65 1781 
2004 448,605.59 68,351 18,544 49,807 1,745.59 96,961.86 2122 
2005 538,236.58 74,049 17,961 56,088 1,891.57 121,618.81 2224 

TOTAL 3,972,966.56 485,637 145,429 340,208 19,990.32 611,870.16 1490 
 

YEAR PV NUMBER NUMBER NUMBER    
  TOTAL SV G SV G BP 

1996 176,191.06 21,201 3,890 17,311 818.27 19,922.89 1084 
1997 203,143.53 22,330 3,496 18,834 775.78 24,821.64 1184 
1998 226,184.16 23,181 3,877 19,304 1,114.41 27,856.65 1182 
1999 358,364.61 30,004 5,427 24,577 1,670.21 31,410.18 830 
2000 290,954.73 22,619 5,033 17,586 2,106.77 20,164.53 621 
2001 130,899.57 16,729 3,037 13,692 689.80 15,251.67 1112 
2002 119,279.77 17,167 3,951 13,216 809.16 14,923.91 1183 
2003 179,514.36 25,732 4,277 21,455 765.37 24,342.82 1313 
2004 234,997.59 33,699 4,019 29,680 654.37 38,384.59 1606 
2005 295,032.64 38,291 4,030 34,261 722.54 48,324.27 1613 

TOTAL 2,214,562.02 250,953 41,037 209,916 10,126.66 265,403.16 1153 
 

YEAR PV NUMBER NUMBER NUMBER    
  TOTAL SVSI G SVSI G BP 

1996 176,191.06 21,201 3,801 17,400 828.76 18,435.70 999 
1997 203,143.53 22,330 3,159 19,171 740.90 23,454.53 1118 
1998 226,184.16 23,181 3,574 19,607 1,048.84 25,843.79 1096 
1999 358,359.42 30,003 5,705 24,298 1,999.54 26,877.46 694 
2000 290,954.73 22,619 5,385 17,234 2,411.71 16,456.51 483 
2001 130,899.57 16,729 3,170 13,559 796.42 13,638.75 981 
2002 119,279.77 17,167 4,027 13,140 818.59 13,283.30 1045 
2003 179,514.36 25,732 4,123 21,609 774.09 22,456.05 1208 
2004 235,000.94 33,700 3,812 29,888 706.17 36,684.86 1531 
2005 295,034.19 38,292 3,736 34,556 719.34 44,840.69 1495 

TOTAL 2,214,561.73 250,954 40,492 210,462 10,844.36 241,971.65 1044 
 

YEAR PV NUMBER NUMBER NUMBER    
  TOTAL SVJ G SVJ G BP 

1996 176,183.00 21,199 7,509 13,690 1,675.46 12,726.92 627 
1997 203,143.53 22,330 7,603 14,727 1,862.56 16,009.22 696 
1998 226,184.16 23,181 7,242 15,939 2,025.08 18,995.29 750 
1999 358,364.61 30,004 10,398 19,606 3,222.69 19,176.95 445 
2000 290,954.73 22,619 8,400 14,219 3,204.00 12,319.93 313 
2001 130,896.89 16,728 5,674 11,054 1,198.92 10,067.44 678 
2002 119,274.87 17,166 6,441 10,725 1,239.57 9,584.53 700 
2003 179,511.36 25,731 8,516 17,215 1,469.75 16,301.17 826 
2004 234,999.21 33,699 9,592 24,107 1,599.76 26,507.29 1060 
2005 295,034.19 38,292 9,820 28,472 1,774.66 33,604.15 1079 

TOTAL 2,214,546.55 250,949 81,195 169,754 19,272.47 175,292.88 705 
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Table  11:  In the Money Option Basis Point Improvement of G vs. BS, SV, SVSI and SVJ by 
Leverage.  The columns left to right represent the D/E ratio, the present value of all matched pairs for that 
D/E ratio, the total number of the matched pairs for that D/E ratio, the number of those matched pairs where 
an alternative model price is closer to the market price in absolute distance, the number of matched pairs 
where the G model price is closer to the market price, the dollar value of the alternative model price 
improvement, the dollar value of G improvement, and the net basis point advantage of G's model for that D/E 
ratio. 

