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Abstract

We examine a firm’s P/E ratio in the context of a model wherein firms make sequential

investments in production capacity. In addition to investment growth, our analysis seeks

to identify pricing power in the firm’s product markets and accounting conservatism as

determinants of the P/E ratio. A benchmark result demonstrates that, given unbiased

accounting, the firm’s P/E ratio can be expressed as a convex combination of the P/E ratios

suggested respectively by the permanent earnings model and the Gordon growth model.

The relative weight to be placed on these two endpoints is captured entirely by Tobin’s

q. Relative to this benchmark result, we examine the behavior of the P/E ratio when the

applicable accounting rules are conservative. In particular, the impact of higher past growth

in investments on the P/E ratio is shown to depend on the degree of accounting conservatism.
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1 Introduction

The forward Price-to-Earnings (P/E) ratio is commonly calculated as the market value of a

firm’s common stock at a particular date divided by the firm’s earnings in the following year.

The P/E ratio is ubiquitous in part because it is viewed as a first gauge for validating the

pricing of a particular stock.1 While there does not seem to be a universally accepted bench-

mark value for the “normal” forward P/E ratio, textbooks in financial statement analysis

typically describe several standard models, such as the permanent earnings model, the Gor-

don growth model and the abnormal earnings growth model (Ohlson and Juettner-Nauroth,

2005).2 In deriving a particular P/E formula, each one of these model frameworks typically

represents economic fundamentals as certain “parameters” in the time-series of accounting

earnings.

Our objective in this paper is to provide insights into the structure of the P/E ratio by

modeling explicitly transactions of the firm as well as the accounting rules that are employed

to represent these transactions. Our framework allows for the P/E ratio to be determined by

a number of variables, including pricing power that the firm enjoys in its product markets,

anticipated future demand in those markets and growth in past investments. A particular

focus of our study is how investment growth, both past and future, and the applicable

accounting rules interact in shaping the P/E ratio.

According to the permanent earnings model, the normal forward P/E ratio is equal to

the inverse of the firm’s cost of capital.3 The permanent earnings model holds for fair

value accounting, which requires the book value of the firm’s assets at each point in time

to equal the present value of the firm’s future cash flows.4 If the firm’s investments have

zero net present value, fair value accounting is consistent with historical cost accounting.

In the presence of positive NPV investments, however, fair value accounting is generally

inconsistent with the practice of recognizing operating assets at their acquisition cost at the

time of purchase.5

An alternative benchmark value for the P/E ratio suggested in earlier literature is the

Gordon growth model which states that this ratio is equal to the inverse of the difference

1See, for example, Basu (1977) and Jaffe, Keim, and Westerfield (1989).
2Penman (2010), (2011) provides a detailed discussion of these three models.
3Among others, Fairfield (1994), Ohlson (1995), Feltham and Ohlson (1995), Feltham and Ohlson (1996),

Penman (1996), Ohlson and Juettner-Nauroth (2005) have provided justifications for the permanent earnings

model.
4The permanent earnings model also holds if book values understate fair values by a constant amount at

all dates.
5See, for instance, Feltham and Ohlson (1996).
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between the firm’s cost of capital and the anticipated growth rate in earnings.6 This bench-

mark can be justified in a setting where firm sales grow at a constant rate and the firm has

only variable cash operating expenses. Accounting earnings are presumed equal to cash flow

and, as a consequence, firm value can be expressed as a multiple of forward earnings. The

assumptions of the Gordon growth model are likely to be violated in the presence of capital

investments that generate benefits in several periods, especially if such investments do not

increase over time at the same rate as revenues.7

In our model setting, firms make sequential investments in identical capital assets and

use the capacity of those assets to deliver output to the product markets. To the extent

that the product selling price exceeds the long-run average cost of production, a firm enjoys

pricing (monopoly) power in the product market. In the context of capacity investments,

there is a natural notion of unbiased accounting which requires that newly acquired assets

be capitalized at their acquisition cost. In subsequent periods, unbiased accounting requires

that these assets be depreciated so that their book value at each point in time is equal

to the present value of cash flows they would generate if output was sold precisely at the

long-run average cost of production. Alternatively, unbiased accounting can be interpreted

as carrying operating assets at a book value that reflects the value of these assets in a

hypothetical competitive rental market for capacity services. Accordingly, we refer to this

depreciation rule as replacement cost accounting and to the corresponding book values as

the replacement cost of assets in place.8

One implication of unbiased accounting in our model is that residual income measures

the firm’s economic profit, defined as the premium that the firm earns in the product market

above the average long-run cost of production. Future economic profits are determined by

the firm’s pricing power in the product market and by the anticipated future demand for its

product(s). The firm’s market value can then be expressed as the sum of the replacement

cost of assets in place and the anticipated present value of future economic profits.9 Given

replacement cost accounting, we obtain a benchmark value for the forward P/E ratio which

6See, for example, Beaver and Morse (1978), Zarowin (1990), and Damodaran (2006, p. 245).
7A related model states that the forward P/E ratio, on average, should approximate the inverse of the

risk-free rate. This benchmark is known as the Fed model and it follows from the Gordon’s growth formula

under the additional assumption that the growth rate in earnings approximates the risk premium implicit

in the firm’s cost of capital (i.e., “if all growth is risky”). Thomas and Zhang (2009), among others, provide

an empirical analysis of the Fed model at the aggregate (stock market) level.
8Our model framework of capacity investments and replacement cost accounting has been used in a

number of recent studies, spanning managerial performance evaluation (Rogerson (2008) and Dutta and Re-

ichelstein (2010)) and financial statement analysis (McNichols, Rajan and Reichelstein (2012), and Nezlobin

(2012)).
9See also McNichols et al. (2012) and Nezlobin (2012).
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can be interpreted as a “convex combination” of the permanent earnings and the Gordon

growth formulas. The relative weight to be placed on these two “endpoints” turns out to

be entirely a function of Tobin’s q, defined as the ratio of the firm’s market value to the

replacement cost of its assets. In the finance and economics literature, Tobin’s q is usually

interpreted as a measure of the firm’s ability to earn abnormal economic profits in the future.

Accordingly, this ratio is equal to one for a firm operating in a competitive environment.10

For a firm operating in a competitive environment (Tobin’s q = 1), our benchmark

value for the forward P/E ratio reduces to the permanent earnings model. This finding

is consistent with the observation that for a competitive firm replacement cost accounting

corresponds to fair value accounting. In contrast, as the firm’s pricing power in its product

market increases, our benchmark value for the P/E ratio approaches that predicted by the

Gordon growth model. When the firm charges a relatively high premium in the product

market, its valuation becomes more determined by its revenues than by capital costs. If

the product market is expanding, revenues will increase correspondingly and the Gordon’s

growth formula tends to provide a better approximation of the P/E ratio.

Our model highlights the potentially opposite effects that past and future growth have on

the forward P/E ratio. Higher future growth corresponds ceteris paribus to a higher forward

P/E ratio under replacement cost accounting, simply because the value of future growth

opportunities is reflected in the firm’s stock price, but not in the forward earnings. But

higher past investment growth translates into a lower Tobin’s q and a lower forward P/E

ratio under replacement cost accounting.11 Intuitively, a firm with higher past investment

growth has newer assets and a correspondingly greater replacement cost of assets in place.

However, greater replacement cost of assets in place also increases the firm’s market value by

a corresponding amount, as the discounted value of future economic profits is independent

of the firm’s investment history. Therefore, higher past investment growth translates into

equal increases in the numerator and denominator of Tobin’s q and brings the overall ratio

closer to one. As a consequence, our benchmark P/E ratio is also decreasing in past growth

provided the accounting is unbiased.

Generally accepted accounting principles for operating assets are widely viewed as a

source of unconditional conservatism. Investments in most intangible assets cannot be cap-

italized in the first place and, in addition, depreciation rules like the common straight-line

10Consistent with this interpretation, Lindenberg and Ross (1981) conclude that q “exceeds one by the

capitalized value of the Ricardian and monopoly rents which the firm enjoys.”
11In formulating this result, we consider two situations that differ only in past investment growth rates

and assume that all other parameters of the model, including future demand growth, are the same. Past

investment growth in our model can be different from future demand growth either because the product

market has expanded at a different rate in the past, or because the firm has been replacing its aging assets.
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method will in many circumstances be accelerated relative to the economic decline of the

asset. For an assessment of the P/E ratio, it is therefore essential to understand the impact

of asset valuation rules that are more conservative than replacement cost accounting. As a

starting point, it is useful to recall that for firms in a steady state (constant investment levels

over the relevant horizon) the P/E ratio must be equal to the benchmark value identified

under replacement cost accounting. Put differently, the “Canceling Errors” Theorem implies

that all P/E curves, obtained from alternative asset valuation rules, must yield the same

benchmark value for a steady state firm. As a consequence, one obtains a “Pivot” point

through which all P/E ratios, when viewed as a function of past growth, must pass.

