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1. INTRODUCTION

Analyst forecast dispersion is used extensively as an empirical proxy in account-

ing and finance. Underlying the measure’s broad appeal is its putative relation

to uncertainty and disagreement about future earnings - two economic constructs

which are otherwise challenging to operationalize on a timely basis. However, a

number of studies focusing on forecast dispersion qualify their conclusions with

the insight that observed forecast dispersion is driven by both of these constructs

as well as analysts’ strategic incentives and that the yet to be analyzed role of

these incentives could have implications for interpreting the prevailing empirical

evidence. Motivated by such an observation, this study quantifies the earnings

uncertainty and disagreement implied by analyst forecast dispersion in a setting

where analysts’ choices of forecasts are influenced by strategic considerations.

To further emphasize the necessity of analyzing the role of incentives in empiri-

cal tests based on forecast dispersion, consider the well-known negative association

between forecast dispersion and equity returns. Because the direction of this asso-

ciation is inconsistent with that predicted by traditional models in asset pricing

theory, follow-up work that further scrutinize this apparent anomaly has prolifer-

ated in recent years. In this stream of research, tests of whether uncertainty or

disagreement is reflected in equity returns are actually joint tests of pricing and

the appropriateness of using forecast dispersion as a measure in the presence of

strategic conduct. Thus, conclusions from this literature require establishing the

construct validity of forecast dispersion.

The approach that I use to separate earnings uncertainty and disagreement

from analysts’ strategic actions and to explore the associated implications is broadly

divided into four parts. I begin by documenting stylized empirical regularities

about analyst forecast dispersion. Guided by these stylized results, I then develop

the theoretical model in the second part of the study. The theory discussion is

divided into three intermediate steps where I first relate the model parameters

capturing the information environment to analysts’ earnings predictions, then link

analysts’ earnings predictions together with their strategic incentives to their choice

of forecasts and finally map the information environment and strategic incentives
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to forecast dispersion. The third part describes the statistical assumptions and

procedures used to transform the theoretical model into estimable form that can

be taken to the data. The fourth and final part discusses the results, which are

comprised of three components: the empirical estimates of uncertainty and strategic

incentives, the assessment of out-of-sample model fit and a re-examination of a

well-known empirical result based on forecast dispersion using my parameter

estimates.

In the first part of my study, I highlight two descriptive results about analyst

forecast dispersion not generally known in this literature. These results are based

on a sample comprised of 151,728 two-year ahead earnings per share forecasts

issued in the 30 day period after firms’ annual earnings announcements. Analyst

forecast dispersion appears to increase after each analyst announces his forecast.

This increase exists even after accounting for the mechanical impact of analyst

coverage. The descriptive evidence also indicates that forecast dispersion is highly

correlated with the magnitude of the lead analyst’s forecast error. It appears that a

formal theoretical model could help inform the interpretation of these facts.

Having identified some stylized facts in the data which I hope to reproduce with

theory, the second part of my paper describes a sequential forecasting game after an

earnings announcement event. The public earnings news, observed by all analysts,

can be aggregated together into an earnings prediction with a certain amount of

variance. This variance can be thought of as the earnings uncertainty parameter.

Each analyst’s proprietary forecasting process produces a noisy but statistically

unbiased signal that only he observes. In addition, analysts also observe peer

forecasts that have already been announced. In the first intermediate step of

my theoretical analysis, I show that each analyst’s prediction about earnings is a

weighted average of his inferences about the preceding analyst’s earnings prediction

and his private signal, where the weighting is determined by earnings uncertainty

and the variance of the private signal. Thus, both earnings uncertainty and the

noise in analysts’ private information give rise to disagreement amongst analysts

about future earnings. Clearly, if analysts’ payoffs are determined solely by their

forecast error, then they would forecast their earnings prediction and the resulting

dispersion over forecasts can be interpreted as disagreement about future earnings.
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My model assumes instead that analysts’ payoffs are determined by a weighted

sum of the magnitude of his forecast error and the magnitude of his difference

from consensus forecast. The second intermediate step of my theoretical analysis

characterizes the equilibrium resulting from analysts optimizing over their payoffs.

In this equilibrium, the analyst chooses to forecast closer to (farther from) consensus,

relative to his earnings prediction, to the extent that his objective function penalizes

(rewards) him for deviations from consensus.