  
   

D/E PV NUMBER NUMBER NUMBER    
  TOTAL BS G BS G BP 

(0.00-0.10] 843,791.52 74,671 26,623 48,048 4,805.16 77,343.97 860
(0.10-0.20] 794,288.56 90,522 27,379 63,143 3,886.21 119,535.70 1456
(0.20-0.30] 582,667.38 71,915 20,729 51,186 2,561.26 108,186.78 1813
(0.30-0.60] 934,583.84 126,861 36,078 90,783 4,418.84 164,932.31 1717
(0.60-1.00] 459,269.37 69,741 19,440 50,301 2,247.09 84,286.08 1786
(1.00-1.50] 246,241.28 35,768 10,386 25,382 1,349.05 39,546.59 1551
(1.50-2.00] 112,124.61 16,159 4,794 11,365 722.72 18,038.72 1544
TOTAL 3,972,966.56 485,637 145,429 340,208 19,990.32 611,870.16 1490

 
D/E PV NUMBER NUMBER NUMBER    

  TOTAL SV G SV G BP 
(0.00-0.10] 522,825.16 41,352 9,479 31,873 3,478.38 38,776.98 675
(0.10-0.20] 462,305.29 49,499 8,592 40,907 2,159.03 51,695.37 1072
(0.20-0.30] 315,026.26 36,646 5,045 31,601 1,068.28 45,155.55 1399
(0.30-0.60] 500,334.83 64,224 9,229 54,995 1,788.72 70,333.43 1370
(0.60-1.00] 237,689.25 34,914 4,914 30,000 819.90 35,807.21 1472
(1.00-1.50] 122,231.81 16,910 2,601 14,309 512.46 16,358.08 1296
(1.50-2.00] 54,149.42 7,408 1,177 6,231 299.90 7,276.54 1288
TOTAL 2,214,562.02 250,953 41,037 209,916 10,126.66 265,403.16 1153

D/E PV NUMBER NUMBER NUMBER    
  TOTAL SVSI G SVSI G BP 

(0.00-0.10] 522,825.16 41,352 10,222 31,130 4,004.71 32,267.46 541
(0.10-0.20] 462,305.29 49,499 8,521 40,978 2,319.21 46,892.72 964
(0.20-0.30] 315,029.61 36,647 4,871 31,776 1,040.33 42,014.09 1301
(0.30-0.60] 500,334.83 64,224 8,723 55,501 1,844.12 64,906.49 1260
(0.60-1.00] 237,685.61 34,914 4,626 30,288 837.72 33,425.69 1371
(1.00-1.50] 122,231.81 16,910 2,453 14,457 519.36 15,379.01 1216
(1.50-2.00] 54,149.42 7,408 1,076 6,332 278.90 7,086.20 1257
TOTAL 2,214,561.73 250,954 40,492 210,462 10,844.36 241,971.65 1044

D/E PV NUMBER NUMBER NUMBER    
  TOTAL SVJ G SVJ G BP 

(0.00-0.10] 522,817.93 41,350 15,343 26,007 5,095.49 23,931.86 360
(0.10-0.20] 462,297.39 49,497 16,497 33,000 4,122.48 34,619.04 660
(0.20-0.30] 315,029.61 36,647 10,438 26,209 2,239.02 31,409.57 926
(0.30-0.60] 500,334.83 64,224 19,964 44,260 4,040.63 46,281.83 844
(0.60-1.00] 237,685.56 34,913 10,831 24,082 1,960.75 23,305.66 898
(1.00-1.50] 122,231.81 16,910 5,581 11,329 1,171.22 10,806.14 788
(1.50-2.00] 54,149.42 7,408 2,541 4,867 642.89 4,938.77 793
TOTAL 2,214,546.55 250,949 81,195 169,754 19,272.47 175,292.88 705
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Table  12:  Out of the Money Option Basis Point Improvement of G vs. BS, SV, SVSI and 
SVJ by Year. The columns left to right represent the year, the present value of all matched pairs for that 
year, the total number of the matched pairs that year, the number of those matched pairs where an alternative 
model price is closer to the market price in absolute distance, the number of matched pairs where the G model 
price is closer to the market price, the dollar value of the alternative model price improvement, the dollar 
value of G improvement, and the net basis point advantage of G's model for that year. 
 