Growth is generally viewed as a key variable in evaluating or predicting P/E ratios (Pen-

man 2010, 2011). It is also generally accepted that more conservative accounting (more

accelerated depreciation) tends to result ceteris paribus in a higher P/E ratio, provided the

firm’s investments have expanded in the past. The opposite effect obtains for firms charac-

terized by declining investments over the relevant horizon. This leads to a pattern of P/E

ratios that rotate counter-clockwise through the Pivot point.12 Our analysis examines the

impact of higher growth on the P/E ratio, supposing the accounting is conservative. In sharp

contrast to our finding for replacement cost accounting, we find that for sufficiently conser-

vative depreciation rules, including the straight line rule, higher past growth will increase

the P/E ratio. Furthermore, this monotonic relation becomes more accentuated for more

conservative accounting rules. One prediction of our analysis therefore is that the impact

of past growth on the P/E ratio will be more pronounced for industries characterized by a

higher degree of conservatism, possibly due to a high proportion of intangible investments.

The remainder of the paper is organized as follows. Section 2 presents the capacity

model and the financial ratios representing Tobin’s q and the P/E ratio. Section 3 derives

our benchmark values for these ratios under the hypothetical assumption of replacement

cost accounting. The effects of conservative accounting on the P/E ratio are examined in

Section 4. We examine the particular setting of infinitely lived assets that are subject to

a geometric decay pattern in Section 5. The geometric decline setting entails additional

aggregation properties and thus leads to a sharper characterization of the P/E ratio. We

conclude in Section 6.

12This findings is conceptually related to the “quadrant result” obtained in connection with the Accounting

Rate-of-Return: see for instance, Salamon (1985), Fisher and McGowan (1983) and Rajan et al.(2007). In

contrast to those studies though, we find that the quadrants for the P/E ratio are generally delimited by a

non-linear coordinate system.
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2 Model Description

Consider a single-product firm that makes sequential investments in productive capacity.

Such capacity is generated by operating assets that can be purchased in each period at a

constant unit cost. The useful life of operating assets is T periods. Specifically, a unit of

asset purchased in period t adds capacity to produce xτ units of the product in periods t+ τ

for 1 ≤ τ ≤ T . Without loss of generality, the acquisition cost of one asset unit is set equal

to one. Denoting by It the investment in period t, the aggregate capacity available in period

t, Kt, is determined by the investments over the past T periods:

Kt = x1 · It−1 + x2 · It−2 + . . .+ xT · It−T ,

where x = (x1, x2, . . . , xT ) will be referred to as the asset’s productivity pattern and θt =

(It, It−1, . . . , It−T+1) as the relevant investment history at date t. The productivity of assets

is assumed to decline weakly over their useful life, possibly reflecting physical wear and tear

or increasing maintenance requirements:

1 = x1 ≥ x2 ≥ ... ≥ xT > 0.

In the special case of undiminished capacity, all xτ are equal to one. In the regulation

literature, this scenario is commonly referred to as the one-hoss shay pattern, e.g., Laffont

and Tirole (2000) and Rogerson (2011). In contrast, parts of the finance literature have

focused on settings in which assets remain productive indefinitely and their capacity declines

geometrically over time:

xτ = (1− α) · xτ−1,

where 0 < α ≤ 1; see, for instance, Berk et al. (1999) and Biglaiser and Riordan (2000). We

refer to such an asset decay pattern as the geometric decline scenario.13

In period t, the firm can produce and sell Qt units of product, subject to the capacity

constraint, Qt ≤ Kt. The firm will then realize revenues of

Rt (Qt) = Pt (Qt) ·Qt,

where Pt (Qt) denotes the net revenue (sales revenue minus variable production costs) per

unit of output as a function of the quantity supplied. The net-revenue functions, Rt (·),
are assumed to be strictly increasing and concave. Profit maximization requires the firm to

operate at capacity in every period, i.e., Qt = Kt. In addition, we assume that the inverse

demand functions have the following structural property.

13Section 5 below focuses on the geometric decline scenario.
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Assumption (A1): Demand for the firm’s product expands over time proportionately

at all price levels, such that:

Pt+1 (Q · (1 + µt+1)) = Pt (Q) ,

where µt+1 ≥ 0.14

The significance of Assumption (A1) is that the firm can increase its sales volume by the

factor 1+µt+1 in period t+1 while maintaining the same product price. As shown in Nezlobin,

Rajan and Reichelstein (2012), assumption (A1) can be met by standard functional forms

for demand curves, including linear or constant elasticity demand curves. For simplicity

of exposition, our model focuses on an all-equity firm that disburses all free cash flows to

its owners immediately. Cash flows either arise from investment expenditures or the net-

revenues from sales.

Since assets are assumed to have a useful life of T periods, we examine the firm’s forward

P/E ratio at date T , taking into consideration both the history and the anticipated expansion

of investments. The firm’s market value at date T is defined as the present value of its future

cash flows under the optimal investment policy:

PT ≡ max
{IT+i}∞i=1

∞∑
i=1

[RT+i (KT+i)− IT+i] · γi, (1)

subject to

IT+i ≥ 0. (2)

where γ = 1
1+r

and r denotes the firm’s cost of (equity) capital.

Arrow (1964) has shown that the infinite-horizon investment problem in (1) - (2) can

effectively be decomposed intertemporally. The key concept in this decomposition is the

unit cost of capacity. It represents the cost to the firm of increasing its capacity in a single

period by one unit, holding capacity levels in future periods unchanged. Arrow (1964) shows

that c is given by:

c =
1

γ · x1 + ...+ γT · xT
. (3)

The marginal cost of capacity can also be viewed as the rental price that a hypothetical

supplier of rental services would charge if such a supplier were to make zero economic profits,

i.e., if the rental market were perfectly competitive. Indeed, if the firm buys one unit of the

14The current model can be extended to accommodate a declining product market (µt ≤ 0), provided the

decline in the incumbent capacity is sufficiently large so that a value maximizing firm would still have to

make new investments in order to maintain its optimal capacity level.
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asset in period t and rents out the available capacity in the following T periods, the net

present value of this project is:

−1 + γ · c · x1 + ...+ γT · c · xT = 0. (4)

The main result in Arrow (1964) is that the optimal investment policy in problem (1)-(2),

I∗t , maximizes

πt = Rt (Kt)− c ·Kt

in every period. This decomposition requires that the non-negativity constraint in (2) does

not bind. In our framework this condition is met on account of Assumption (A1). We refer

to c ·Kt as the economic cost of capacity, and to Rt (Kt)− c ·Kt as the economic income of

the firm in period t.

Let K∗t denote the optimal capacity levels, given by the first-order conditions: R′t (K∗t ) =

c. It follows directly from Assumption (A1) that the optimal product price is constant over

time and the optimal capacity levels grow at rates µt:

K∗t = (1 + µt)K
∗
t−1.

Let p∗ = PT+1

(
K∗T+1

)
denote the optimal product price, and π∗t denote the optimized

economic income in period t. For future reference, we note that given Assumption (A1),

economic income grows at the same rate as the optimal capacity levels:

π∗t = p∗ ·K∗t − c ·K∗t = (1 + µt) π
∗
t−1. (5)

If p∗ = c, the net present value of the firm’s investments is zero, and, therefore, we refer to

such a firm as operating in a competitive environment. Pricing power and monopoly rents

correspond to values of p∗ exceeding the marginal cost of capacity.

Accruals in our model arise only from the depreciation of operating assets. Depreciation

expense is recognized according to some schedule d = (d1, ..., dT ) , where dτ is the share of

investment that is expensed in period τ of its useful life, and the vector d satisfies:

T∑
τ=1

dτ = 1.

The aggregate depreciation expense in period t is then given by:

Dt = d1 · It−1 + ...+ dT · It−T .

Let bv = (bv0, ..., bvT ) denote the corresponding asset valuation rule, so that the aggregate

book value at date t is:

BVt = bv0 · It + bv1 · It−1 + ...+ bvT · It−T .

8



We impose the usual clean surplus condition that the book value of existing assets changes

by the amount of depreciation expense recognized in a given period and that assets are fully

expensed by the end of their useful life:

bvτ = bvτ−1 − dτ and bvT = 0.

One natural depreciation rule to consider is the one that allocates the cost of an asset

over its useful life in proportion to capacity the asset generates in different periods. We refer

to this rule as proportional depreciation rule.15 Formally, the corresponding depreciation

charges are given by

dpτ =
xτ

x1 + ...+ xT
.

In particular, this rule calls for straight-line depreciation of assets conforming to the one-

hoss shay pattern (i.e., if all xτ are equal). Straightforward algebra shows that in the case

of geometrically declining productivity (xτ = (1− α) ·xτ−1), proportional depreciation takes

the form:

dpτ = α (1− α)τ−1 .

These depreciation charges add up to one and decline over time at the same rate as the

asset’s productivity.

Given any depreciation rule d, the firm’s Earnings in period t, Et, are equal to the

difference between revenues and the aggregate depreciation expense:

Et = Rt (Kt)−Dt.

Residual Income subtracts from earnings the imputed interest charge for the current book

value of assets:

RIt = Et − r ·BVt−1 = Rt (Kt)−Dt − r ·BVt−1.

We refer to the sum of depreciation expense and the interest charge on the book value of

assets as the historical cost of capacity, Ht. The historical cost of capacity is determined by

the history of past investments:

Ht = Dt + r ·BVt−1 = z1 · It−1 + ...+ zT · It−T ,

where zτ = dτ + r · bvτ−1.
15Assumption (A1) implies that future product prices are constant on the optimal capacity path, and

therefore the revenues generated by an asset are proportional to its productive capacity. The proportional

depreciation rule then allocates the cost of investment according to the (nominal) cash flows the asset

generates, ignoring the time value of those cash flows.
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In order to represent future product market growth by a one-dimensional parameter, we

shall assume that after period T + 1, demand grows at a constant rate µ:16

µ ≡ µT+2 = µT+3 = ...

