Chapter 9

Lagrangian Relaxation for Integer
Programming

Arthur M. Geoffrion

Introduction by Arthur M. Geoffrion

It is a pleasure to write this commentary because it offers an opportunity to ex-
press my gratitude to several people who helped me in ways that turned out to be
essential to the birth of [8]. They also had a good deal to do with shaping my early
career and, consequently, much of what followed.

The immediate event that triggered my interest in this topic occurred early in
1971 in connection with a consulting project I was doing for Hunt-Wesson Foods
(now part of ConAgra Foods) with my colleague Glenn Graves. It was a distribution
system design problem: how many distribution centers should there be and where,
how should plant outputs flow through the DCs to customers, and related questions.
We had figured out how to solve this large-scale MILP problem optimally via Ben-
ders Decomposition, a method that had been known for about a decade but had not
yet seen practical application to our knowledge. This involved repeatedly solving a
large O-1 integer linear programming master problem in alternation with as many
pure classical transportation subproblems as there were commodity classes. The
master problem was challenging, and one day Glenn, who did all the implementa-
tion, came up with a new way to calculate conditional “penalties” to help decide
which variable to branch on in our LP-based branch-and-bound approach.

I regularly taught a doctoral course in those days that covered, infer alia, the
main types of penalties used by branch-and-bound algorithms. But after studying the
math that Glenn used to justify his, I didn’t see a connection to any of the penalties
I knew about. I did, however, notice that Glenn made use of a Lagrangean term,
and I was very familiar with Lagrangeans owing to my earlier work on solving
discrete optimization problems via Lagrange multipliers [2] and on duality theory
in nonlinear programming [6]. It often happens that a mathematical result can be
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derived in quite distinct ways, and so it was in this case: I found that not only Glenn’s
penalties, but several other kinds of penalties could be derived in a unified way
as shown in Sec. 4 of [8], and that numerous special problem structures could be
exploited to produce additional penalties. This pleased me greatly, because I had a
passion for trying to unify and simplify results that others had derived from disparate
viewpoints, especially in the context of exploiting special problem structure. At that
point, I knew that I had to write this up.

Shortly it became clear that what I later dubbed Lagrangean relaxation was use-
ful for exploiting various kinds of special structures of integer programming prob-
lems in other ways besides penalties. In particular, it can be used to tailor most of
the main operations found in branch-and-bound algorithms as explained in Sec. 3
of [8]. It also rendered obsolete the need for so-called surrogate constraints as ex-
plained in Sec. 5, and it can be used to derive new cutting planes as explained in
Sec. 6. Some basic theory of Lagrangean relaxation had to be filled in, the subject
of Sec. 3, and this drew importantly on my earlier work on nonlinear duality. I had
a working paper version of [8] by late 1971, and in late 1972 presented the main
results at a symposium in Germany. When Glenn and I wrote up the work surround-
ing the Hunt-Wesson Foods project, we included a comment in Sec. 3.1 of [7] on
the branching penalties used in our implementation.

To explain more fully where [8] came from, I should also explain how the trig-
gering Hunt-Wesson project came about, especially since this was my first indus-
trial consulting engagement since obtaining my Ph.D. 5 years earlier (how does one
boot a consulting practice?), and I should comment on the prior research that sup-
ported [8] and the novel solution method used for the Hunt-Wesson problem. First
a few words about the origin of the project.

A very senior UCLA colleague of mine, Professor Elwood Buffa, opened a door
in 1970 that would change my life in unforeseen ways. A former doctoral student of
his, Dr. William Taubert, was then a vice president of Hunt-Wesson Foods, which
had been struggling for years to rationalize its network of distribution centers. El
knew that I was working on large-scale optimization methods that might conceiv-
ably apply to such problems, but he couldn’t have known whether I could adapt
those methods successfully. Neither did I. With no prompting whatever, he decided
to recommend me to Bill Taubert as a consultant. El didn’t have to take that risk,
nor did Bill in hiring me. If I failed—which my inexperience as a consultant and
unfamiliarity with distribution systems should have made the safest bet—it would
have been an embarrassment to El, Bill, and UCLA.

But a streak of good luck ensued, leading to a successful project at Hunt-Wesson
Foods, to many more consulting engagements in what is now called supply chain
management, to the founding of a consulting and software firm that celebrates its
30th anniversary this year (2008), to the discovery of several important research
problems that would occupy most of the rest of my career, and to an appreciation
for the synergies of research, practice, and teaching that has shaped my professional
life, including my service to TIMS and INFORMS.

If fortune favors the prepared mind, mine must have been prepared by my previ-
ous work on topics that proved useful not only for the Hunt-Wesson Foods project
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and what followed from it, but also for the paper which this commentary introduces.
Especially my work on integer programming (especially [3, 4]), nonlinear duality
theory [6], and large-scale optimization methods (especially [5]). Most of that work
came about because of another door opened for me by my dissertation advisor at
Stanford University, Professor Harvey Wagner.

When I accepted a job at UCLA’s business school in 1964, just prior to finishing
my thesis, Harvey suggested that I would benefit from being a day-a-week con-
sultant at RAND Corporation, just a few miles from UCLA. He arranged it with
Dr. Murray Geisler, head of RAND’s Logistics Department. At that time, RAND
was not far past its prime as the greatest think tank in the world, including its aston-
ishing role as the fertile spawning ground or incubator of such important OR meth-
ods as discrete event and Monte Carlo simulation, dynamic programming, game the-
ory, parts of inventory and logistics theory, network flow theory, and mathematical
programming—Ilinear, quadratic, stochastic, and integer. RAND was also a major
contributor to the very early history of artificial intelligence, digital computing, the
Internet, both systems analysis and policy analysis, the U.S. space program, and
much more besides. That day a week, which lasted fairly steadily until the early
1970s, was disproportionately important to my early research life.

I had fine operations research colleagues at UCLA, but none did research in op-
timization, whereas at RAND I could interact with many staff members and A-list
consultants who did, including Robin Brooks, Eric Denardo, Ben Fox, Ray Fulker-
son, Glenn Graves, Al Madansky, Harry Markowitz, Bob Thrall, and Philip Wolfe.
Moreover, at RAND I had excellent computer programming and clerical/data ser-
vices (they had an IBM 7044 when I arrived), a full-service publication department
that professionally edited and widely disseminated most of my research papers on
optimization, and a good library that would even translate Russian-language articles
at my request. [ was in heaven there, and could not overstate the advantages gained
from RAND’s infrastructure and my second set of colleagues there as I launched
my career.

It was at RAND that, very early in 1965, Murray handed me a somewhat beat
up copy of Egon Balas’ additive algorithm paper prior to its publication [1] (written
while Egon was still in Rumania), and asked me to take a look at it since it was
creating a stir. Thus commenced my enduring interest in integer programming. I re-
cast this work as LP-based implicit enumeration in a limited-circulation manuscript
dated August 23, 1965, published internally at RAND in September 1967 and ex-
ternally about two years later [4]. Murray quickly arranged for Richard Clasen—an
important early figure in mathematical programming in his own right—to be as-
signed to me to implement my first O-1 integer programming code, the RIP30C
incarnation of which RAND distributed externally starting mid-1968. Murray also
arranged for others to assist me with the extensive numerical experiments.

My debt to RAND goes beyond even what is mentioned above: as a hotbed of
OR for many years, RAND’s influence on nearby UCLA for more than a decade
prior to my arrival helped to build and shape an OR group with a vitality and local
culture that provided a comfortable home for my entire career. The group’s found-
ing in the early 1950s originated independently of RAND, but its frequent interac-
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tions with RAND staff and consultants in its early days were of incalculable value;
there are records of visits in the 1950s by Kenneth Arrow, Richard Bellman, Abe
Charnes, Bill Cooper, George Dantzig, Merrill Flood, Ray Fulkerson, Alan Manne,
Harry Markowitz, Oscar Morgenstern, Lloyd Shapley, Andy Vaszonyi, and dozens
of others. (As an aside, the phrase “management sciences” was coined during a
conversation between Melvin Salveson, the former Tjalling Koopmans student who
founded UCLA’s OR group, and Merrill Flood of RAND in September, 1953, the
same month when Mel hosted on campus the first pre-founding meeting—attended
by many RAND OR people—of what became The Institute of Management Sci-
ences (TIMS) three months later.) Some taught courses as lecturers, and some even
joined the faculty. By the time of my arrival, these interactions had largely tailed
off, but they left a palpable tradition of creativity and excellence in my group that
inspired my best efforts as an impressionable young faculty member.