YEAR PV NUMBER NUMBER NUMBER    
  TOTAL BS G BS G BP 

1996 98,971.46 63,054 21,822 41,232 4,022.43 78,818.84 7557 
1997 104,249.84 58,286 19,510 38,776 3,915.89 84,059.36 7688 
1998 116,627.00 65,101 21,589 43,512 4,537.47 103,088.96 8450 
1999 169,542.84 71,767 21,811 49,956 5,082.04 110,459.07 6215 
2000 208,359.31 75,462 25,638 49,824 7,422.82 100,988.47 4491 
2001 132,732.74 78,866 23,077 55,789 4,422.19 119,188.80 8646 
2002 97,468.48 75,991 20,232 55,759 3,647.40 116,614.04 11590 
2003 77,947.90 71,939 17,962 53,977 2,536.20 127,171.59 15990 
2004 111,154.94 101,898 28,029 73,869 3,622.13 193,455.39 17078 
2005 123,853.31 106,377 28,201 78,176 4,195.12 223,297.81 17690 

TOTAL 1,240,907.82 768,741 227,871 540,870 43,403.70 1,257,142.33 9781 
YEAR PV NUMBER NUMBER NUMBER    

  TOTAL SV G SV G BP 
1996 51,330.26 30,482 4,073 26,409 1,067.04 36,807.50 6963 
1997 55,350.77 30,013 3,986 26,027 1,004.52 40,275.05 7095 
1998 60,390.29 32,620 4,261 28,359 1,186.80 48,539.25 7841 
1999 96,875.80 39,548 4,288 35,260 1,644.85 57,870.40 5804 
2000 114,847.81 39,844 5,296 34,548 2,519.72 55,523.24 4615 
2001 69,351.98 42,021 4,236 37,785 1,199.70 57,511.13 8120 
2002 52,623.50 41,669 4,289 37,380 972.70 55,010.62 10269 
2003 41,277.85 37,468 2,838 34,630 643.09 54,297.71 12998 
2004 57,125.38 50,998 3,888 47,110 869.64 78,033.24 13508 
2005 65,050.81 55,046 4,001 51,045 896.90 92,982.46 14156 

TOTAL 664,224.45 399,709 41,156 358,553 12,004.95 576,850.60 8504 
YEAR PV NUMBER NUMBER NUMBER    

  TOTAL SVSI G SVSI G BP 
1996 51,330.26 30,482 5,534 24,948 1,457.59 27,771.45 5126 
1997 55,350.77 30,013 5,303 24,710 1,340.26 30,836.87 5329 
1998 60,390.32 32,621 5,397 27,224 1,506.15 37,514.76 5963 
1999 96,875.80 39,548 6,104 33,444 2,408.57 43,367.37 4228 
2000 114,844.02 39,844 7,491 32,353 3,410.52 37,917.69 3005 
2001 69,351.98 42,021 5,605 36,416 1,689.68 44,599.34 6187 
2002 52,623.72 41,670 4,940 36,730 1,209.90 44,268.83 8182 
2003 41,277.85 37,468 3,167 34,301 740.78 45,789.70 10914 
2004 57,125.38 50,998 4,545 46,453 1,039.64 65,914.20 11357 
2005 65,050.81 55,046 5,325 49,721 1,157.94 74,592.13 11289 

TOTAL 664,220.91 399,711 53,411 346,300 15,961.04 452,572.34 6573 
YEAR PV NUMBER NUMBER NUMBER    

  TOTAL SVJ G SVJ G BP 
1996 51,330.26 30,482 10,757 19,725 2,790.65 23,359.48 4007 
1997 55,350.77 30,013 10,338 19,675 2,755.15 26,494.18 4289 
1998 60,390.32 32,621 10,414 22,207 2,900.70 34,623.07 5253 
1999 96,875.80 39,548 11,907 27,641 3,784.89 37,939.73 3526 
2000 114,846.24 39,844 12,364 27,480 4,853.99 34,686.91 2598 
2001 69,351.98 42,021 11,772 30,249 3,198.85 38,449.13 5083 
2002 52,623.47 41,670 12,688 28,982 3,028.31 35,311.75 6135 
2003 41,277.85 37,468 9,416 28,052 1,871.34 38,224.47 8807 
2004 57,122.05 50,995 12,278 38,717 2,426.51 56,636.48 9490 
2005 65,050.61 55,045 12,687 42,358 2,716.81 67,930.41 10025 