In the final step of my theoretical analysis, I numerically compute the model

prediction about the forecast dispersion and forecast error for various numerical

assumptions about the model parameters. This prediction depends on a stochastic

term not observed by the researcher. Thus I also compute the expected forecast

dispersion and forecast error by taking an expectation, using Monte Carlo inte-

gration methods, over the assumed distribution of this stochastic term. Through

some experimentation, I find that under one specific set of numerical assumptions,

the equilibrium from the model produces predictions about expected forecast error

and dispersion quantitatively consistent with the increasing pattern of forecast

dispersion as well as the correlation between the magnitude of the forecast error

and dispersion documented in the descriptive analysis from the first part of the

paper. My simulations indicate that analysts’ strategic behavior not only distorts

the level of dispersion but also the extent to which cross-sectional differences in

uncertainty are incorporated into dispersion.

The statistical procedure I use to estimate the theoretical model, outlined in the

third part of my paper, formalizes the experimentation- simulation process from the

last step in my theoretical analysis. I use a Simulated Method of Moments (SMM)

approach which searches for the set of model parameters that produce predictions

about the expected forecast dispersion as each analyst forecasts and about forecast

error which replicate their empirical counterpart. In my theoretical analysis, I

showed that changes in parameter assumptions about the uncertainty in public

earnings news and about the variance in the analyst’s private information jointly

influence the model predictions about the expected magnitude of the forecast error

and forecast dispersion while changes in the parameter assumptions about the

relative importance of deviations from consensus in analysts’ payoffs determine
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the model predictions about the expected levels of forecast dispersion as well as

the expected change in dispersion as each analyst forecasts. Accordingly, the

progression of forecast dispersion as each analyst forecasts observed in the data

gives rise to empirical identification of the parameter capturing analysts’ strategic

incentives while the level of forecast dispersion, relative to forecast error, provides

identification of the earnings uncertainty parameter.

The parameter estimates, presented in the final part of the paper, perform well

at explaining the data. In particular, they exhibit superior ability at predicting

dispersion out of sample than approaches based on the association with firm char-

acteristics. I consider the impact of counterfactual policies such as reversing the

direction of analysts’ peer incentives on observed forecast dispersion as well as the

elimination of peer incentives altogether. I also analyze a counterfactual policy

which prohibits analysts from using already-announced forecasts in forming their

earnings predictions. I find that forecast dispersion is far more sensitive to these

two types of policies compared to counterfactual policies which alter drastically the

quality of the information environment. Because my results indicate that analysts’

incentives and behavior play first order roles in determining observed analyst

forecast dispersion, regulatory reforms along these two dimensions would have a

greater economic impact than regulation that, for example, increases the level of

management-analyst disclosures.

Using my model-implied estimates of earnings uncertainty, I revisit one popular

empirical application from previous research involving the use of analyst forecast

dispersion. My tests confirm the well-known result that analyst forecast dispersion

is negatively associated with future returns. When I substitute my model-implied

estimate of earnings uncertainty in place of forecast dispersion in the same test, this

association drops by more than half in certain specifications and to zero in others.

Such a reduction in the association with returns suggests that the dispersion-return

relation is, at a minimum, less anomalous than previously thought. Further, certain

asset pricing models may be able to explain the sign of the remaining association

absent any assumptions about market inefficiencies. Conclusive determination

on whether the pricing of uncertainty and disagreement is consistent with the

efficient market hypothesis is beyond the scope of this paper. Rather, the intent
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is to raise recognition that disentangling strategic conduct from uncertainty and

disagreement provides insights into the asset pricing implications of the latter two

constructs not possible by studying only the dispersion-return relation.

The remainder of the paper is organized into the following sections. Section 2

summarizes the relevant literature. Section 3 provides an overview of regularities

about forecast dispersion. Section 4 outlines the theoretical model and discusses

the resulting equilibrium. Section 5 describes the estimation approach along with

additional assumptions I use to recover the model parameters. Section 6 reports

the estimation results and Section 7 concludes.

2. RELATED LITERATURE

2.1 The Association Between Dispersion and Equity Market Outcomes

Analyst forecast dispersion is studied in a variety of empirical settings in ac-

counting and finance. Perhaps the most prolific result in this literature is that

forecast dispersion is negatively associated with the cross-section of returns (Geb-

hardt et al., 2001; Diether et al., 2002). A trading strategy based on a long portfolio

of firms in the lowest quintile of dispersion and a short portfolio of firms in the

highest quintile generates an annual return of 9.48% (Diether et al., 2002). In

follow-up work, Johnson (2004) notes “this finding is important in that it directly

links asset returns with a quantitative of an economic primitive - information about

fundamentals-but the sign of the relationship is apparently wrong.”1 Diether et al.’s