Note that we use period T+1 (not period T ) as a baseline in our definition of the parameter µ

to ensure that µ represents the growth in the product market that has not yet been reflected

in the investment history at date T . The parameter µ can, therefore, be interpreted as a

measure of the firm’s future growth opportunities.

Finally, the forward P/E ratio at date T is defined as the ratio the firm’s market value

at date T to earnings in period T + 1:

PET =
PT
ET+1

. (6)

To summarize, in our model the P/E ratio is determined by the firm’s investment history,

the depreciation rule in use, and investors’ anticipation of future growth opportunities in the

firm’s product market.

3 Replacement Cost Accounting

3.1 The P/E Ratio and Tobin’s q

This section establishes a benchmark value for the P/E ratio by considering a hypothetical

scenario of unbiased depreciation rules. The notion of unbiased accounting is that book

values are equal to the replacement cost of assets in the sense that incumbent assets are

valued in according to what they would trade for in a hypothetical competitive rental market

for capacity services. As shown below, this accounting rule implies that economic income,

as defined above, coincides with residual accounting income. In that sense, we refer to

replacement cost accounting as unbiased in the context of our model.

To begin with, it is instructive to contrast replacement cost accounting with fair value

accounting. If the firm under consideration has pricing power in the product market, the

present value of cash flows generated by the incumbent assets will exceed the replacement

16If demand growth after period T + 1 is not constant, our results hold if one defines µ such that

1

r − µ
≡ γ + γ2 · (1 + µT+2) + γ3 · (1 + µT+3) + ...,

Thus µ is defined such that the discounted value of the sequence growing according to rates µT+τ is equal

to the discounted value of a sequence growing at the constant rate µ.
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cost of those assets. Fair value accounting would require that the firm’s book value captures

the equity market value, thus resulting in a Market-to-Book ratio equal to one.17 This would

require that, at the time of acquisition, operating assets be recorded at the present value of

cash flows they will generate, not at their historical cost. In addition, if the product market

is expanding, the firm will optimally increase its capacity by additional operating assets in

future periods. With pricing power in the product market, each future asset purchase will

represent a positive net present value investment. To equate book values with market values

at any point in time, the net present value of future anticipated investments would therefore

need to be capitalized before those investments are made. The informational requirements for

such treatment of operating investments would obviously be rather demanding. In addition,

such an approach would generally be inconsistent with the generally accepted notion that

assets can be recognized only to the extent that they originate from past transactions.18

Under replacement cost accounting, assets are initially recorded at their acquisition cost.

Depreciation is calculated such that at each point in time the remaining book values reflects

what the used asset would trade for if capacity services could be obtained on a rental basis

under competitive conditions. Let bv∗ = (bv∗0, ..., bv
∗
T ) denote the corresponding sequence of

replacement cost values. The corresponding break-even conditions are:

bv∗τ = γ · c · xτ+1 + ...+ γT−τ · c · xT , (7)

with c as defined in (3). Thus, the aggregate book value of assets under replacement cost

accounting is given by

BV ∗t = bv∗0 · It + ...+ bv∗T−1 · It−T+1.

The depreciation charges under replacement cost accounting, d∗ = (d∗0, ..., d
∗
T ), must yield

historical cost charges that reflect current replacement cost values:

z∗τ ≡ d∗τ + r · bv∗τ−1 = c · xτ .

It is readily verified that for assets exhibiting the one-hoss shay productivity pattern,

replacement cost accounting amounts to the annuity depreciation rule with depreciation

charges compounding at the cost of capital. For a geometrically declining productivity

pattern, replacement cost accounting coincides with proportional depreciation:

d∗τ = dpτ = α (1− α)τ−1 .

17This is effectively the notion of unbiased accounting in Feltham and Ohlson (1996), Zhang (2000) and

Ohlson and Gao (2006).
18See, for instance, FASB Concepts Statement No. 6
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Lastly, the straight-line depreciation rule corresponds to replacement cost accounting for

assets with linearly declining productivity (Rajan and Reichelstein, 2009).19

Let E∗t and RI∗t denote the firm’s earnings and residual income, respectively, under re-

placement cost accounting. The key property then is that the historical cost of capacity

properly reflects its economic cost for any history of investments (Rogerson, 2008).20 There-

fore, RI∗t is equal and to the firm’s economic income in every period:

RI∗t = E∗t − r ·BV ∗t−1 = (p∗ − c) ·K∗t = π∗t .

This result is useful in expressing the firm’s equity value at date T . By the residual

income valuation formula, the equity value at date T is equal to the book value of the firm’s

assets at date T plus the present value of future residual earnings:

PT = BVT +
∞∑
i=1

γiRIT+i,

irrespective of the accounting rules as long as earnings are measured comprehensively. Under

replacement cost accounting, residual income grows at the same rate as demand for the firm’s

product. Referring to equation (5), we find that after period T +1, residual income will grow

at the market growth rate µ:

RI∗T+i+1 = (1 + µ) ·RI∗T+i, (8)

for i ≥ 1. Therefore, firm value at date T can be expressed as:

PT = BV ∗T +
RI∗T+1

r − µ
. (9)

Equation (9) has an appealing economic interpretation: firm value is equal to the replacement

cost of the firm’s operating assets plus the capitalized value of future abnormal economic

profits.21

19Specifically, the productivity pattern is given by

xτ = 1− r

1 + r · T
· (τ − 1) .

20In particular, one obtains that for any history of investments,

H∗
t = D∗

t + r ·BV ∗
t−1 = z∗1 · It−1 + ...+ z∗T · It−T

= c · (x1 · It−1 + ...+ xT · It−T ) = c ·Kt.

21See Nezlobin (2012) for a formal derivation of this result. This decomposition is also consistent with

similar ones obtained in the finance and economics literature, see, for example, Thomadakis (1976) and

Lindenberg and Ross (1981).
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Tobin’s q is defined as the ratio of the market value of the firm to the replacement cost

of its assets. This ratio is usually interpreted as a measure of future abnormal economic

profits.22 In particular, Lindenberg and Ross (1981) state: “...for firms engaged in positive

investment, in equilibrium, we expect q to exceed one by the capitalized value of the Ricardian

and monopoly rents which the firm enjoys.” In the context of our model, Tobin’s q can be

expressed as:

q =
PT
BV ∗T

.

For a competitive firm, this ratio is equal to one for any history of investments. If the firm

has pricing power in the product market, in the sense that p∗ > c, equation (9) implies that

Tobin’s q will indeed exceed one by the ratio of capitalized future economic profits relative

to the competitive firm value. Our first result states a benchmark value for the P/E ratio in

terms of Tobin’s q.

Proposition 1 Given replacement cost accounting, the forward P/E ratio is equal to

PT
E∗T+1

=
1

r − µ · q−1
q

. (10)

Three special cases of equation (10) are of particular interest. First, for a competitive

firm (q = 1), the benchmark ratio in (10) reduces to

PT
E∗T+1

=
1

r
,

because E∗T+1 satisfies the permanent earnings model. This finding makes intuitive sense

insofar as with a competitive product market, replacement cost accounting is equivalent to

fair value accounting, which then yields the permanent earnings model.

Second, for a firm that enjoys a strong degree of monopoly power (q is large), equation

(10) approximates the Gordon growth formula:

PT
E∗T+1

≈ 1

r − µ
.

As the firm’s monopoly profits increase, capacity costs become relatively less important, and

the firm’s value is largely determined by the discounted value of future revenues. Growth

in the product market directly translates into revenue growth and, therefore, increases the

capitalization factor according to the Gordon growth formula.

22See, for example, Lindenberg and Ross (1981) and Salinger (1984).
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Finally, the permanent earnings model is obtained if demand for the firm’s product is

anticipated to remain at the same level in all future periods (µ = 0). This result holds irre-

spective of the firm’s monopoly power and, in particular, when replacement cost accounting

is different from fair value accounting (q > 1). Recall that book values under replacement

cost accounting understate market values by the present value of future monopoly profits.

When the product market is stationary, the present value of future monopoly profits does

not change over time, and BV ∗t understates Pt by a constant amount at all times. The

“Canceling Errors” Theorem then implies that earnings will be the same under replacement

cost accounting and fair value accounting. As a consequence, the permanent earnings model

applies.

An essential feature of replacement cost accounting is that firm value can be expressed

as a linear combination of forward earnings and current book value. Equation (9) an be

restated as:

PT = BV ∗T +
E∗T+1 − rBV ∗T

r − µ
=
E∗T+1

r − µ
− µ

r − µ
BV ∗T , (11)

or equivalently:

PT =
E∗T+1

r
+

µ

(r − µ) · r
RI∗T+1. (12)

This characterization recovers Proposition 1 in the Ohlson-Juettner (2005) valuation

model, where price is given by capitalized forward earnings plus the capitalized value of future

abnormal earnings growth (RI∗T+i+1 − RI∗T+i = µ · RI∗T+i). We emphasize, however, that in

the Ohlson-Juettner model the “persistence” parameter, which requires abnormal earnings

to grow (or decline) at a constant rate, does not correspond to an immediate accounting

or economic construct. One would expect the magnitude of this parameter generally to

depend on both economic fundamentals of the firm and the applicable accounting rules. In

contrast, the parameter µ in our model stands only for growth in the product market. As

demonstrated in the next section, residual income will no longer grow at a constant rate once

the accounting rules entail biases relative to the benchmark of replacement cost accounting.