TOTAL 664,219.35 399,707 114,621 285,086 30,327.19 393,655.60 5470 
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Table  13:  Out of the Money Option Basis Point Improvement of G vs. BS, SV, SVSI and 
SVJ by Leverage.  The columns left to right represent the D/E ratio, the present value of all matched pairs 
for that D/E ratio, the total number of the matched pairs for that D/E ratio, the number of those matched pairs 
where an alternative model price is closer to the market price in absolute distance, the number of matched 
pairs where the G model price is closer to the market price, the dollar value of the alternative model price 
improvement, the dollar value of G improvement, and the net basis point advantage of G's model for that D/E 
ratio. 

  
   

D/E PV NUMBER NUMBER NUMBER    
  TOTAL BS G BS G BP 

(0.00-0.10] 244,864.80 94,124 33,002 61,122 9,264.33 114,277.68 4289
(0.10-0.20] 248,380.07 135,081 39,364 95,717 8,493.22 230,658.20 8945
(0.20-0.30] 171,881.89 107,515 30,692 76,823 5,549.48 216,696.30 12284
(0.30-0.60] 307,088.04 211,527 61,224 150,303 10,199.87 355,311.28 11238
(0.60-1.00] 151,090.87 125,908 35,329 90,579 5,221.39 203,333.54 13112
(1.00-1.50] 76,513.58 63,126 18,770 44,356 2,934.87 86,917.13 10976
(1.50-2.00] 41,088.57 31,460 9,490 21,970 1,740.54 49,948.20 11733
TOTAL 1,240,907.82 768,741 227,871 540,870 43,403.70 1,257,142.33 9781

D/E PV NUMBER NUMBER NUMBER    
  TOTAL SV G SV G BP 

(0.00-0.10] 137,144.28 50,080 8,043 42,037 3,416.30 62,748.01 4326
(0.10-0.20] 139,899.55 74,312 7,905 66,407 2,600.75 108,783.91 7590
(0.20-0.30] 89,960.33 55,904 5,050 50,854 1,460.86 94,618.74 10355
(0.30-0.60] 162,351.41 108,753 9,829 98,924 2,463.04 161,447.65 9793
(0.60-1.00] 77,934.74 65,442 5,997 59,445 1,084.50 89,945.62 11402
(1.00-1.50] 37,545.37 30,531 2,968 27,563 672.10 38,143.77 9980
(1.50-2.00] 19,388.77 14,687 1,364 13,323 307.41 21,162.90 10756
TOTAL 664,224.45 399,709 41,156 358,553 12,004.95 576,850.60 8504

D/E PV NUMBER NUMBER NUMBER    
  TOTAL SVSI G SVSI G BP 

(0.00-0.10] 137,140.40 50,079 10,187 39,892 4,514.28 44,983.79 2951
(0.10-0.20] 139,899.55 74,312 10,123 64,189 3,484.15 83,382.74 5711
(0.20-0.30] 89,960.98 55,905 6,552 49,353 1,846.31 76,273.74 8273
(0.30-0.60] 162,350.96 108,753 12,948 95,805 3,311.38 127,073.61 7623
(0.60-1.00] 77,934.88 65,444 7,788 57,656 1,469.04 72,865.41 9161
(1.00-1.50] 37,545.37 30,531 3,941 26,590 881.71 30,442.37 7873
(1.50-2.00] 19,388.77 14,687 1,872 12,815 454.18 17,550.67 8818
TOTAL 664,220.91 399,711 53,411 346,300 15,961.04 452,572.34 6573

D/E PV NUMBER NUMBER NUMBER    
  TOTAL SVJ G SVJ G BP 

(0.00-0.10] 137,141.58 50,079 17,673 32,406 6,551.02 38,465.09 2327
(0.10-0.20] 139,899.55 74,312 21,607 52,705 6,499.77 75,581.55 4938
(0.20-0.30] 89,958.59 55,903 14,245 41,658 3,741.18 69,448.93 7304
(0.30-0.60] 162,350.61 108,751 30,307 78,444 7,198.69 110,761.15 6379
(0.60-1.00] 77,934.88 65,444 17,740 47,704 3,382.44 60,236.59 7295
(1.00-1.50] 37,545.37 30,531 9,032 21,499 1,959.41 24,845.90 6096
(1.50-2.00] 19,388.77 14,687 4,017 10,670 994.67 14,316.39 6871
TOTAL 664,219.35 399,707 114,621 285,086 30,327.19 393,655.60 5470
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Table  14:  Implied Parameters For Pan(2002)'s Models. 
 