Let me summarize. The paper following this commentary did not appear out of
nowhere. It was enabled by multiple gifts of wisdom and kindness toward me by
Harvey Wagner, who taught me how to do research and arranged for me to con-
sult at RAND; by Elwood Buffa, who dropped my first and all-important consulting
job in my lap; by Murray Geisler, who turned my attention to integer program-
ming and arranged generous assistance in support of my research; and by my early
colleague/mentors at UCLA, Jim Jackson (an OR pioneer whose contributions in-
cluded “Jackson networks™) and Jacob Marschak (a world-class economist), who
helped shape my understanding of what it means to be a professor, arranged for me
to be supported from the outset on their research grants, and then helped me obtain
my own grants (from NSF starting in 1970 and ONR starting in 1972). I will always
be grateful to these people for the important roles they played in my professional
life.
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Taking a set of “complicating” constraints of a general mixed integer program up into the
objective function in a Lagrangean fashion (with fixed multipliers) yields a “Lagrangean
relaxation” of the original program. This paper gives a systematic development of this simple
bounding construct as a means of exploiting special problem structure. A general theory is
developed and special emphasis is given to the application of Lagrangean relaxation in the
context of LP-based branch-and-bound.

1. Introduction

The general integer linear programming problem can be written as
(P) minimize c Xx,
x20

subject to A x = b, Bx =d,
X; integer, jel,

where b, ¢ and d are vectors, A and B are matrices of conformable dimen-
sions, and the index set I denotes the variables required to be integer. The
reason for distinguishing two types of constraints is that the second of
these, B x = d, is supposed to have special structure.

We define the Lagrangean relaxation of (P) relative to Ax = b and a
conformable nonnegative vector A to be

(PR)) mini>r¥)1ize cx + A — Ax),

subject to Bx = d,
X; integer, jel

* An earlier version of this paper was presented at the IBM International Symposium
on Discrete Optimization, Wildbad, Germany, October 30-November 1, 1972. This research
was supported by the Office of Naval Research under Contract Number N00014-69-A-0200-
4042 and by the National Science Foundation under Grants GP-26294 and GP-36090X.
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The fruitful application of (PR;) in specific cases requires judicious parti-
tioning of the constraints into the two types A x = b and Bx = d, and an
appropriate choice of 4 = 0.

Lagrangean relaxation has been used by Held and Karp [20,21] in their
highly successful work on the traveling-salesman problem; by Fisher [6]
in his promising algorithm for scheduling in the presence of resource
constraints and in his efficient machine scheduling algorithm [7]; by Fisher
and Schrage [9] in their proposed algorithm for scheduling hospital
admissions; by Ross and Soland [26] in their remarkably efficient algorithm
for the generalized assignment problem; and by Shapiro [27] and Fisher
and Shapiro [10] in the context of a group theoretic approach to pure
integer programming. See also [8]. Other authors have also made special
application of Lagrangean relaxation ideas implicitly if not explicitly in
their work. Not to be forgotten is the general relevance of the literature on
Lagrangean methods for nonconvex optimization (e.g., [2, 5, 18]).

The purpose of this paper is to develop the theory and explore the useful-
ness of Lagrangean relaxation in the context of branch-and-bound or
implicit enumeration methods for (P). In contrast with most of the references
just cited, our emphasis is on LP-based branch-and-bound algorithms
rather than those whose bounding constructs do not involve linear pro-
gramming. This is not to deny the great value of non-LP-based techniques
for special problems, but rather to stress the as yet untapped potential of
Lagrangean relaxation as a means of making the most widely used general
purpose approach more efficient for problems with special structure. The
development is intended for use at two levels. Pedagogically it strives for a
unified exposition of a number of old and new developments in integer
programming. As a research effort it aims to develop what appears to be
a potent general approach to the design of improved algorithms for special
classes of integer programs. Although the algorithmic context of this paper
is the branch-and-bound approach to integer linear programs, it is clear
that these ideas can also be applied to other classes of algorithms and
problems.

The paper is organized as follows. The basic results concerning the
relation between (P), (PR ;) and related problems are collected in Section 2.
Lagrangean duality theory turns out to play a surprisingly major role. In
Section 3, a generic LP-based branch-and-bound approach for (P) is
reviewed, and the basic uses and strategies of Lagrangean relaxation in this
context are described. Section 4 derives the standard penalties of Driebeek
[4] and Tomlin [28] from the viewpoint of Lagrangean relaxation, and
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several new penalties are developed. In Section 5, the concept of surrogate
constraints as developed by Glover [17] and the author [12] is shown to be
subsumed by the Lagrangean relaxation viewpoint. Section 6 derives
cutting-planes based on Lagrangean relaxation, including some which
utilize the penalties of Section 4. Concluding comments are given in
Section 7.

Three simple examples for the special constraints B x = d will now be
introduced. They will serve in the sequel to illustrate general ideas and to
emphasize that Lagrangean relaxation is intended to be specialized to
particular problem structures. The final subsection of this Introduction
summarizes the special notations and assumptions commonly used in the
sequel.

1.1. Three examples

The Lagrangean relaxation (PR;) must be much simpler to solve than
(P) itself in order for it to yield any computational advantage. It should
admit a closed form solution or be solvable by an efficient specialized
algorithm. Thus the constraints B x = d must possess considerable special
structure. Three of the simplest possible examples of such structure are as
follows. They will be referred to repeatedly in the sequel.

Example 1. The constraints B x = d specify only upper bounds on some
or all of the variables. For instance, in 0-1 programming problems the
integer variables possess upper bounds of unity. It is easy to see that the
optimal solution of (PR;) can be written down by inspection of the signs
of the collected coefficient vector of x, namely (¢ — 4 A).

Example 2. The constraints B x > d are as in Example 1 but also include
some generalized upper bounding constraints of the form
Yox; =1, k=12... K, (1)
Jedk
where Jy,...,Jg are disjoint subsets of I. Such constraints perform a
“multiple choice” function. The optimal solution of (PR;) can again be
written down by inspection, with a search for the smallest (c — 4 A); now
being necessary over each subset J,.

Example 3. The constraints B x = d are as in Example 1 but also include
some constraints of the form
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ﬁijj < BrXes k=1,...,K, 2
JjeJk
where the K subsets {k, J,} are disjoint, x,,..., xg are 0-1 variables, the

variables in J, are continuous-valued, and all § coefficients are strictly
positive. This type of constraint typically arises in location and expansion
models. In the familiar capacitated plant location problem for example,
X, is 1 or 0, according to whether or not a plant of capacity S, is built at.
the k™ site, x; for j e J, corresponds to the amounts shipped from plant
site k to various destinations, and the f;’s are all unity. The Lagrangean
relaxation (PR;) can be solved easily because it separates into K indepen-
dent problems of the form

minimize ) (c — A A)x; + (¢ — A AhX,
JeJk

subject to Y. Biix; < BuXe,

JjeJx

(3%

0= x;=uy, JjeJi

x,=0orl,

where u; is the upper bound on variable x;. If x, = 0, it follows from the
positivity of B,; that x; = 0 must hold for all j € J,. If x, = 1, (3%) becomes
a trivial “continuous knapsack problem” with bounded variables. The best
of the solutions obtained under the two cases x, = 0 and x;, = 1 yields the
true optimal solution of (3%). From these K solutions one may directly
assemble the optimal solution of (PR)).

These three examples are among the simplest types of special constraints
B x = d for which the associated Lagrangean relaxation can be optimized
very efficiently. Whereas closed form solutions are available for these
examples, other applications may call for specialized algorithms of a less
trivial sort. In most practical applications of integer programming there are
several obvious and tractable choices for the constraints to be designated
as Bx = d. In Held and Karp’s excellent work on the traveling-salesman
problem [20, 21], for example, (PR;) is a minimum spanning “I-tree”
problem for which highly efficient algorithms are available. And in Fisher
and Schrage’s algorithm for hospital admissions scheduling [9], (PR;)
separates into a relatively simple scheduling problem for each patient.
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1.2. Notation and assumptions

Notation and terminology is generally standard and consistent with
that of [14], a survey paper containing additional background material.
However, the reader should memorize the following peculiar notations:
if (+) is an optimization problem, then v(-) is its optimal value, F(-) is its set
of feasible solutions, and (%) refers to the same problem with all integrality
conditions on the variables dropped; the vector /1 denotes an optimal
multiplier vector (dual solution) associated with the constraints 4 x = b
for the ordinary linear program (P).

We adopt the convention that the optimal value of an infeasible optimiza-
tion problem is + oo (resp. —oo) if it is a minimizing (resp. maximizing)
problem. The inner product of two vectors, be they row or column, is
denoted simply by their juxtaposition.

Two benign assumptions are made throughout this paper in the interest
of decluttering the exposition, except where explicitly stated to the contrary.
The first is that the nonspecial constraints 4 x = b are all inequality
constraints. If some of these constraints were given as equalities, then the
corresponding components of A would not be required to be nonnegative.
This is the only change _required to accommodate equality constraints.
The second assumption is that the special constraints Bx = d include
upper bounds on all variables. This obviates the need for special treatment
of the case where (P) or one of its relaxations has optimal value equal to
— o0, and also permits certain notational economies. This assumption is
consistent with the vast majority of potential applications. It is a simple
exercise to allow for its absence in all of the results to follow.