In particular, conservative accounting will then also lead to a shift in the benchmark value

for the P/E ratio.

3.2 The Effects of Growth

We now proceed to analyze the effects of growth on the forward P/E ratio, maintaining

our focus on replacement cost accounting. It is immediate that higher future growth in the

product market, µ, will ceteris paribus translate into a higher Tobin’s q and, by Proposition
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1, also into a higher forward P/E ratio. The present value of future growth opportunities

is reflected in the firm’s market value, but not in the replacement cost of its assets in place

at date T . Accordingly, Tobin’s q is strictly increasing in µ, unless the firm is perfectly

competitive, that is, all current and future investments have zero net present value. For a

firm operating in a competitive environment, Tobin’s q is equal to one, irrespective of future

growth. Furthermore, the firm’s earnings in period T + 1 do not reflect future growth in

the product market. The forward P/E ratio under replacement cost accounting is therefore

strictly increasing in µ, except when the firm is competitive, in which case the P/E ratio is

equal to 1/r for all values of µ.

To examine the impact of past growth, we will focus on realized growth rates in invest-

ments rather than growth in the aggregate capacity levels. The the investment growth rates

will be denoted by λt, so that

It = (1 + λt) · It−1.

The growth rates λ ≡ (λ2, ..., λT ) are, therefore, determined by the investment history at

date T , θT = (IT , IT−1, . . . , I1). Intuitively, higher values of λt correspond to situations

where a larger share of current capacity is generated by newer assets.

It will be convenient to restate the expression for Tobin’s q in equation (9) :

q = 1 +
RI∗T+1

(r − µ)BV ∗T
.

Since residual income is equal to economic income under replacement cost accounting, it

follows that:

q = 1 +
(p∗ − c)K∗T+1

(r − µ)BV ∗T
. (13)

Recalling the definition of bv∗τ in equation (7), we obtain the following equivalent repre-

sentation of BV ∗t :

BV ∗t = γ · c ·Kt+1 + γ2 · c ·Ko
t+2 + ...+ γT · c ·Ko

t+T , (14)

where Ko
t+i is the firm’s capacity level in period t + τ assuming that no new assets are

purchased after period t. Tobin’s q then becomes:

q = 1 +

(
1

r − µ

)(
p∗ − c
c

)(
K∗T+1

γ ·K∗T+1 + γ2 ·Ko
T+2 + ...+ γT ·Ko

2T

)
. (15)

Equation (15) indicates that Tobin’s q will exceed one by the product of three terms.

The first term, 1/ (r − µ), reflects the firm’s cost of capital and future growth in demand
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for the firm’s product. The term (p∗ − c) /c captures, on a percentage basis, the optimal

markup that the firm charges in the product market above its long-run marginal cost. For

a firm generating positive economic profits, this markup will reflect the degree of the firm’s

monopoly power, with zero as the benchmark for a firm operating under competitive condi-

tions.23 The third term determining Tobin’s q in (15) is the ratio of capacity that the firm’s

assets in place will generate in the next period to the discounted value of capacity that those

assets will generate over their remaining lifetime. Ceteris paribus, the impact of past growth

on Tobin’s q is captured through this last term.

Assumption (A2):
xτ−1
xτ
≤ xτ
xτ+1

(16)

for all 1 ≤ τ ≤ T , where x0 ≡ xT+1 ≡ 0.

Assumption (A2) states that the rate of capacity degradation increases with asset age.

Clearly, this assumption is satisfied for linearly and geometrically declining productivity

patterns. For future reference, we also note that in the geometric setting with indefinite

useful lives, all inequalities in (A2) are met as equalities because capacity declines at a

constant rate regardless of the asset’s age. If the useful life is finite, then at least the last

inequality, the one corresponding to τ = T , will be strict. Assumption (A2) has the following

implication for replacement cost accounting.

Lemma 1 Given (A2),

bv∗τ−1
xτ

is decreasing in τ and
d∗τ
xτ

is increasing in τ.

The first statement in Lemma 1 supports the intuition that older assets should have

a lower replacement cost per unit of capacity generated in the next period. The second

statement follows from the first one by recalling that given replacement cost accounting, the

historical cost of capacity is equal to its economic cost:

d∗τ + r · bv∗τ−1 = c · xτ .
23It is readily verified that (p∗ − c) /c can be expressed as a monotone transformation of the Lerner index

of monopoly power, L ≡ (p∗ − c) /p∗ (Martin, 2002):

p∗ − c
c

=
L

1− L
.

In particular for a demand curve exhibiting constant price elasticity of demand, say ε, L will be equal to 1
ε .
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Dividing both sides by xτ , we obtain

d∗τ
xτ

+ r ·
bv∗τ−1
xτ

= c.

Therefore, if the second term in the left-hand side decreases in τ , the first term must be

increasing in τ . We are now in a position to state the following formal result.

Proposition 2 Given Assumptions (A1)-(A2), both Tobin’s q and the PT/E
∗
T+1 ratio are

decreasing in each λt for 1 < t ≤ T .

The intuition for Proposition 2 can be captured by considering two firms operating at

the same capacity in period T + 1 and facing equivalent future product market conditions.

Suppose also that one of these firms has newer assets in the sense that the histories of

investment growth rates for the two firms are the same except for one λt for some 1 < t ≤ T .

The firm with the higher investment growth rate in period t can be viewed as having newer

assets, since a larger share of its capacity is generated by assets purchased in period t or

later.24 Given assumption (A2), the firm with newer assets will have a higher replacement

cost of assets in place. Since future economic profits are equal for the two firms, the difference

between their market values will be exactly equal to the difference in the replacement cost

of their assets in place. Therefore, Tobin’s q for the firm with older assets becomes:

q(o) ≡ P
(o)
T

BV
∗(o)
T

=
BV

∗(o)
T + ∆

BV
∗(o)
T

,

where ∆ represents the present value of future economic profits. For the firm with newer

assets we then obtain:

q(n) =
BV

∗(o)
T +M + ∆

BV
∗(o)
T +M

,

where M represents the increase in the replacement value of assets due to higher growth.

The increment M in both the numerator and the denominator of q(n) pushes the q-ratio

towards unity and therefore q(o) > q(n). Finally, the claimed monotonicity of the PT/E
∗
T+1

ratio in past growth follows directly from Proposition 1.

24To have equal capacity in period T +1, the firms then must have different investments in the first period,

I1. Note, however, that I1 cancels out from the calculation of Tobin’s q in equation (15), since

KT+1 = I1 ·

(
x1 ·

T∏
τ=2

(1 + λτ ) + ...+ xT−1 · (1 + λ2) + xT

)
,

and all K0
T+i are similarly proportional to I1. Therefore, Tobin’s q does not depend on the absolute value

of I1, but rather on investment growth rates λt for 1 < t ≤ T .
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To conclude this section, we note that Tobin’s q and the PT/E
∗
T+1 ratio are generally

strictly decreasing in each λt except in the following special cases. First, for a competitive

firm (p∗ = c), Tobin’s q is equal to 1 and the PT/E
∗
T+1 ratio is equal to 1/r regardless

of the history of investments. This finding is consistent with the observation that in the

competitive scenario replacement cost accounting coincides with fair value accounting and

thus the permanent earnings model holds.

Second, if the firm’s product market is stationary (µ = 0), Proposition 1 shows that

the PT/E
∗
T+1 ratio will be equal to 1/r regardless of past investment growth. In this case,

future economic profits do not change over time, and the firm’s market value is anticipated

to exceed the replacement cost of its assets in place by the same amount in all future periods.

While Tobin’s q at date T will generally depend on λt for 1 < t ≤ T , the “Canceling Errors”

Theorem implies that E∗T+1 will be equal to permanent earnings for any history of past

growth rates.25

4 Accounting Conservatism and the P/E Ratio

This section examines the interaction between accounting rules and past investment growth

in shaping the forward P/E ratio, holding economic profitability and future market growth

constant. Current financial reporting rules arguably differ from our baseline scenario of

replacement cost accounting in at least two respects. First, some expenditures that arguably

generate cash returns in future periods, such as those in research and development, are not

recognized as assets and are expensed as incurred. Second, the depreciation rules that are

applied under current financial reporting rules to amortize capitalized assets usually ignore

the time value of money. Our model framework interprets both of these factors as making

current accounting practice more conservative than replacement cost accounting. Therefore,

we are interested in studying how accounting conservatism alters the relation between the

P/E ratio and its other determinants.

By the “Canceling Errors” Theorem, earnings are unaffected by the accounting rules in

use for a firm that operates in a steady state of no growth. In addition, it has been observed

that conservative accounting results in lower earnings if investments have been increasing

over the relevant history. Conversely, if investments have followed a declining trajectory,

conservative accounting produces higher net income and a correspondingly lower forward

P/E ratio.26 These observations are explained by the effect that conservative accounting

25Another example where Tobin’s q and the PT /E
∗
T+1 ratio do not depend on past investment growth

rates is the geometric decline scenario considered in Section 5 below.
26See, for example, Penman (2010), p. 580.
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results in relatively high depreciation charges for newer assets. If the firm has been increasing

its investments in operating assets, then higher depreciation charges will be applied to larger

(more recent) investments, leading to a higher aggregate depreciation expense and a lower

net income.