The structural parameters of a given model are estimated by firm by IS-GMM. The first line is the sample 
average of the estimated parameters; the second line is the standard errors in parentheses. Following  
Pan2002 Pan2002 , the structural parameters' definitions are as the following: vκ  is the mean-reversion rate, 

v  is the constant long-run mean, vσ  is the volatility coefficient, ρ  is the correlation of the Brownian 

shocks to price S  and volatility V , λ  is the constant coefficient of the state-dependent stochastic jump 
intensity tVλ , μ  is the mean relative jump size under the physical measure, sη  is the constant coefficient 

of the return risk premium, vη  is the constant coefficient of the volatility risk premium, *μ  is the mean 

jump size of the jump amplitudes SU  under the risk-neutral measure and Jσ  is the variance of the jump 

amplitudes SU  under the risk-neutral measure. SV0, SV, SVJ0, and SVJ, respectively, stand for the no risk 
premia model, the volatility-risk premia model, the jump-risk premia model and the volatility and jump risk 
premia model. For conciseness, the reported are the average of each parameter across all the firms.  

  
   Parameters    SV0   SV  SVJ0  SVJ  

 vκ   16.31  24.40   18.22   12.08 
   (5.92)  (4.57)   (8.12)   (8.61) 

v   0.02  0.01   0.01   0.01 
   (0.02)  (0.01)   (0.01)   (0.01) 
vσ   0.63  0.67   0.56   0.57 
   (0.31)  (0.39)   (0.19)   (0.16) 
ρ   −0.64  −0.69   −0.59   −0.59 
   (0.36)  (0.40)   (0.14)   (0.15) 
Sη   3.71  1.02   −0.73   −0.46 
   (0.93)  (1.61)   (3.14)   (3.33) 
vη     1.25     −0.51 
     (2.91)     (3.69) 
λ        10.33   11.13  
        (3.89)   (3.81) 
Jμ        −0.17   −6.36  
        (13.78)   (15.24) 
Jσ        3.76   4.13 
        (3.23)   (3.09) 
*μ        −11.94   −9.10  
        (12.31)   (10.44) 

 Implied 
Volatility (%)  

56.11  50.71  45.45  35.47  

 
  

  
 

 
 
 
 
 



74 
 

APPENDIX I 
 
 
In this appendix we discuss comparisons of BS, G, BCC and Pan.  Where possible we tried 

to implement the different models with the same methodology.  This was simple for BS 

and G because BS is a special case of G.  In both BS and G we can imply the parameters 

directly from contemporaneous prices of the stock and at-the-money options on the stock.  

We also used the alternate volatility estimation methodology of finding the volatility that 

minimizes the sum of squared errors for pricing equity index options on any day.  This 

comparison allows us to show that the G model dominates BCC and BS when the models 

are implemented with identical methodologies.  Furthermore, we lag the volatility estimate 

by one day in order for the estimate to be out of sample, as in BCC.  As mentioned above, 

this methodology is necessary to implement models such as BCC which assume many 

other stochastic complexities and require many more option prices in order to estimate 

their required parameters.  Appendix II reproduces Table 3 from BCC (1997) and 

illustrates that BS (1973) does much worse without a volatility term structure primarily 

because BCC has 5 to 9 times as many parameters as BS which has only 1 parameter. We 

are able to effectively reproduce Table 3.  In the comparisons with Pan we do not use the 

implied state generalized method of moments technique for the competing models.  
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APPENDIX II 

The equation below from BCC, p. 210, # 7, describes the dynamics for all three BCC embedded models 
SV, SVSI, and SVJ subject to the relevant parameters and boundary condition for a put or call option. 

                 

The table below from BCC, p. 218, Table 3, shows a parameterization for all three BCC models. 
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