2. Theory of Lagrangean relaxation

The term relaxation is used in this paper in the following sense: a mini-
mizing problem (Q) is said to be a relaxation of a minimizing problem
(P) if F(Q) = F(P) and the objective function of (Q) is less than or equal to
that of (P) on F(P). Clearly (PR,) is a relaxation in this sense for all 4 = 0,
for the extra Lagrangean term A(b — A x) in the objective function of
(PR;) must be nonpositive when 4 x = b is satisfied. Notice that the
common practice of relaxation by simply throwing away some of the
constraints is equivalent to Lagrangean relaxation with A = 0. Permitting
A # 0 (but always =0) allows the relaxation to be tighter.

The potential usefulness of any relaxation of (P), and of a Lagrangean
relaxation in particular, is largely determined by how near its optimal
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value is to that of (P). This furnishes a criterion by which to measure the
“quality” of a particular choice for A. The ideal choice would be to take 4
as an optimal solution of the (concave) program

(D) mai(i>r(r)1ize u(PR)),

which is designated by (D) because it coincides with the formal Lagrangean
dual of (P) with respect to the constraints 4 x = b (see, e.g., [13]). This
problem in turn is intimately linked to the following relaxation of (P):

(P*) minimize c Xx,
X

subject to A x = b,
xeCo {x =2 0: Bx = d and Xx; integer, je I},

where Co denotes the convex hull of a set. It may be difficult to express the
convex hull in (P*) as an explicit set of linear constraints, but in principle
this is always possible and so (P*) may be regarded as a linear program.
In fact, as we shall see, (P*) and (D) are essentially LP duals. An optimal
multiplier vector corresponding to 4 x = b will be denoted by A* when
(P*) has finite optimal value.

Theorem 1 describes some of the basic relationships between (P), (PR)),
(D), (P*), and (P) (the usual LP relaxation which drops the integrality
requirements).

Theorem 1. (a)
(a) F(P) 2 F(P*) 2 F(P), F(PR;) 2 F(P),
v(P) £ v(P*) < v(P), o(PR;) £ v(P) forall2 = 0.
(b) If (P) is feasible, then v(P) < v(PRy).
(c) Iffor a given A a vector x satisfies the three conditions

(i) xis optimal in (PR)),
(i) Ax=b,
(iii)) A(b —Ax) =0,

then x is an optimal solution of (P). If x satisfies (i) and (ii) but not (iii), then x
is an e-optimal solution of (P) withe = A(Ax — b).
(d) If (P*) is feasible, then

o(D) = max o(PR;) = o(PR;,) = v(P¥)
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Proof. Parts (a) and (c) are very easy. Let (P) be feasible. Then it has finite
optimal value, for B x = d includes upper bounds on all variables, and

u(P) = max v(PR;) (by the dual theorem of linear program-

ming)’,
= v(PRy) (by the definition of 1),
< v(PRy) (because F(PR;) = F(PRy).

This proves part (b). An identical argument (the third portion is not needed)
applied to (P*) yields the conclusion of part (d) if one uses the following
observation in the obvious way:

o(PR;) =[mincx + A(b — A x),

s.t. xeCo{x = 0:Bx = d and x; integer, je I }],

which holds because the minimum value of a linear function over any
compact set is not changed if the set is replaced by its convex hull.

A few comments are in order. Part (a) simply records the most obvious
relations between (P) and its relaxations (P), (P*) and (PR,). Part (b) shows
that 1, an immediate by-product of optimally solving the standard LP
relaxation (P), yields a Lagrangean relaxation that is at least as good as (P)
itself (hopefully it will be better). Part (c) indicates the well-known conditions
under which a solution of a Lagrangean relaxation is also optimal or
near-optimal in (P). This is in recognition of the fact that Lagrangean
relaxation is of interest not only for the lower bounds it yields on »(P), but
also for the possibility that it may actually yield an optimal or near-optimal
solution of (P). It follows, incidentally, that (PR;) can yield in this manner
a proven ¢-optimal solution (¢ = 0) of (P) only if o(PR;) = v(P) — &. Thus
the provable quality of the feasible solutions obtainable from Lagrangean
relaxation by invoking part (c) is limited by the gap (if any) between v(P)
and v(D). Part (d) establishes that Lagrangean relaxation can do as well as,
but no better than (P*). Thus, the position of v(P*) in the interval [v(P), v(P)]
is the question of central concern when analyzing the potential value of
Lagrangean relaxation applied to a particular problem class.

! We have taken here the “partial” dual of (P) with respect to the constraints Ax > b,
rather than the “full” dual customarily used in linear programming. See [13] (especially Sec.
6.1) for an account of this generalization of the traditional duality theory. It is easily verified
that 4 is a bona fide optimal solution of the partial dual even though it may be defined in
terms of the full dual.
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It bears emphasis that the conclusion of part (d) is really a simple con-
sequence of the fact that (P*) and (D) are essentially LP duals of one
another. The true dual of (P*) when multipliers are introduced just for the
A x = b constraints is

maﬂrgize [mincx + A(b — Ax),
st. xeCo{x = 0: Bx = d and x; integer, je I }].

But, as observed in the proof of part (d), the maximand of this problem
equals v(PR,),so (D) must have the same optimal value and optimal solution
set as the true dual of (P*). Thus one may invoke most of the rich optimality/
duality theory for linear programming to say much more about the relation-
ship between (P*) and (D) than is said in Theorem 1 (d). For instance, one
may assert when (P*) is feasible that the set of its optimal multipliers
coincides with the set of optimal solutions of (D) and also with the negative
of the set of subgradients at y = 0 of its (convex) b-perturbation function

¥(v) £ [inf. ¢ x,
st. Ax=b—y,
xeCo {x =2 0: Bx = d and x; integer, je I }],

(see, e.g., [13, Th. 1 and 3]).

Theorem 1 leaves open two important questions: the relations between
v(P) and v(P*) and between v(P*) and v(P). These relations are taken up in
the next two theorems.

Theorem 2 shows that v(P) = v(P*) when the following holds:

Integrality Property. The optimal value of (PR}) is not altered by drop-
ping the integrality conditions on its variables, ie., v(PR;) = v(PR})
for all A = 0.

Theorem 2. Let (P) be feasible and (PR;) have the Integrality Property.
Then (P*) is feasible and

v(P) = v(PRy) = v(D) = v(PR;,) = v(P*).
Proof. In view of Theorem 1 (b), (d), it is enough to show that o(P) = v(P*).
We have

v(P) = max v(PR,) (by duality),

= max v(PR;) (by the Integrality Property),
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=max [mincx + A(b — AXx),

120
st. xeCo{x = 0: Bx = d and x; integer, je I }]
(by the observation used in the proof of
Theorem 1 (d)),
= v(P¥*) (by duality).

Notice that the feasibility of (P*) is a consequence of the fact that its dual
has finite optimal value.

Thus Lagrangean relaxation can do no better than the standard LP
relaxation (P) when the constraint partition 4 x = b, Bx = d is such that
the Integrality Property holds.> The best choice of A for (PR}) is then A
from (P). In this circumstance, Lagragean relaxation seems to be of ques-
tionable value unless a near-optimal solution of (D) can be found by
specialized means more rapidly than (P) can be solved by linear program-
ming methods. Generally it is more promising to use Lagrangean relaxa-
tions for which the Integrality Property does not hold.

The Integrality Property clearly holds for Examples 1 and 2 (one may
assume without loss of generality that the upper bounds on the integer
variables are integers), but it does not hold for Example 3. The presence or
absence of the Integrality Property is evident in many applications upon
inspection of (PR;) in light of the special structure of the constraints
Bx = d. In other applications one may be able to appeal to the total
unimodularity characterization of natural integer solutions of linear
programming problems (e.g., [ 30]).

We now turn to the relationship between v(P*) [or v(D)] and v(P).
A sufficient condition for v(P*) = v(P) obviously is

F(P*) = Co [F(P)],

but this is likely to be difficult to verify in specific cases because the “integer
polyhedron” is a notoriously difficult object to study.

Most of what is known about the relationship in question is a conse-
quence of the fact that (D) is the formal Lagrangean dual of (P) with respect
to the constraints A x = b. Careful examination of Lagrangean duality
theory shows that many of the results do not require convexity of the primal

? This fact has been noted by Nemhauser and Ullman [25] in the special context of
Example 1.
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problem. For instance, convexity is not used in the proofs of the key
Lemmas 3, 4 and 5 of [13]. These results yield Theorem 3, which uses the
following definitions. The b-perturbation function associated with (P) is
defined as

d(y) L [inf e x,

st. Ax=b—y, Bx=d,
x; integer, jel].

A vector y conformable with y is said to be a global subgradient of ¢, at
y = 0 (assuming ¢,(0) = v(P) is finite) if

op(y) = v(P)+ yy forall y.

The adjective “global” is used to emphasize that the subgradient definition
used here relates to a global rather than local aspect of ¢, (Which is generally
nonconvex).

Theorem 3. Assume that (P) is feasible (and therefore has an optimal solution,
since all variables are bounded).

(@) The following are equivalent :

(1) v(P) = v(D).

(2) There exists a global subgradient of ¢, at y = 0.