Our model framework allows us to verify that these conjectures do hold subject to some

mild regularity conditions. We then proceed to address the dual question: Given conservative

accounting, what is the impact of higher growth in past investments on the forward P/E

ratio. We begin with the following partial ranking of depreciation rules in terms of their

degree of conservatism.

Definition 1: Depreciation rule d is more accelerated than d′ if for any τ :

bvτ ≤ bv′τ .

By this criterion, straight-line depreciation is more accelerated than the annuity rule with

depreciation charges increasing at rate r (Rajan and Reichelstein, 2009). If the productivity

of assets satisfies the one-hoss shay pattern, the straight-line rule corresponds to proportional

depreciation, while the annuity rule corresponds to replacement cost accounting. More gener-

ally, it turns out that if the productivity pattern satisfies assumption (A2), then proportional

depreciation is more accelerated than replacement cost accounting.

Clearly, the notion of more accelerated depreciation also translates to lower aggregate

book value of assets independent of the history of investments:

BVT (d) ≤ BVT (d′) .

Let

PET (λ,d) =
PT (λ)

ET+1 (λ,d)

denote the forward P/E ratio at date T assuming that depreciation rule d is used and the

firm’s investment history is given by λ. To further emphasize that Tobin’s q is a function

of λ, we will write it as q (λ). We refer to a growing firm as one where λt ≥ 0 for all t.

Similarly, a firm will be said to be declining in past investments if λt ≤ 0. This leads us

to the following result relating investment growth, accounting conservatism and abnormal

economic profitability.

Proposition 3 Given (A1)-(A2), the forward P/E ratio for a growing firm satisfies:

PET (λ,d) ≥ 1

r − µ · q(λ)−1
q(λ)

, (17)

provided the depreciation rule d is more accelerated than replacement cost accounting.

The inequality in (17) is reversed for declining firms.
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This result combines our earlier finding in Proposition 1 with the observation that ceteris

paribus aggregate earnings for a growing firm must decrease as depreciation becomes more

accelerated, that is:

ET+1(λ,d
′) ≥ ET+1(λ,d),

provided λ ≥ 0 and d is more accelerated than d′. It is an immediate consequence of the

“Canceling Errors” Theorem that the P/E values generated by alternative accounting rules

must all pass through the Pivot Point :

PET (0,d) =
1

r − µ · q(0)−1
q(0)

. (18)

For the case of constant growth, that is λt = λ, Figure 1 illustrates the effect of more

accelerated depreciation: the P/E ratios rotate counter-clockwise relative to the benchmark

curve corresponding to replacement cost accounting.

The finding in Proposition 3 is reminiscent of the “quadrant result” obtained in earlier

accounting studies for the the accounting Rate-of-Return (RoR). Specifically, if a firm has

expanded its investments at a growth rate equal the cost of capital, r, then RoR = r, regard-

less of the accounting rules.27 When the accounting is conservative, the RoR will exceed r if

past growth rates have been consistently below r (Rajan, Reichelstein and Soliman, 2007).28

Conversely, RoR≤ r if past growth rates have consistently exceeded r.

For the accounting Rate-of-Return, the Pivot Point is (λ,RoR) = (r, r), while the Pivot

Point for the P/E ratio is (λ, PE) = (0, [r − µ q(o)−1
q(o)

]−1). For the RoR function, unbiased

accounting delimits the quadrants by a horizontal axis at r. In contrast, the delimitation

of the quadrants is given by the downward sloping curve PET (·,d∗) for the P/E ratio.

Furthermore, more conservative accounting rotates the P/E ratio, when viewed as a function

of λ, in a counter-clockwise fashion. The opposite effect emerges for the RoR, which rotates

in a clockwise fashion as the accounting rules become more conservative.

27See, for instance, Salamon (1985), Fisher and McGowan (2003), or Gjesdal (2004).
28These results have been obtained in a “representative project” model which is consistent with our

capacity model in the special case of zero economic profits, that is, p∗ = c.
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Figure 1: Impact of Growth on the P/E Ratio

If the applicable depreciation rules are sufficiently close to replacement cost accounting,

the forces that drive PET (·,d∗) to be decreasing in past growth will continue to prevail and,

as a consequence of Proposition 3, the benchmark value identified in (18) would then be

an upper bound for the P/E ratio for a growing firm. On the other hand if the accounting

becomes sufficiently conservative, it is conceivable that the corresponding PET (·,d) curve

ultimately ceases to be decreasing, as suggested by the dashed line in Figure 1. In exploring

this possibility, the proportional depreciation rule,

dpτ =
xτ

x1 + ...+ xT
,

will be of particular interest. We recall that this rule reduces to the straight-line rule if

assets correspond to the one-hoss shay productivity pattern. It will also be useful to note

that proportional depreciation implies that:

dpτ
dpτ+1

=
xτ
xτ+1

.

Our next finding relies on a stronger ordering of alternative depreciation schedules in

terms of their degree of acceleration.

Definition 2: Depreciation rule d is more conservative than d′ if for any τ ≤ T − 1

dτ
dτ+1

≥ d
′
τ

d
′
τ+1

. (19)
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Thus one depreciation rule is more conservative than another if the depreciation charges

decline faster over time. Since their sum must be equal to one for both rules, the more

conservative rule must entail greater charges in earlier periods. This implies that book values

will be lower under the more conservative rule, and, therefore, the criterion in Definition 2

is stronger than that of Definition 1.

Observation 1: If d is more conservative than d′, then d is accelerated relative to d′.

The two definitions are not equivalent, as illustrated by the following example for assets

with a useful life of three periods: d = (.9, .04, .06) and d′ =
(
1
3
, 1
3
, 1
3

)
. Then, d is more

accelerated than d′, but not more conservative than d′. While book values are always lower

under depreciation rule d, inequality (19) is violated at τ = 2.

In many industries, a major source of unconditional conservatism is that firms directly

expense expenditures related to intangible assets. To capture this effect in our results, we say

that d’ is obtained from d = d = (d1, ..., dT ) by increasing the share of investment directly

expensed in the first year of operation, if for some η > 0,

d′1 = (1− η) d1 + η,

and

d′τ = (1− η) dτ

for τ > 1 . Depreciation rule d′ directly expenses an η-share of investment initially, and

applies the same depreciation pattern as d to the remaining book value. The following

Observation confirms the intuition that direct expensing does indeed correspond to a higher

degree of conservatism according to Definition 2 above.

Observation 2: Suppose that d’ is obtained from d by increasing the share of investment

directly expensed. Then, d′ is more conservative than d.

In particular, a depreciation rule d will be more conservative than the proportional

depreciation rule if:
dτ
dτ+1

≥ xτ
xτ+1

⇔ dτ
xτ
≥ dτ+1

xτ+1

. (20)

for all τ . Thus, a depreciation rule is more conservative than proportional depreciation if

the average depreciation charge per unit of productive capacity declines with the asset’s age.

Lemma 1 shows that this relation holds for replacement cost accounting if the productivity

pattern satisfies assumption (A1).
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Observation 3: Given Assumption (A2), the proportional depreciation rule is more

conservative than replacement cost accounting.

We are now in a position to characterize the behavior of the P/E ratio in past growth.

As in Propositions 2 and 3, we consider two firms that differ in only one of the realized

investment growth rates, λt. All other parameters of the model, such as future growth in

the product market and the firm’s monopoly power, are presumed constant and equal across

the two firms. As before, the firm with higher realized growth in investments can be viewed

as having newer assets. We additionally impose the technical (and innocent) condition that

the product price is sufficiently high so as to cover the average depreciation charge per unit

of capacity in each period:

p∗ ≥ max
τ

dτ
xτ

for 1 ≤ τ ≤ T.29

Proposition 4 Given Assumption (A1)-(A2), the forward P/E ratio PET (λ,d) is increas-

ing in each λt for 1 < t ≤ T , provided d is at least as conservative as the proportional

depreciation rule.

The intuition behind this result is most transparent in the one-hoss shay scenario. If

depreciation is calculated according to the straight-line method, the aggregate depreciation

expense will be proportional to the productive capacity regardless of whether the firm’s

assets are old or new. For example, the depreciation charge would be the same for assets

purchased one and T − 1 periods ago provided these assets generate the same capacity in

period T + 1. Therefore, if two firms operate at the same level of capacity, their forward

earnings under the straight-line rule will be the same. However, the firm with newer assets

will have a greater equity value, since it will have to replace its assets further into the future.

The firm with newer assets will, therefore, have a higher P/E ratio.30

Taken together, Propositions 2-4 show that past growth has opposite effects on the P/E

ratio as the accounting moves from replacement cost depreciation to a schedule that is at

29If this assumption is not satisfied, the firm’s accounting earnings will be negative for certain investment

histories that implement the optimal capacity levels. In that case, the forward P/E ratio will sometimes be

negative on the optimal investment path. It can still be shown that the earnings yield, or the forward E/P

ratio, is monotonic in each λt in such situations.
30The logic of this argument is closely related to the so-called old plant trap usually associated with biases

in the Accounting Rate-of-Return (see, for instance Lundholm and Sloan, 2007). The common feature is

that differences in the age of incumbent assets may not be properly reflected in earnings or book values, thus

causing an accounting-induced bias in the respective financial ratios.
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least as conservative as proportional depreciation. We can further illustrate this finding by

rewriting the P/E ratio as:
PT
ET+1

=
PT/KT+1

ET+1/KT+1

. (21)

As λt increases, so does the numerator of this ratio, since, by equation (9),

PT
KT+1

=
BV ∗T +RI∗T+1/ (r − µ)

KT+1

=
BV ∗T
KT+1

+
p∗ − c
r − µ

. (22)

The monotonicity of PT/KT+1 then follows from the first claim of Lemma 1 showing that

the average replacement cost per unit of capacity produced is greater for newer assets.