(3) There exists a pair (x, A) satisfying A = 0 and conditions (i), (ii)
and (iil) of Theorem 1(c).

(b) If v(P) = v(D), then each optimal solution of (D) is the negative of a
global subgradient of ¢, at y = 0 and conversely, and any such solution A*
yields the set of all optimal solutions of (P) as the vectors x which satisfy
conditions (i), (ii) and (iii) of Theorem 1 (c) with 1 = A*.

The most interesting aspect of Theorem 3 is the criterion for the equality
v(P) = v(D) in terms of the existence of a global subgradient of ¢, at the
origin and the identification of these subgradients with the solutions of (D).
The theorem also confirms that Lagrangean relaxation does indeed yield
the optimal solutions of (P) when v(P) = v(D), via the optimality conditions
of Theorem 1 (c).

The b-perturbation function ¢, thus emerges as a key object for study
if one wishes to understand when v(P) = v(D) is likely to hold. What is
known about ¢,? Clearly it is nonincreasing. It can also be shown to be
lower semicontinuous. It is piecewise-linear and convex over any region
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where the optimal values of the integer variables stay constant, for in such
a region the perturbed (P) reduces to a perturbed linear program. And ¢,
is obviously bounded below by the piecewise-linear convex perturbation
function ¢} defined earlier for (P*). In fact, this last observation can be
strengthened to assert that ¢} is actually the best possible convex function
which nowhere exceeds ¢, in value. This geometrically obvious but impor-
tant result is stated more precisely as follows.

Theorem 4. The b-perturbation function ¢F associated with (P*) is precisely
the lower convex envelope of the b-perturbation function ¢, associated with (P).

Proof. An alternative way of phrasing the result is to say that the epigraph
of ¢ is the convex hull of the epigraph of ¢,; that is, Epi[¢#] = Co

{Epi[¢,]}. Clearly,
Epi [¢5] £ {(1): 1 = ¢4())}

={(wy:u=cxandb — Ax < yforsome xe X},
where
X £ {x=0:Bx = dand x; integer for je I},

and similarly for Epi{¢}] with X replaced by Co {X}. Suppose that
(,¥) € Epi[¢f] Then i = cXx and b — AX <y for some X e Co {X}. Let
X = Y, 0,x", where x" € X, 0, = 0 for all h and ), 0, = 1. Define y" = ¢ x"
and y* = b — Ax" for all h. Clearly (4", y")eEpi[¢,] for all h. Hence
Y 041", ") € Co {Epi [¢,]}. But

%00 ) = (51 0 2 00

= (Zh Onc X", Zh 0u(b — AX") = (cX,b — AX) = (&, ))
and so (&, ) must also be in Co {Epi[¢,]}. This shows that Epi [¢}] <
Co {Epi[¢;,]}. Now suppose (1 y)eCo {Epi[d,]}. Let (& y) = Y0,

(1", y"), where (u", y*) € Epi [¢,], 0, = O for all h and ), 6, = 1. Let x" be
any point in X satisfying " = ¢ x" and b — A x" < y*. Then

Yo" =Y e Xt =X,
h h

;thhg hZHh(b —Ax") =b — A%,
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where ¥ £ Y, 0,x". Thus (%,7) = (cX,b — AX) with xeCo {X}, which
shows that (zz, y) € Epi [¢7]. This completes the proof.

This is the central connection between (P) and (P*) — actually, between
two parameterized families of problems of which (P) and (P*) are members
of special significance. The duality gap (if any), v(P) — v(D), is precisely
equal to the difference between the b-perturbation function of (P) and its
lower convex envelope, both evaluated at the origin. This characterization
provides the basis for a qualitative understanding of duality gaps—and
hence of the potential of Lagrangean relaxation—when applied to specific
classes of problems with reference to salient characteristics of the data.

Some of these ideas are illustrated in Fig. 1 for a hypothetical mixed
integer program with but a single A-type constraint (so that y is a scalar).
Suppose that only two sets of values for the integer variables enter into an
optimal solution of (P) as b varies. The piecewise-linear and convex b-per-
turbation functions for the two corresponding linear programs (with the
integer variables fixed) are drawn as light lines. One of these linear programs
becomes infeasible for y < y!, while the other becomes infeasible for
y < y. The pointwise minimum of these two functions is @,(y), which is
superimposed as a heavy line. The lower convex envelope of ¢,(y), namely
¢i(y), is superimposed as a line with alternating dots and dashes. It is
clear that there is no duality gap (difference between ¢,(y) and ¢(y))
for y> < y < y3 or y* < y. A global subgradient of ¢, at y = 0 will exist

—— Gy
d)b(y)

b - perturbation functions with
integer variables held fixed

Fig. 1. Hypothetical illustration of b-perturbation functions.




9 Lagrangian Relaxation for Integer Programming 261

94 A.M. Geoffrion, Lagrangean relaxation for integer programming

(any subgradient of ¢ at y = 0 will do) if y = 0 falls in either of these inter-
vals. If y = 0 falls between y' and y* or between y* and y*, on the other
hand, there will be a gap and no global subgradient of ¢, at y = 0 will exist.

We note in closing that the duality gap tends to be rather small for the
class of problems with which we have numerical experience, namely
capacitated facility location problems with additional constraints. The
special constraints are as in Example 3. For four practical problems the
values averaged as follows (after normalization via division by 0.01 v(P)):

o(P) = 100.00,
o(D) = 99.93,
o(PR;) = 98.97,
o(P) = 97.46.

Notice that the duality gap is small by comparison with the gap between
the integer problem and its usual LP relaxation, and that the LP multipliers
7 yield a Lagrangean relaxation quite a bit better than the LP relaxation
itself. See [15] for further details.

3. The use of Lagrangean relaxation in LP-based branch-and-bound

Virtually all of the cutrent generally successful integer linear program-
ming algorithms are of the branch-and-bound type with linear program-
ming as the primary source of bounds [ 14]. This section and those to follow
discuss the use of Lagrangean relaxation as a device for possibly improving
the efficiency of such algorithms for special classes of problems.

A brief review of the usual LP-based branch-and-bound approach to
(P) is necessary at this point. The terminology adopted is that of [ 14] which
can be consulted for further details. At any given time there is a list of
so-called candidate problems, each of which is simply (P) with certain
additional “separation” constraints appended. The union of the feasible
regions of the candidate problems constitutes a partition of the unenumerat-
ed portion of the feasible region of (P). There is also a number z* representing
the objective value of the incumbent, the best currently known feasible
solution of (P) (initially z* can be taken to be a suitably large number). The
primary iterative step is to select one of the candidate problems, say (CP),
and to examine it for the existence of a feasible solution of (P) with value
better than z*. The examination may be conclusive or inconclusive, depend-
ing on how much effort is expended; the usual practice involves solving the
linear program (CP), which ignores all integrality conditions on the
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variables of (CP). A conclusive examination is one for which the outcome is

(i) that (CP) is infeasible (e.g. (CP) is infeasible), or
(ii) that o(CP) = z* (e.g. v(CP) = z*), or
(i1i) that v(CP) < z* and an optimal solution of (CP) is at hand (e.g. the
optimal solution X of (CP) happens to satisfy the integrality condi-
tions); this solution replaces the current incumbent and z* is updated.

Then (CP) is said to be fathomed and is deleted from the list of candidate
problems. Otherwise, (CP) is not fathomed and must be separated into two
or more simpler candidate (sub)problems to be added to the list. This is
accomplished via mutually exclusive and exhaustive separation constraints.
The usual practice (cf. [3]) is to select a particular separation variable j, € I
and to invoke an interval dichotomy on its range. For instance, for j, = 3
one subproblem might receive the new constraint x; < 2 and the other the
new constraint x3 > 3. Candidate problems continue to be examined in
this fashion, with fathoming or separation occurring each time, until the list
of candidate problems is exhausted.

It should be evident that a Lagrangean relaxation of (CP), say (CPR)),
is just as amenable as the usual linear programming relaxation (CP) as a
device for examining candidate problems: the infeasibility of (CPR;) implies
that of (CP); v(CPR;) = z* implies o(CP) = z*; and an optimal solution of
(CPR;), say x®, is optimal in (CP) if it is feasible in (CP) and satisfies com-
plementary slackness (see Theorem 1 (c)). Note that if x® is feasible in (CP)
but does not satisfy complementary slackness, it may still improve on the
incumbent, in which case it should be used to update the incumbent and z*
even though (CP) is not fathomed. In cases where x® is not feasible in (CP)
it may be worth trying to adjust it in some problem-specific manner so as
to gain feasibility and, hopefully, to improve thereby on the incumbent.
This is exactly the same tactic as is commonly used with (CP) when the
(fractional) LP solution is rounded to satisfy integrality in the hope of
obtaining an improved feasible solution.

The usual linear programming relaxation (CP) is also used commonly
to derive conditional bounds for use in guiding separation, for tagging
newly created candidate subproblems with lower bounds on their optimal
value, and for reducing the range restrictions on integer variables without
sacrificing optimality. Lagrangean relaxations of (CP) can be used for these
same purposes. Suppose that some variable j € I has a fractional value in the
LP solution X of (CP). We are interested in lower bounds on o(CP | x; < [X;])
and o(CP| x; = Ix;] + 1), where “|” signifies that the constraint following
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it is appended to the problem, and [X;] stands for the integer part of X;.
Such conditional bounds are given, respectively, by

vp()j) 4 u(CPR; I X; =< [Yj]),

vu(j) £ o(CPR, | x; = [x;] + 1). “)

If vp(j) = z* holds, then the lower limit for x; obviously can be tightened to
[x;] + 1. Similarly, vy(j) = z* implies that the upper range restriction can
be lowered to [X;]. It is even possible that both vp(j) = z* and vy(j) = z*
hold, in which case it is clear that (CP) is fathomed. The bounds (4) can also
be used to guide separation in the event that (CP) is not fathomed. Let
Vo(j) and V(j) be computed for every j eI such that X; is fractional. One
appealing choice for the separation variable would be the one which
maximizes the larger of V,(j) and V(j) over all eligible j. Several successful
integer programming codes have employed an analogous criterion based on
(CP) rather than (CPR,). Once a separation variable j, is selected, Vp(jo)
and V(j,) yield lower bounds for future reference on the newly created
candidate subproblems.

The computation of conditional bounds like (4) is taken up in more
detail in Section 4. We note here only that the bounding problems have the
same structure as (CPR ) since we have assumed that range restrictions on
all variables are incorporated into the special constraints B x = d, just as
(CPR)) will have the same structure as (PR)) if, as is usually the case, the
separation constraints employed are simple range restrictions on the
variables.

Thus we see that Lagrangean relaxation can be used for the standard
branch-and-bound tasks of fathoming, generating improved feasible solu-
tions, range reduction, and guiding separation. It can also be used to derive
surrogate constraints and cutting-planes. These uses are taken up in
Section 5 and 6.

We turn now to a discussion of the strategy questions which arise in
connection with the use of (CPR;) as an adjunct to (CP). The two main
questions concern how 4 is to be chosen and whether (CPR;) should be
used before or after or even in place of (CP). These questions cannot be
answered definitively in general, but an obviously important consideration
is whether or not the Integrality Property defined in Section 2 holds for the
particular constraint partition under consideration.

Suppose the Integrality Property-does hold. Then (CPR;) can be infeas-
ible only if (CP) is infeasible, and if (CP) is feasible, then by Theorem 2 it
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must yield the best possible choice of A for (CPR;) and v(CPR,,) = v(CP).
Thus (CPR,) cannot fathom (CP) by infeasibility or by value unless (CP)
would also do so. One can also show that at least one of the conditional
bounds V;(j) and V(j) must coincide with v(CP) for each variable that is
fractional in an optimal solution of (CP) when the natural choice A from
(CP) is used in (4). Moreover, both of the bounds coincide with o(CP) in
the special case of Examples 1 and 2 and perhaps in other cases as well.
These facts argue against the use of a Lagrangean relaxation for which the
Integrality Property holds. It has little to offer that cannot already be
achieved by (CP), though it may possibly prove to be more fruitful than
(CP) as a source of improved feasible solutions. It is important to recognize,
however, that this negative conclusion rests on the implicit assumption
that (CP) is of manageable size as a linear program. If this is not the case,
then (CPR;) may be a comparatively attractive computational alternative.
A beautiful illustration is provided by Held and Karp’s work on the
traveling-salesman problem. Here (CP) has such an enormous number of
constraints that it is not practical to solve directly. Of course, the omission
of (CP) necessitates the introduction of some method for computing a near
optimal 4 (see below). And even if (CP) is of manageable size it may still be
sufficiently burdensome computationally that (CPR,) is attractive as a
surrogate to be invoked prior to (CP) during the examination of a candidate
problem. The hope is that the Lagrangean relaxation will permit (CP) to
be fathomed without having to resort to the more expensive linear program
(CP). The best choice for A is likely to be a multiplier vector saved from the
linear program corresponding to the prior candidate problem most closely
related to the current one. Section 5 indicates how this tactic coincides in
special cases with the use of surrogate constraints — a device which has
proven quite effective computationally in some applications (cf. [14, Sec.
3.1.5]).

Now suppose that the Integrality Property does not hold. Then (CP)
does not necessarily yield the best choice for 4, and (CPR;) may succeed in
fathoming where (CP) fails. It makes strategic sense to invoke (CPR ) either
before or after (CP) or even in lieu of it, depending on the relative tightness
and computational expense of the two relaxations. The most effective
strategy also depends on the role played by (CP) in generating the A to be
used by (CPR,), since (CP) can be used to generate a starting (or even final)
value of 4 which can then be improved upon by some independent method.
To indicate the possible methods for finding a suitable 4 we shall consider
for the sake of notational convenience the situation encountered before any




9 Lagrangian Relaxation for Integer Programming 265

98 A.M. Geoffrion, Lagrangean relaxation for integer programming

branching has taken place. Then (CP) is (P) itself and (CPR,) is just (PR;).
The general situation is entirely analogous.

There are two broad approaches to computing a suitable A for (PR)):
(sub)optimization of the concave Lagrangean dual problem (D) and (sub)
optimization of the linear program (P*). The first approach yields A directly,
whereas the second yields 4 indirectly as the multiplier vector associated
with the A x = b constraints in (P*). The distinction should not be thought
of as a rigid one; some methods can be described naturally from either
viewpoint.

Consider the first approach. One of the most promising methods for
seeking an optimal solution of (D) is via the Agmon—Motzkin-Schoenberg
method as revived by Held and Karp [21]. See also the recent and extensive
study of this method by Held, Wolfe and Crowder [22]. The idea is very
simple. Let ¥ = 0 be the current estimate of an optimal solution of (D)
and let x* be an optimal solution of (PR;,). Then the new estimate is

AN =max {4* + 0'(b — Ax"),0},

where the max operator is applied component-wise and 6" is a positive step
size satisfying ceftain requirements [22]. The vector (b — A x*) is a sub-
gradient of v(PR;) at 2 = A’ but the sequence {v(PR;,)) is not necessarily
monotone. Favorable computational experience has been reported for
several different applications [8, 21, 22]. An alternative is to carry out an
ascent method for (D); see [8, 10, 20]. Still another method is to optimize
(D) by tangential approximation (outer linearization/relaxation) making
use of the fact that the evaluation of v(PR;) for a given A yields a linear
support at that point. The available evidence [ 20, 24] suggests that conver-
gence is slow in some applications. A combination of ascent and tangential
approximation is possible with the BOXSTEP method of Hogan, Marsten
and Blankenship [23].

Consider now the indirect approach via (P*). Perhaps the most obvious
method is to apply generalized programming (Dantzig-Wolfe decomposi-
tion, inner linearization/restriction) with the convex hull portion of the
constraints of (P*) represented in terms of its extreme points. The column-
generation problems are precisely of the form (PR;). Since this method is
equivalent to the tangential approximation method for (D), however, its
efficiency is suspect. Another possibility is to apply the primal-dual simplex
method to (P*) with special provisions to accomodate the convex hull. This
method, developed by Fisher and by Fisher and Shapiro, can also be
interpreted as an ascent method for (D). Some encouraging computational
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experience has been reported [8]. In some applications the form of the
constraints describing the convex hull in (P*) is known. Then it may be
possible to apply the dual simplex method to (P*) with (most) violated
constraints generated as needed. This is probably one of the best methods
for obtaining a near-optimal A fairly quickly when it applies. It has the added
advantage of yielding valid constraints that may be appended to (P) to
make it a tighter relaxation of (P).

Other specialized techniques, both exact and heuristic, can be devised
for (D) or (P*) in particular applications.

4. Penalties

The so-called “penalty” concept in integer programming was propelled
to prominence by Driebeek [4], although the essential notion was used
earlier by Dakin [3] and Healy [ 19]. The original idea was to underestimate
the amount by which the optimal value of the LP relaxation of the current
candidate problem would increase if separation were carried out using a
particular separation variable. The estimates of change, referred to as
penalties, can be used to help guide separation and may also permit
fathoming or range reduction. An important subsequent refinement of this
original idea was the recognition that it is the candidate problems and
subproblems themselves, and not their LP relaxations, which are central
to the underlying enumerative process. Tomlin [28, 29] showed how to
modify the penalty formulae so as to take at least partial account of the
integrality conditions. The resulting penalties are underestimates of the
difference between v(CP) and the optimal value of a candidate subproblem
derived from (CP). See [ 14] for a discussion of current practice in the com-
putation and use of penalties.