Under replacement cost accounting, the denominator of the ratio on the right-hand side

of (21), E∗T+1/KT+1, also increases in λt. This result follows from the second claim in Lemma

1. Recall that since the productive capacity of newer assets declines more slowly than that

of older assets, the average depreciation charge per unit of capacity produced is lower for

newer assets under replacement cost accounting. Therefore, as λt increases, the average

depreciation expense decreases, and the average forward earnings increase. Proposition 2

then shows that the effect of past growth on the denominator of the ratio in the right-hand

side of (21) dominates the effect of past growth on the numerator of that ratio, and, as a

consequence, the PT/E
∗
T+1 ratio decreases in λt.

In contrast, with proportional depreciation the numerator effect is the same, while the

denominator does not depend on λt. This is because the aggregate depreciation expense is

given by:

DT+1 =
x1

x1 + ...+ xT
IT + ...+

xT
x1 + ...+ xT

I1 =
KT+1

x1 + ...+ xT
.

Accordingly, the average forward earnings per unit of capacity are equal to

ET+1 (dp)

KT+1

= p∗ − 1

x1 + ...+ xT

independently of λt. Accordingly, the forward P/E ratio will then be increasing in past

growth.

5 The P/E Ratio in the Geometric Setting

This section examines how the P/E ratio is affected by growth and accounting conservatism in

the case of geometrically declining productivity. As observed above, this pattern is frequently

considered in accounting, finance and economics studies alike, primarily for its analytical

convenience.31 The crucial property of geometric asset decline is that the firm’s capacity

31See, for example, Dixit and Pindyck (1994, p.374), Feltham and Ohlson (1996) or Biglaiser and Riordan

(2000).
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is homogeneous in the sense that it declines at the same rate for assets of all ages. As

a consequence, the replacement cost of assets in place can be expressed as a function of

current capacity only and does not depend on the age composition of the firm’s assets. In

particular, the geometric setting is characterized by two main assumptions. First, assets

have an indefinite useful life and their productive capacity declines geometrically with age:

x =
(
1, (1− α) , (1− α)2 , ...

)
,

where 0 ≤ α ≤ 1. The aggregate capacity in period t + 1 will then be determined by the

most recent investment and the aggregate capacity in the previous period:

Kt+1 = (1− α) ·Kt + It. (23)

Our second assumption is that depreciation charges per dollar of initial investment also

decline geometrically with asset age:

dτ+1 = (1− δ) · dτ .

It can be verified that the requirement that assets be fully depreciated over their useful life

then implies that d1 = δ. Therefore, we consider depreciation schedules of the following

form:

dδ =
(
δ, (1− δ) δ, (1− δ)2 δ, ...

)
. (24)

The corresponding asset valuation rule is given by:

bvδ =
(
1, 1− δ, (1− δ)2 , ...

)
For this family of depreciation rules, the aggregate book values and depreciation expense

will evolve so that

BV δ
t+1 = (1− δ) ·BV δ

t + It+1, (25)

and

Dδ
t+1 = δ ·BV δ

t , (26)

where the superscript δ indicates that the accounting numbers are calculated using the

depreciation rule dδ.

When assets have a finite useful life, the firm’s state at a particular date requires the full

history of its latest T investments. In the geometric scenario, investments remain productive

indefinitely, and, therefore, all investments since the inception of the firm are relevant for

calculating future accounting numbers and capacity levels. Given the geometric structure,

the firm’s investment history at date T can be summarized by two numbers: book value,
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BVT , and the aggregate capacity in period T + 1, KT+1. The firm’s future capacity levels,

depreciation expense and book values can be expressed as functions of these two numbers

and the investments made after period T by recursively applying equations (23), (25), and

(26).

The marginal cost of capacity in the geometric setting is given by

c =
1

γ + (1− α) γ2 + ...
= r + α.

It is straightforward to verify that replacement cost accounting corresponds to the dα de-

preciation rule, i.e., a declining-balance rule with depreciation charges declining at the same

rate as productive capacity. The historical cost charges are then equal to:

dατ + r · bvατ−1 = α · (1− α)τ−1 + r · (1− α)τ−1 = (α + r) · (1− α)τ−1 = c · xτ ,

which matches the historical cost charges under replacement cost accounting.

Interestingly, proportional depreciation also corresponds to the dα rule, because

dατ
xτ

= (1− α) =
dατ+1

xτ+1

.

Propositions 2 and 4 have shown that the P/E ratio under replacement cost accounting

decreases in past growth, while the P/E ratio under proportional depreciation increases in

past growth. Since in the geometric setting the two depreciation rules coincide, it has to

be that the P/E ratio in the geometric setting does not depend on past investment growth

rates if the dα rule is applied. Furthermore, Proposition 1 also implies that Tobin’s q also

cannot depend on λt. As the following argument shows, these observations reflect the fact

that the age-composition of assets in place is irrelevant in the geometric scenario.

Given the dα depreciation rule, the book value of a unit investment of age τ is equal to

capacity this investment will generate in the next period:

bvατ = (1− α)τ = xτ+1.

Therefore, the aggregate replacement cost of assets at each date is equal to the productive

capacity in the following period:

BV ∗T = bvα0 · IT + ...+ bvαT−1 · I1 = x1 · IT + ...+ xT · I1 = K∗T+1. (27)

Intuitively, if two investments histories generate the same amount of capacity in a given

period, their replacement costs will be equal regardless of the age composition of assets. The

aggregate replacement cost of the firm’s assets can then be calculated by assuming that all
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assets were purchased in the latest period. Since x1 is normalized to unity, to generate a

capacity of K∗T+1 in period T + 1, the firm would have to make an investment of K∗T+1 in

period T , and the replacement cost of this investment at date T would be precisely equal to

K∗T+1.

The firm’s equity value also takes a particularly compact form in the geometric scenario.

To increase the capacity of its assets at rate µ, the firm will need to make an investment of

(α + µ)K∗T+1 in period T + 1. The firm’s total cash flows in period T + 1 will then be equal

to

p∗ ·K∗T+1 − (α + µ)K∗T+1.

From period T + 1 onwards, the firm’s cash flows will increase at rate µ, since both revenues

and investments will increase at this rate. Therefore, the firm’s value at date T is given by

the capitalized value of the forward free cash flow:

PT =
p∗ − α− µ
r − µ

K∗T+1. (28)

Equations (27) and (28) imply that Tobin’s q reduces to

q =
p∗ − α− µ
r − µ

, (29)

for any history of past growth rates. Since Tobin’s q does not depend on λt, Proposition 1

implies that the P/E ratio under replacement cost accounting also cannot depend on past

investment growth. These findings are summarized in the following observation.

Observation 4: In the geometric setting, replacement cost accounting amounts to

proportional depreciation. Tobin’s q and the PT/E
∗
T+1 ratio are given by

q = 1 +

(
p∗ − c
c

)(
r + α

r − µ

)
,

PT
E∗T+1

=
PT

ET+1 (dα)
=

1

r − µ · q−1
q

for any history of investments.

Referring back to Figure 1, we find that in the geometric setting one obtains a traditional

“quadrant result” in which the horizontal boundary of the four quadrants is indeed flat and

given by for the P/E ratio with

PET =
1

r − µ · q−1
q

(30)
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An immediate consequence of Proposition 3 is that, at least locally near λ = 0, the ratio

PET (·,d) must be increasing in λt, provided d is more accelerated than replacement cost

accounting. On the other hand, for the geometric setting we observe that a depreciation rule

dδ is more accelerated (and equivalently more conservative) than dα if and only if δ > α.

Consistent with Proposition 4, we obtain the following result.

Observation 5: In the geometric scenario, the forward P/E ratio PET
(
λ,dδ

)
is in-

creasing in each λt for t ≤ T if the depreciation schedule dδ is accelerated relative to the

replacement cost rule.

The geometric setting allows for a further characterization the interaction between past

investment growth and accounting conservatism on the forward P/E ratio. The following

result will confine attention to a setting where the firm has experienced constant investment

growth for an infinite history. Specifically,

IT = (1 + λ) IT−1 = (1 + λ)2 IT−2 = ...

for some λ ≥ 0. The interpretation here is that up to period T + 1, demand for the firm’s

product has expanded at the constant rate λ. For notational simplicity, let PET (λ, δ) denote

the forward PE ratio if the depreciation rule dδ is used.

Proposition 5 In the geometric scenario, assume that investments have grown at a constant

rate λ ≥ 0 in the past. The forward P/E ratio PET (λ, δ) then satisfies:

∂2PET (λ, δ)

∂λ∂δ
≥ 0,

provided the depreciation rule in use is accelerated relative to replacement cost accounting,

that is, δ > α.