Lagrangean relaxation furnishes a convenient setting for deriving the
simple and strengthened penalties alluded to above. This is done in sub-
section 4.1. More importantly, it leads naturally to extensions and speciali-
zations which do not follow as easily from the more traditional viewpoints.
These are illustrated in subsections 4.2-4.4 for Examples 1-3. It is hoped
that these improved penalties and their counterparts for other structures
will add new vitality to the penalty concept by overcoming the limitations
of standard penalties pointed out so clearly by Forrest, Hirst and Tomlin

[11].
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4.1. Basic results: B x = d vacuous

The first task is to show how the formulae for simple and strengthened
penalties are related to Lagrangean relaxation. This requires taking 1 = 4
and specializing B x = d to be vacuous (in contrast to our usual convention,
in this subsection, B x = d will not include upper bounds on the variables).
Define I, to be the indices in I such that X; is fractional (X is the optimal
solution of (CP)). It is easy to verify that the objective function coefficient of
(CPRy) vanishes for all such j € I, and hence for all such j we have

Vo(j) £ (CPRz | x; < [%,]) = u(CP),
Vo(j) £ o(CPRz | x; = [X;] + 1) = v(CP).

Thus the Lagrangean relaxation (CPRy) appears to yield zero “down” and
“up” penalties for separation on x;.

A simple remedy is to employ an alternative representation for x; in
terms of variables whose objective function coefficients in (CPR3) do not
vanish. Such a representation is available from the final tableau of the
linear program (CP) since j € I, must be basic therein:

Xi=Xi~

1

ajiXis

2

where N is the set of nonbasic variables. The use of this representation in the
definition of V4(j) and V(j) leads to the following conditional bounds: for
jely,
V() < o(CPRy | Xj = Dien ajiX; = [x;D.
®)
Z5(0)] 4 U(CPRﬂ}C—j - ZieN apx; z [x;] + 1).

Clearly,
V() = o(CP|x; < [x;]),
VE0) < olCP|x; = [%] + 1)

for all j e I; that is, these conditional bounds really do underestimate the
optimal value of the candidate problems that would result if (CP) were
separated using x; as the separation variable.

Unfortunately the computation of Vi(j) and V{¥(j) may be onerous if
a;; # 0 for some variables i e N n I. The computation then requires solving
a knapsack-type problem with some integer variables. Hence it is natural
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to think of estimating ViF(j) and VF(j) from below by simply dropping all
integrality conditions:

VEO(j) £ o(CPRy | X; — Yiew @jix; < [X;]),
(6)
VU*O(j) 4 v(CPR3 I ij - ZieN 5jixi 2 [Ej] + 1)

The computation of each of these conditional bounds merely requires
minimizing a linear function with all nonnegative coefficients [(c — 1 4)=0,
by duality] subject to a single linear constraint and x = 0. This is sometimes
referred to as a “continuous knapsack” type problem and it is easy to write
down an explicit solution:

V() = o(CP) + (x; — [X;]) minimum {(c — 4 A)/az},  (7)

V#%(j) = v(CP) + ([x;] + 1 — ;) minimum {(c — 2 A)/(—;)}

(we have used the fact that 1b = v(CP) by LP duality). These conditional
bounds are identical to those associated with the simplest penalties men-
tioned earlier (cf. (5) in [4]).

The strengthened penalties of Tomlin can also be recovered from this
viewpoint by retaining the condition that x; must not be in the open interval
(0, 1) for je N n I. Then we obtain

V#'(j) £ oCPRz | X; — Yy @xi < [X;]and x;¢ (0, )forallie N A 1),

@®)
VL)) 4 U(CPRﬂfj — Yiena;x; 2 [X;] + 1and x;¢(0, 1) forallie N n I).

It is not difficult to see that at most one variable need be at a positive level
in an optimal solution of the modified continuous knapsack problems
defined in (8). This observation leads to the explicit formulae:

{(c — LA (x; — [x;))/a; ifi¢l,
(c — 7 A, max {(x; — [X;])/a;, 1} ifiel,
)
{(C = 2A)([x;] + 1 = x)/(—ay) ifi¢l,
(c—2 A);max {([x;]+1—x)/(—a;), 1} ifiel.

V#1(j) = o(CP) + minimum

ieN:a;; >0

V5#'(j)=0(CP)+ minimum
These formulae are identical with the strengthened penalties of Tomlin
(cf. (10) and (11) of [28] or (3.5) and (3.6) of [29]). It is evident from the
very definitions (5), (6) and (8) that
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V300) = V80) < V30
VE°() = VE0) £ VFG)

for all jel,.

This completes the recovery of known formulae for Driebeek and Tomlin
penalties for jeI,. Exactly the same type of analysis holds for penalties
associated with basic variables of I — I, Such penalties are of interest as a
means of obtaining tighter ranges on integer variables which happen to be
naturally integer in the optimal solution of (CP). For a nonbasic variable
variable x; in I — I, the quantity of interest is o(CPR, | x; 2 1); no alter-
native representation in terms of nonbasic variables is possible. Evidently,

o(CPR; | x; = 1) = o(CP) + (¢ — 7 A);. - (11)

(10)

Again this is a standard result.
Another technique for strengthening (6) makes use of the following
elementary and well-known result.

Theorem 5. Let (IP) be a minimizing integer linear program in which exactly
one variable, say x,, is declared to be integer-valued. Suppose that X, the
optimal level of x, when (IP) is solved ignoring the integrality requirement,
is fractional. Then the optimal value of (IP) is given by

o(IP) = min {o(IP | x,, = [X,]), v(IP | x, = [X,] + 1)}

The possibility that (IP | x, = [x,]) or (IP | x, = [X,] + 1) or both are
infeasible is not excluded (recall that our convention is to define a minimum
over an empty set as + o0).

Let ip(j) be the minimizing nonbasic i in the formula for V() given in
(7). The index iy(j) is defined similarly. Then application of Theorem 5 in
the obvious way permits the following improvement on (6) to be computed
with only a little extra effort:

Vi#2(j) £ v(CPRy |x; — Yien djix; < [X;]and x;; integer),
(12)
V() £ o(CPR; | X; — Yien @jix; 2 [X;] + 1 and x;;, integer).

Neither (12) nor (8) necessarily dominates the other; one may verify the
following relationship for jeI,:
(fj - [Szj])/ajip(j) {5}1 = V[;kl(}){i} Vl)ﬂ(j), (13)
(%] + 1 = X)A—jip) (311 = V() EVE20).
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We are unable to supply a reference to the conditional bounds (12) in the
published literature. However, Armstrong and Sinha [ 1] have independently
and very recently proposed a precisely analogous strengthening of (8) for
the mixed integer 0—1 case. They report favorable computational experience.

So far we have required B x = d to be vacuous; that is, all upper bounds
and other special constraints are treated as general A-type constraints.
Analogs of the previous penalty results as well as new penalty results emerge
easily by allowing B x = d to be nonvacuous. This will now be illustrated
for the three examples.

4.2. Penalties for Example 1

Example 1 differs from the previous development only in that (CPR3)
now has upper-bounded variables. As indicated in Section 3, it can be shown
that both V,(j) and V,(j) equal o(CP) for all j € I ; due to the vanishing of the
corresponding objective function coefficients in (CPRy). The remedy for
these vanishing penalties is again to invoke the representation for x; which
is available from the final LP tableau of (CP). This representation will be
written as

X = oy — i;j ax; forjel,, (14)

where, of course, many of the coefficients a;; may be 0. The resulting strength-
ened conditional lower bounds on v(CP|x; < [xX;]) and (CP|x; =
[x;] + 1) for jel, are

1 Z40)] < v(CPR; | Xj = Qjo — Zi#jajixi = [Yj]),
(15)
VF() £ o(CPRy | x; = ajo — Yz 2ix; 2 [X,]) + 1),

We have used the notations Vi and ViF as in (5) because (15) is an exact
counterpart of (5). Like (5), (15) could be too expensive computationally
because each estimate requires solving a knapsack-type problem in integer
variables. The fact that the knapsack problem now has upper-bounded
variables is a dubious advantage. The most easily computed lower approxi-
mation to (15) is obtained by dropping the integrality requirements as in (6):
V) < oCPRy | x; = w0 — Y %iXs < [X]),
(16)
V() £ o(CPRy | x; = ojo — g j0ix; = [X;] + 1).
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The notations V#° and V*° have again been carried over. The differences
V#°() — v(CP), v°(j) = v(CP) (17)

are Driebeek-like up and down penalties for Example 1. The computation
of (16) requires only slightly more effort than the computation of (6).
A “continuous knapsack” problem with upper-bounded variables must
now be solved. Explicit formulae for V;#° and V}° are slightly more cumber-
some than expression (7), but are easily programmed for a computer.

To strengthen (16) one may formally write the counterpart of (8), but
unfortunately explicit calculation may be nearly as costly as that of (15)
itself. This is because the upper bounds generally invalidate the key property
of (8) that at most one variable need be at a positive level in an optimal
solution of each associated optimization problem. Thus the strengthened
penalties of Tomlin do not generalize usefully to B x > d when it includes
upper bounds on variables.