Figure 2 summarizes our findings for the geometric scenario. In particular, the figure

illustrates a “traditional” quadrant result for the P/E ratio and the complementary nature

between past investment growth and conservatism: for two different growth rates, λ1 and λ2,

the P/E ratio exhibits increasing differences as the accounting becomes more conservative.

Thus,

PET (λ2, δ2)− PET (λ1, δ2) > PET (λ2, δ1)− PET (λ1, δ1) .
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Figure 2: The P/E Ratio in the Geometric Setting (δ2 > δ1 > α)

The key analytical feature of the geometric decline scenario is that the firm’s market

value does not depend on the age composition of its assets, so past growth affects the

forward P/E only through the denominator of the ratio. A more accelerated depreciation

rule is characterized by front-loaded depreciation charges. For a growing firm, these higher

depreciation charges are applied to larger (more recent) investments in the calculation of the

aggregate depreciation expense in period T + 1. As a consequence, the marginal effect of

past growth on the forward PE ratio is stronger for more accelerated depreciation rules.

6 Conclusion

The analysis in this paper has examined the interdependence of several variables which

jointly determine the magnitude of a firm’s Price-to-Earnings ratio. These variables include

the accrual accounting rules in use, the intertemporal pattern of past investments, future

growth opportunities in the firm’s product market and the degree of competitiveness for the

firm’s products. Our framework of overlapping capacity investments identifies replacement

cost accounting as being unbiased insofar as residual income does measure economic profit.

While this accounting for operating assets is arguably not descriptive of current financial

reporting rules in many industries, it nonetheless allows us to identify a benchmark value

for the P/E ratio. This benchmark can be expressed as a “convex combination” between
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the permanent earnings and the Gordon growth models. The actual mix between these

two “endpoint” P/E ratios is determined entirely by Tobin’s q for the particular firm. For

firms in a competitive environment (q → 1), the P/E ratio will approximate the permanent

earnings model, while for a firm with strong pricing power (q →∞) the P/E ratio will tend

towards that implied by the Gordon growth formula.

Higher growth in future periods in the product market will unambiguously increase the

benchmark value for P/E ratio, unless the firm operates in a competitive industry which

yield zero economic profits regardless of growth opportunities. In contrast, we show that the

impact of higher past growth in investments on the P/E ratio cannot be predicted without

reference to the underlying accounting rules. Under replacement cost accounting, higher past

growth leads to lower values of Tobin’s q and a lower benchmark value for the P/E ratio. For

conservative accounting rules, in contrast, the P/E ratio will exceed its benchmark value for a

firm that has been growing in the past, with the opposite being true for a pattern of declining

investments in the past. Once the accounting rules become sufficiently conservative, we find

that ceteris paribus higher growth rates will actually increase the predicted P/E ratio. In

particular, this will be true if assets have an undiminished productive use over a finite life

span and depreciation is calculated according to the straight line rule.

The findings in this paper suggest a number of promising directions for empirical testing.

While for some of our explanatory variables the choice of empirical construct appears rather

straightforward, e.g., past growth in investments, a number of empirical proxies come to

mind for other variables such as a firm’s current pricing power, anticipated future growth

in the product market or the degree of conservatism. Among the main predictions of our

model, it would seem particularly important to obtain empirical support for the the suggested

relation between the P/E ratio and Tobin’s q in Proposition 1, the quadrant result in Propo-

sition 3, and the predicted interaction between past growth and accounting conservatism, as

characterized in Propositions 4 and 5.

Our model has relied on several simplifying assumptions. First, we posited that the firm

is always in a position to sell its product at a price which at least covers production costs.

Yet, an economically profitable firm may report negative accounting earnings if investments

are expensed at a faster rate than their economic value declines. Since the P/E ratio is

discontinuous at zero accounting earnings, we restricted attention to settings where the firm’s

accounting earnings are positive. Our monotonicity results continue to hold for economically

profitable firms with negative accounting earnings if instead of the P/E ratio one considers

the forward earnings yield, or the E/P ratio.32 Providing an interpretation for the P/E ratios

32In his empirical investigation, Penman (1996) also cites continuity considerations for studying the E/P

rather than the P/E ratio.
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of firms making economic losses would be an interesting direction for future research.

Another major assumption of our model is that the firm operates in a growing product

market. If demand for the firm’s product can decline over time, myopically optimal invest-

ment decisions that equate marginal revenues to the marginal cost of capacity may lead to

excess capacity situations in future periods. Anticipating the possible excess capacity prob-

lem, a firm will optimally invest less than it would under the myopic rule. Therefore, if a

firm faces a declining product market, its optimal investment policy will be different from

the one considered in our paper, and our benchmark for the P/E ratio will change.

Finally, our analysis has ignored some of the determinants of the P/E ratio suggested by

earlier literature, including leverage and dividend policy. We have also treated the firm’s cost

of capital as exogenous and independent of the projects undertaken by the firm. Incorpo-

rating these additional factors into our modeling framework would lead to a more complete

understanding of the P/E ratio and its determinants.
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Appendix

Proof of Proposition 1:

Proposition 2 in Nezlobin (2012) shows that for arbitrary future growth rates in the product

market, µT+i ≥ 0,

PT = BV ∗T + αTRI
∗
T ,

where αT =
∑∞

τ=1 γ
τ
∏τ

i=1 (1 + µT+i). If the product market grows at a constant rate µ after

period T + 1, the expression for αT can be simplified as

αT = γ (1 + µT+1) + γ2 (1 + µT+1) (1 + µ) + γ3 (1 + µT+1) (1 + µ)2 + ...

=
(1 + µT+1)

r − µ
.

Therefore,

PT = BV ∗T +
(1 + µT+1)

r − µ
RI∗T

= BV ∗T +
RI∗T+1

r − µ
=
E∗T+1

r − µ
− µ ·BV ∗T

r − µ
.

Dividing both sides by PT yields

1 =
1

r − µ
E∗T+1

PT
− µ/q

r − µ
,

which implies
PT
E∗T+1

=
1

r − µ+ µ/q
.

In some of the proofs below, we will use the following Lemma. For the proof of this

Lemma, see Rajan and Reichelstein (2009), pp. 855-857 (Claim 2 in the proof of Proposition

3 of that paper).

Lemma A For any numbers a1, ..., an, positive numbers b1, ..., bn, and growth rates

ξ2, ..., ξn ≥ −1, the function

f (ξ1, ..., ξn) =
an + (1 + ξ2) an−1 + ...+ (1 + ξ2) ... (1 + ξn) a1
bn + (1 + ξ2) bn−1 + ...+ (1 + ξ2) ... (1 + ξn) b1

is everywhere increasing (decreasing) in each ξi for 2 ≤ i ≤ n, if the sequence

ai
bi

is decreasing (increasing) in i.
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Proof of Lemma 1:

Note that
bv∗τ−1
bv∗τ

=
γxτ + ...+ γT−τ+1xT

γxτ+1 + ...+ γT−τ+1xT+1

,

where xT+1 = 0.

Then, we can apply Lemma A to the sequences defined by the following equations:

(a1, ..., an) = (xT , ..., xτ ) ,

(b1, ..., bn) = (xT+1, ..., xτ+1) ,

(1 + ξ2, ..., 1 + ξn) = (γ, ..., γ) ,

(1 + ξ′2, ..., 1 + ξ′n) = (0, ..., 0) .

Since the productivity pattern satisfies Assumption (A2),

ai−1
bi−1

≥ ai
bi
.

Therefore, the function f from Lemma A will be increasing in each ξi and its value at

(ξ2, ..., ξn) will be greater than its value at (ξ′2, ..., ξ
′
n). Hence,

bv∗τ−1
bv∗τ

≥ γ · xτ + 0 · xτ+1 + ...+ 0 · xT
γ · xτ+1 + 0 · xτ+2 + ...+ 0 · xT+1

=
xτ
xτ+1

,

and it follows that the sequence
bv∗τ−1

xτ
is decreasing in τ .

Now recall that
d∗τ + bv∗τ−1

xτ
= c.

Since
bv∗τ−1

xτ
is decreasing in τ , it has to be that the sequence d∗τ

xτ
increases in τ .

Proof of Proposition 2:

From Proposition 1 we know that:

PT
E∗T+1

=
1

r − µ+ µ/q
.

It thus suffices to show that Tobin’s q is increasing in λt. Tobin’s q can be rewritten as

q =
PT
BV ∗t

=
E∗T+1 − µ ·BV ∗T
(r − µ) ·BV ∗T

=

=
1

(r − µ)
·

(x1p
∗ − d∗1 − µbv∗0) IT + ...+

(
xTp

∗ − d∗T − µbv∗T−1
)
I1

bv∗0IT + ...+ bv∗T−1I1
.

If we show that
xi+1p

∗ − d∗i+1 − µbv∗i
bv∗i
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increases in i, then the monotonicity of Tobin’s q will follow from Lemma A by setting n = T ,

ai = xip
∗ − d∗i − µbv∗i−1, bi = bv∗i−1, and ξi = λi.

Observe that

xi+1p
∗ − d∗i+1 − µbv∗i

bv∗i
=
xi+1p

∗ − d∗i+1 − rbv∗i + (r − µ) bv∗i
bv∗i

=

=
p∗ − c

(bv∗i /xi+1)
+ r − µ.

It remains to invoke Lemma 1 where it was shown that bv∗i /xi+1 is decreasing in i if the

productivity pattern satisfies (A2).