But the other technique based on Theorem 5 for strenthening Vg°(j)
and V¥O(j) does generalize nicely. Let ip(j) and iy(j) be respectively the
fractional-valued variables in the solutions of the optimizations corres-
ponding to ¥#°(j) and V°(j). It is easy to see that at most one variable need
be fractional in each of these solutions; if none is, then that penalty cannot
be strengthened by the present device. The strengthened conditional bounds
analogous to (12) are:

V() £ o(CPR; | x; = ojo—Di#; %x; < [X;] and x,; integer),

VE2(j) £ v(CPRy | x; = 0o—Y 14 %X s
2 [X;] + 1 and x;,, integer).
The required optimizations are inexpensive to carry out. Clearly,
VE00) < V320) < 8() = o(CP | x; < [X;)),
(19)

V) < VE20) = V() £ o(CP | x; = [X;] + ).
Exactly the same types of penalties can be constructed for je I — I, when
the objective function coefficient of x; vanishes in (CPRy).
4.3. Penalties for Example 2

The development of penalties for Example 2 closely parallels that for
Example 1. For je I, both up and down penalties again vanish, and it is
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necessary to use the final LP tableau representation of the form (14).> The
resulting conditional bounds Vi¥(j) and V{¥(j) defined in (15) may still be too
expensive computationally to use in general, but the multiple choice
constraints do tend to make the computation easier by comparison with
Example 1. There are nontrivial situations where Vg (j) and V{¥(j) can be
computed relatively economically by a simple enumerative procedure. But
in general one may have to fall back on the Driebeek-like penalties defined
by (16). The required computations are no longer simple continuous
knapsack problems with upper-bounded variables, but they can still be
carried out efficiently by specialized techniques (e.g. by parametric optimiza-
tion applied to the dual of (CPR3) with respect to the added constraint).
Strengthening these penalties along the lines suggested by Tomlin as in (8)
appears to be no easier in general than (15) itself. But again, as with Example
1, the strengthening of (18) based on Theorem 5 is attractive. The indices
ip(j) and iy(j) may be selected to be any of the fractional-valued variables in
the solutions of the optimizations corresponding to Vi#°(j) and V#°(j). The
implementation of (18) on a computer is only slightly more expensive than
that of (16). Naturally, (19) continues to hold. The reader should have no
difficulty seeing what to do if penalties are desired for variables in I — I,.

The special nature of the multiple choice constraints (1) makes it possible
to define “cumulative” conditional bounds on the “upward” problems as
follows:

VE(j; Ji) £ max {VFO(), Vo) forie{J, —j}} (20)

where it is understood that j is in J, in these definitions. That this provides
true lower bounds on v(CP|x; = 1) follows from the fact that x; = 1
implies x; = Oforalli # jin the same multiple choice'set. Similar cumulative
bounds hold for V*? and V*.

4.4. Penalties for Example 3

For Example 3 we must distinguish between the “switching” (x,) versus
the “nonswitching” variables in I ;. The up and down penalties associated
with Vp(j) and V,,(j) are highly unlikely to vanish for the fractional switching
variables. In fact, one can argue that they are likely to be quite large. Our
experience with the practical facility location problems mentioned at the
end of Section 2 has been that these penalties tend to be at least an order of

3 Numbered displays from the discussion of Example 1 will be used here with the under-
standing that (CP), etc., have the structure of Example 2 rather than Example 1.
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magnitude greater than the standard Tomlin penalties when 4 is used,
and yet take less time to compute [ 15]. For the nonswitching variablesin I ,,
however, it is easy to see that the naive penalties vanish and thus that
alternative representations from the final LP tableau may be useful. The
detailed discussion would be so close to that for Example 2 that it will not
be given here.

5. Surrogate constraints

Consider the case where (P) is a pure 0-1 integer program with B x > d
consisting solely of unit upper bounds on all variables. The present author
proposed [12] the use of “surrogate” constraints (after Glover [16]) of the
form

cx + Ab — Ax) < z¥ (21)

with the prescription that 4 = 0 be chosen as the optimal dual vector
corresponding to 4 x = b in (P) or some (CP). Clearly such a constraint
must be satisfied by every feasible solution to (P) with lower objective value
than that of the incumbent. Two uses of this type of surrogate constraint
were proposed in connection with the examination of a typical candidate
problem: as a possible means of fathoming via the easy test

minimum {¢ x + A (b — 4 x)} 3 o (22)

and as a possible means of range reduction via the following easy tests
applied to a typical (say the jth) variable:

min_ironlum {ex+A(b — Ax) st. x; =0} é z*, (23a)
min_i1311um {ex+A(b— Ax) st x; =1} é z*, (23b)

If (22) holds, then (P) is fathomed. If (23a) [resp. (23b)] holds, then x; must
be 1 [resp. 0] in any feasible solution of (P) which is superior in value to the
current incumbent. Itis understood, naturally, that all separation constraints
must also be honored in taking the minima in (22) and (23) when examining
a candidate problem subsequent to (P). If all separation constraints involve
only additional range restrictions on the variables, as is usually the case,
then (22) and (23) remain computationally trivial.

It is easy to interpret (22) and (23) from the viewpoint of Lagrangean
relaxation (remember that Bx = d consists of just the upper bound
constraints x; < 1). Test (22) can be rewritten as
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o(PR,) = z*, (24)

which is precisely the elementary fathoming criterion normally associated
with (PR,). Similarly, (23) can be rewritten as

PR, |x; = 0) = z*, (25a)
WPR,|x; = 1) = z* (25b)

This is precisely the ordinary range reduction criterion described in
Section 3. And the injunction to obtain 4 from the usual linear programming
relaxation is a consequence of Theorem 2, which implies that the strongest
tests are obtained in this way.

Thus the surrogate constraint (21) and the tests based on it are seen to be
completely subsumed by the simplest Lagrangean relaxation techniques
for the special case of Example 1. Generalizations of (21)-(23) when (P) is
not a pure 0-1 program or when B x > d includes more than simple upper
bounds can be obtained without difficulty. Some such generalizations were
developed several years ago by this author in unpublished lecture notes and
by Glover [17] using the surrogate constraint viewpoint, but in each case
the same results may be obtained easily as special cases of more general and
powerful results based on Lagrangean relaxation.

6. Cutting planes

For present purposes, a cutting-plane is any linear inequality which
must be satisfied by all of the feasible solutions of a candidate problem but
is violated by an optimal solution of its usual linear programming relaxation
(CP). Appending cutting-planes to (CP) makes it a tighter relaxation of (CP)
and thereby yields better bounds for use in a hybrid branch-and-bound
algorithm (cf. [ 14, Sec. IV]). Cutting-planes may also, of course, be used in
a purely cutting-plane approach.

This section explores the uses of Lagrangean relaxation as a source of
cutting-planes. For notational convenience we only consider cuts relative
to the initial candidate problem (P) itself. It is a simple matter to apply the
ideas developed below to any candidate problem.

The simplest type of cutting-plane for (P) is (here 1 = 0)

v(PR)) < cx + A(b — AX). (26)

A special case of this cut was proposed by Shapiro [27], who showed that
it can be at least as strong as all of the cuts in a well-known group theoretic
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class. The validity of this constraint for any feasible solution of (P) follows
from the definition of v(PR;) and the fact that the feasible region of (P) is
contained in that of (PR;). It will be violated at X, an optimal solution of
(P), if (PR;) > v(P) holds, because 1 = 0 and AX = b imply

WP)=cX=cX+ Alb— AX).

The condition v(PR ;) > v(P) will hold when v(P) < v(D)and / is sufficiently
near optimal in (D). Of course this condition is impossible when the
Integrality Property holds; in fact, the Integrality Property implies that
(26) cannot be violated by any solution of (P) whatever, because then

v(PR;)) =v(PR;)) < cx + A(b — AX)

for all x feasible in (PR ) and thus for all x feasible in (P). Thus (26) can be a
true cutting-plane only when the Integrality Property does not hold.
Appending it to (P) must increase the optimal value of (P) at least to (PR )
because (26) implies

cx 2 v(PRy)) — A(b — Ax) = v(PR;) for all x feasible in (P).
An improvement of (26) is obtained by replacing v(PR;) with v(PR, | X;

., X;,,), which denotes the optimal value of (PR;) as a function of speciﬁéd
values for the distinguished cut variables x;,, . . ., x;,. (If the values of the cut
variables are such that no completion exists which is feasible in (PR,}—
e.g., if an integer cut variable takes on a fractional value—then by conven-
tion, o(PR; | x;,, ..., X;,) is defined to be + oo at such a point.) The con-

] J1?
straint

PR, | xj,....x;,) Sex+ Ab — Ax) (27)

J1?

is valid by an argument similar to that for (26) and is uniformly at least as
tight because

u(PR;) < o(PR, | x),,..., X}, (28)

J1?

obviously holds for every feasible solution x’ of (P). Strict inequality holds
in (28) except when xj,, ..., xj, happens to be part of an optimal solution
of (PR;). This fact also renders (27) less susceptible to neutralization by the
Integrality Property.