Proof of Proposition 3:

Let DT+1 and D′T+1 denote the aggregate depreciation expenses under rules d and d′, respec-

tively, where d is more accelerated than d′. We will show that DT+1 ≥ D′T+1 (DT+1 ≤ D′T+1)

if investments I1, ..., IT are monotonically increasing (decreasing). From this it will follow

that if d is more accelerated than replacement cost accounting and the firm is growing, then

PET (λ,d) =
P T (λ)

ET+1 (λ,d)
≥ P T (λ)

E∗T+1

=
1

r − µ · q(λ)−1
q(λ)

.

Observe that

DT+1 = I1 · dT + I2 · dT−1 + ...+ IT · d1
= I1 + (I2 − I1) · (1− bvT−1) + ...+ (IT − IT−1) · (1− bv1) .

Therefore,

DT+1 −D′T+1 = (I2 − I1) ·
(
bv′T−1 − bvT−1

)
+ ...+ (IT − IT−1) · (bv′1 − bv1) ≥ 0,

if investments are increasing and d is more accelerated than d′.

Proof of Observation 1:

Assume that d is more conservative than d′. Since∑
dτ = 1,

we can rewrite d1 as:

d1 =
1

1 + d2
d1

+ ...+ d2
d1

d3
d2
... dT
dT−1

. (31)

Since d is more conservative than d′,

dτ+1

dτ
≤
d
′
τ+1

d′τ
.
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Equation (31) then implies that d1 ≥ d
′
1. Note that if dτ ≤ d

′
τ for some τ , then dτ+1 ≤

dτ
d
′
τ+1

d′τ
≤ d

′
τ+1. Applying the same argument iteratively, one can verify that dτ ≤ d

′
τ implies

dτ+i ≤ d′τ+i for any i.

Let δ (i) = bvi − bv
′
i. We have the following observations:

1. δ (1) = bv1 − bv
′

1 ≤ 0.

2. If δ (τ)− δ (τ + 1) ≤ 0 for some τ , then δ (τ + i)− δ (τ + i+ 1) ≤ 0 for any i ≥ 0.

3. δ (T ) = 0.

The function δ is negative at one, and once it becomes increasing it continues to increase up

to the end of the useful life. Therefore, δ (i) can only cross zero once and we know that this

happens at i = T . The three observations hence imply that δ (i) ≤ 0 and bvi ≤ bv
′
i for all

i.

Proof of Observation 2:

Assume that

d′1 = (1− η) d1 + η,

and

d′τ = (1− η) dτ

for τ > 1 and some η > 0.

Note that
dτ
dτ+1

=
d′τ
d′τ+1

for τ > 1. For τ = 1, we have

d′1
d′2

=
(1− η) d1 + η

(1− η) d2
>
d1
d2
.

Therefore, d′ is more conservative than d.

Proof of Proposition 4:

We expand the P/E ratio as:

PT
ET+1

=
1

(r − µ)
·
E∗T+1 − µBV ∗T

ET+1

=

=
1

(r − µ)
·
IT (x1p

∗ − d∗1 − µbv∗0) + ...+ I1
(
xTp

∗ − d∗T − µbv∗T−1
)

IT (x∗1p
∗ − d1) + ...+ I1 (xTp∗ − dT )
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To apply Lemma A, we need to show that

xip
∗ − d∗i − µbv∗i−1
xip∗ − di

is decreasing in i. Note that

xip
∗ − d∗i − µbv∗i−1
xip∗ − di

=
xip
∗ − d∗i − rbv∗i−1 + (r − µ) bv∗i−1

xi

(
p∗ − di

xi

)
=
p∗ − c+ (r − µ)

bv∗i−1

xi

p∗ − di
xi

. (32)

(A1) implies that
bv∗i−1

xi
is decreasing in i, and since r > µ, the numerator is decreasing in i.

If d corresponds to proportional depreciation, then the denominator does not depend on i.

If d is more conservative than the proportional depreciation rule, then di
xi

is decreasing in i,

and the denominator is increasing in i. Therefore, the ratio (32) is decreasing in i.

Proof of Observation 5: Without loss of generality, let date 0 be the firm’s inception date

and date T be the date at which the P/E ratio is calculated. Let us consider two firms with

equal profitability, equal investments in the first period, and having equal past investment

growth rates except in period τ + 1, in which the growth rates were equal to λτ+1 and λ′τ+1.

Since the growth rates after period τ +1 are equal, the aggregate capacity of the second firm

in period T + 1, K ′T+1, will be equal to

K ′T+1 =
1 + λ′τ+1

1 + λτ+1

(
KT+1 − (1− α)T−τ+1 ·Kτ

)
+ (1− α)T−τ+1 ·Kτ , (33)

where KT+1 is the aggregate capacity of the first firm. Similarly, the following equation will

hold for the aggregate depreciation expenses in period T + 1:

D′T+1 =
1 + λ′τ+1

1 + λτ+1

(
DT+1 − (1− δ)T−τ+1 ·Dτ

)
+ (1− δ)T−τ+1 ·Dτ . (34)

From equations (33) and (34), it follows that

∂KT+1

∂λτ+1

=
KT+1 − (1− α)T−τ+1 ·Kτ

1 + λτ+1

and
∂DT+1

∂λτ+1

=
DT+1 − (1− δ)T−τ+1 ·Dτ

1 + λτ+1

.

To show that the forward P/E ratio is monotonic it suffices to show that

∂ ln

(
PT
ET+1

)
/∂λτ+1 ≥ 0.
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This will imply that ln (PT/ET+1) increases in λτ+1, and, therefore, P T/ET+1 increases in

λτ+1.

Recall that

PT =
p∗ − α− µ
r − µ

KT+1

and

ET+1 = p∗KT+1 −DT+1.

Therefore,

∂ ln

(
PT
ET+1

)
/∂λτ+1 =

1

PT

∂PT
∂λτ+1

− 1

ET+1

∂ET+1

∂λτ+1

=
1

KT+1

KT+1 − (1− α)T−τ+1 ·Kτ

1 + λτ+1

− 1

ET+1

(
p∗ · KT+1 − (1− α)T−τ+1 ·Kτ

1 + λτ+1

− DT+1 − (1− δ)T−τ+1 ·Dτ

1 + λτ+1

)
.

The expression above has the same sign as

− Kτ

KT+1

+
p∗Kτ −

(
1−δ
1−α

)T−τ+1
Dτ

ET+1

,

which in turn is non-negative if

(1− δ)T−τ+1Dτ

(1− α)T−τ+1Kτ

≤ DT+1

KT+1

.

Note that
DT+1

KT+1

=
(1− δ)T−τ+1Dτ + dT−τ+1 · Iτ + ...+ d1 · IT
(1− α)T−τ+1Kτ + xT−τ+1 · Iτ + ...+ x1 · IT

(35)

and
d1
x1

>
d2
x2

> ... >
dT−τ+1

xT−τ+1

(36)

if δ > α. Since

di < δ · xi

for all i, it has to be that
Dτ

Kτ

≤ δ.

Therefore,
dT−τ+1

xT−τ+1

= δ
(1− δ)T−τ

(1− α)T−τ
≥ (1− δ)T−τ+1Dτ

(1− α)T−τ+1Kτ

. (37)
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Inequalities (36) and (37) allow us to apply Lemma A to the ratio in (35) to verify that

DT+1

KT+1

=
(1− δ)T−τ+1Dτ + dT−τ+1 · Iτ + ...+ d1 · IT
(1− α)T−τ+1Kτ + xT−τ+1 · Iτ + ...+ x1 · IT

≥ (1− δ)T−τ+1Dτ

(1− α)T−τ+1Kτ

.

Proof of Proposition 5:

Assume that the firm has an infinite history of constant growth:

IT = (1 + λ) IT−1 = (1 + λ)2 IT−2 = ...

for some λ ≥ 0. Then,

DT+1 = δ

(
IT +

IT−1 (1− δ)
(1 + λ)

+
IT−1 (1− δ)2

(1 + λ)2
+ ...

)
=

(1 + λ) δ

λ+ δ
· IT .

Similarly,

K∗T+1 =
1 + λ

λ+ α
· IT .

It follows from equation (28) that

PET (λ, δ) =
p∗ − α− µ
r − µ

·
K∗T+1

p∗K∗T+1 −DT+1

= A · 1

p∗ − δ(λ+α)
λ+δ

,

where A does not depend on either λ or δ. Therefore, the cross-derivative of the PE ratio in

λ and δ will have the same sign as

∂2 λ+δ
p∗(λ+δ)−δ(λ+α)

∂λ∂δ
=
p∗ (2δλ+ α (δ − λ))− αδ (α + λ)

(p∗ (δ + λ)− δ (α + λ))3
. (38)

Since we have assumed that

p∗ ≥ max
τ

dτ
xτ
,

p∗ must exceed δ. Therefore, the denominator of the ratio in the right-hand side of (38) is

positive if the depreciation rule is use is accelerated relative to replacement cost accounting

(δ > α). Note also that since p∗ ≥ δ > α,

p∗ (2δλ+ α (δ − λ))− αδ (α + λ) ≥ α (2δλ+ α (δ − λ))− αδ (α + λ)

≥ α (δλ− αλ) ≥ 0,

and, therefore the ratio in (38) is non-negative.
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