The difficulty with (27), of course, is that v(PR, | Xj,,...,Xj,) need not be
a linear function. It depends upon the structure of (PR;) and the choice of
cut variables. One source of nonlinearity has to do with the domain on

which it is + co. Fortunately, (27) need only hold for feasible solutions of
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(P), and so (PR, | xj,, ..., x;,) can be redefined arbitrarily wherever it is
+oo. It is clear that this redefinition should be linearly interpolative in
nature. Of course, this still may not render (27) linear. It may be necessary

to determine a linear lower bounding function [;(x;,, ..., x;,),

J1?
., Xj,) S v(PR;

L(xj,s - -

Clearly, I, should be as “tight” as possible, especially in the vicinity of x.
Thus the linear constraint to be appended to (P) is of the form

Lxj, .. xjp) Sex 4+ A(b — Ax), (30

J1°

Xj,...,X;,) forall x feasible in (P). (29)

where (j,, ..., jp) is an arbitrary set of cut variable indices, 4 > 0, and (29)
must hold.

The above ideas can be illustrated with reference to the three examples
of Section 1. Examples 1 and 2 satisfy the Integrality Property and so
constraint (26) cannot be violated at X. Furthermore, it can be shown for
these examples that no constraint of the form (30) can be violated at X,
no matter what 4 or cut variables are chosen. Example 3, on the other hand,
does lend itself to the derivation of useful cutting-planes. Cut (26) tends to
be quite good, even when 1, an immediate by-product of (P), is used. We see
from the computational experience cited at the end of Section 2 that, in the
four practical problems studied, a single cut of the form (26) with 1 = 1
raised the optimal value of (P) an average of at least 39.6 % of the distance
from v(P) to v(P). If the effort to find an optimal A were expended, (26) would
raise the optimal value an average of at least 97.1% of the way to v(P).
It should also be noted that a cut of the form (30) is available as an immediate
by-product of the evaluation of (PR;). Recall that (PR,) separates into
independent subproblems of the form (3%):

u(PR,)) = Ab + i v(3%)
k=1

+ minimLTlm {Yjerlc —AA) x; st. 0 = x; < u,
Xj, JE

je T and x; integer, je Tn 1}, (31)

where T comprises the indices of all variables not appearing in any of the
subproblems of type (3%). To evaluate v(PR ;) one makes use of the fact that

v(3%) = min {v(3% | x, = 0), v(3 | x, = 1)} (32)

and of the fact that the last term involving j € T'in (31) is trivially evaluated
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by inspection. Thus the binary variables x, are obvious choices for cut
variables. We have

K
o(PR; | Xy,...,xg) = CON; + Y v(35]xy), (33)
k=1

where the constant CON,, equals the first and last terms of (31). The binary
nature of the variables makes it easy to write down a linear function [,
satisfying (29) with equality in this case:

K
CON; + Y (3% |x. = 1)x, = (PR, | xy,...,Xxg)
k=1
for all binary (x,, ..., xg). Thus (30) becomes
K
CON, + Y w3 |xi=1)x, < cx+ A(b — Ax) (34)
k=1

Our experience with the same four practical problems as mentioned above
is that a single cut of this type raised v(P) an average of 69.79%, of the way
from v(P) to v(P) when 4 was used [15].

The derivation of a type (30) cut for Example 3 generalizes easily to the
frequent situation where (PR;) separates into a number of independent
subproblems involving 0-1 variables. Suppose

P
u(PR;) = Ab + ) o(PR%),
k=1

where (PR%) involves the variables J, (J4, . .., Jp is a mutually exclusive and
exhaustive partition) among which is a 0-1 variable j,. Suppose further that
both »(PR% | x;, = 0) and o(PR% | x;, = 1) can be obtained inexpensively in
the course of evaluating v(PR¥). Then j, is a natural choice for a cut variable
and a type (30) constraint is

I\

P
Ab+ Y oPR%|x; =0)1 — x;) + (PR | x;, =1)x;,
k=1

Scx+A(b— Ax). (35)
We have made use of the relations

J1?

P
PR, | xj,...,x;,) =4Ab+ Y u(PR}|x;),
k=1

o(PRY | x;) = u(PRY | x;, = 0)(1 — x;,)
+ o(PRY | x;, = 1) x;

s forx; =0,1.
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The latter relation furnishes the required [/, function with equality in (29).
Constraint (35) is likely to improve on the counterpart of (26), namely

P
Ab+ Y v(PRY) < cx+ A(b— Ax), (36)
k=1

because
v(PR%) = min {v(PR% | x; = 0), (PR |x; = 1)}

< u(PRY|x;, =0)(1 — x,
+ (PR | x;, = 1)x;, for0<x; <1.
It should also be pointed out that (35) and (36) can be decomposed into P
component inequalities:

o(PRY | x;, = 0)(1 — x;) + (PR | x;, = 1) x;, = Z (c — AA)x;, (35)

JeJi
uPRY) < Y (¢ — A A)x;. (36,)
JeJk
The validity of (35,) and,(36,) should be evident. Their sum over all k yields
(35) and (36), respectively.

Other types of cutting-planes can be devised with the help of the penalty
formulae of Section 4. In particular, useful cutting-planes for. Examples 1
and 2 can be determined (recall that neither (26) nor (30) were useful in this
context). Both the simple penalties based on (16) and the strengthened
penalties based on (18) can be used to generate cuts violated by X so long
as at least one of these penalties is nonzero. This may be done as follows.
Consistency of notation requires that we let (CP) equal (P) when applying
the results of Section 4.

Consider first the simple conditional bounds (16). Select any j e I, such
that at least one of the penalties is strictly positive and take this j to be the
one cut variable. Clearly

u(PR; ‘ Xj = &jo — Zi#j ajx;) S
Scex+AZcex+ A(b— Ax) forall x feasible in (P).  (37)

The left-hand side of (37) is convex as a function of x;, and thus the unique
linear function passing through it at the points [X;] and [X;] + 1 does not
overestimate it for any integer value of x;:

V300) + (FF°0) — V8°0N(x; — [X)]) =

< (PR3 |x; = ajo — D a;x;) for all integer x;. (38)
i#j
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Together, (37) and (38) imply that
VE0) + (VF0) = V0, — [ S ex +A(b — Ax) (39)

is a legitimate cut. Notice that if there are several je I, for which Vi°(j)
and V(j) are computed, then it is an easy matter to select j so as to yield
the cut of type (39) which is most violated by x.

Now consider the strengthened conditional bounds (18). An analog of
inequality (37) holds, but the analog of (38) does not because of the added
integrality requirement in (18). It appears necessary to require that je I,
bea 0-1 variable ifa cut is to be based on (18) with j as the single cut variable.
Then

VB20) + (KF20) — V820 x; S ex + A(b — Ax) (40)

is a legitimate cut. By (19), (40) is clearly a superior cut to (39). It is a simple
matter to select j so as to yield the cut which is deepest at X among those of
the form (40).

For Example 2 one should of course use in (39) and (40) the cumulative
penalties defined in (20) in place of V{¥(j) or V{¥2( j)if the necessary quantities
are at hand. One may further improve cuts (39) and (40) when j is a multiple
choice variable by using one of the obvious cuts

Y VG J)x; Sex+Ab—Ax),  k=1,...,K (41
JjeJx
or the still stronger cuts
Y VEGJ)xjSex + (b — Ax), k=1,...,K. (42
JeJk
Each of these cuts takes all of J, as the set of cut variables. It is easy to verify
that cuts of the form (41) [resp. (42)] are at least as strong as those of the
form (39) [resp. (40)] for all x feasible in (P).

A cut similar to (41) was proposed by Healy [19]. To be precise, for the
kth cut he omitted the term Z (b — A x) and used Vg¥°(j) as the coefficient
of x;, where V}¥°(j) is computed with B x = d taken to consist of only the
kth multiple choice constraint (no upper bounds or other multiple choice
constraints are included). This cut is dominated by (41).

We note in closing that penalty-based cuts with more than one cut
variable can often be obtained for Examples 1 and 2 and other structures
by: (i) adding to (PRy) relations of the form (14) for any subset of j’s in I ; so
long as no variable appears with a nonzero coefficient in more than one
of these relations, and then (ii) exploiting separability.




280 Arthur M. Geoffrion

A.M. Geoffrion, Lagrangean relaxation for integer programming 113
7. Conclusion

Lagrangean relaxation is a systematic exploitation of the formal Lagran-
gean dual problem in integer programming. This dual problem need not
be solved optimally and need not be devoid of a duality gap in order to be
useful. It provides a means for fathoming, range reduction, generating
improved feasible solutions, and guiding separation (Sec. 3). It also provides
new penalties (Sec. 4) and cutting-planes (Sec. 6) and supplants the narrower
notion of surrogate constraints (Sec. 5). All of these functions usually can
be tailored to the special structure of the particular problem class at hand,
beginning with the judicious choice of the subset of constraints to play the
role of B x = d. This has been carried out in detail for three of the simplest
structures. Some of the uses of Lagrangean relaxation have been explored
by other authors for several more complex structures [6], [7], [8], [9],
[10], [20], [21], [26]. Yet it remains to work out the full import of Lagran-
gean relaxation even for these structures and for many others of importance.
It is hoped that the framework of this paper will facilitate this effort and
encourage new applications.
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