(2002) explanation for the result is that the cross-sectional variation in forecast

dispersion is driven by differences in opinion between analysts. The paper notes

that the difference in opinion between analysts is a proxy for the difference in

opinion between investors. In a market microstructure model in which investors

have heterogeneous expectations, disagreement about stock valuation lowers future

returns (Miller, 1977). In contrast, Johnson (2004) assumes that forecast dispersion

is driven by information risk about earnings and proposes an alternate theoretical

mechanism in which expected equity returns for a levered firm decreases with such

type of idiosyncratic risk. Other papers with evidence on the association between
1The same paper notes later on that forecasts dispersion may not be an economic primitive due

to the potential for analysts’ strategic behavior.
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dispersion and returns include Avramov et al. (2009), Berkman et al. (2009),Zhang

(2006), Anderson et al. (2009) and Sadka and Scherbina (2007).

More broadly, dispersion is known to be associated with an array of other

market outcomes. For example, Ajinkya et al. (1991) documents a significant

positive association between forecast dispersion and trading volume. Botosan et al.

(2004) derives measures of public and private information precision using forecast

dispersion and finds that the precision of public information (private information)

is negatively (positively) related to the cost of equity capital. Evidence in Garfinkel

and Sokobin (2006) points to a negative relation between forecast dispersion and

the post-earnings announcement drift.

2.2 Statistics-Based Measures of Uncertainty and Disagreement

A number of previous studies use the measures of uncertainty and disagree-

ment developed in Barron et al. (1998), hereafter “BKLS”. My model is based on

an information structure similar to that in BKLS. However, BKLS notes that the

validity of its measures is dependent on some stylized assumptions. It assumes

that all analysts have identical precision while my model allows for some hetero-

geneity. It also assumes that analysts forecast independently without observing

what other analysts have announced. As such, it rules out the possibility that

earlier analysts’ forecasts inform later analysts about their private information and

more importantly, it does not consider analysts’ strategic interaction. My estimates

are based on an underlying analytical model that explicitly incorporates these two

considerations.

Relatedly, Liu and Natarajan (2012) develops a model in which observed disper-

sion depends linearly on firm and analyst-characteristics as well as an unobservable

term. It hypothesizes that strategic conduct necessarily implies that this unob-

servable term is truncated from below. Using the fitted values estimated from this

model, it computes a measure of dispersion which apparently removes the impact of

strategic conduct. My approach is a departure in the sense that the statistical meth-

ods are explicitly linked to an underlying economic model of analysts’ forecasting

problem and it is the resulting equilibrium of this economic model that gives rise

to the estimation routine. In fact, I show later in the paper that the econometric
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model proposed in Liu and Natarajan (2012) is not consistent with an economic

model of analysts’ strategic conduct.

3. DESCRIPTIVE EVIDENCE

Prior to developing the formal theory, I provide some preliminary facts about

forecast dispersion that, ideally, a model should also be able to produce. The data I

use is taken from all two-year ahead earnings forecasts in the IBES Unadjusted

Details File issued in the 30 day window following annual earnings announcements

between 1990 and 2012.2 Although the 30-day cutoff may appear arbitrary, there

are no forecasts in the subsequent 30 days for more than 90% of firm-years in

the sample and earnings news is likely to be stale in forecast formation beyond

the 60 day horizon. According to untabulated summary statistics, the mean and

median coverage in the sample is 6 analysts. I restrict my analysis to the 90%

of all firm-years covered by less than 11 analysts. I further drop firms covered

by only two analysts due the noisiness of using a sample dispersion taken over

two analysts. On average, the first forecast is issued two days after the earnings

announcement and the first two (last two) forecasts are issued three (seven) days

apart. As such, I consider the data to be a reasonable approximation of an economic

setting where each analysts can observe previous analysts’ forecasts when issuing

their own forecasts. Additionally, the timing of forecasts in the data suggests that

analysts’ information sets have a common component that arises from the earnings

announcement while the differences in private information is largely attributable

to their subjective interpretation of that earnings news. Throughout my analysis,

I use raw EPS amounts without any scaling.3 The above procedure results in a

sample of 151; 728 forecasts pertaining to 27; 327 firm-years.

To provide initial insights into the cross-sectional variation in forecast dis-
2While many previous studies of analyst forecast dispersion use forecasts over the one-year or

even shorter horizons, the timing of those forecasts does not provide a clear-cut case for whether a
sequential or simultaneous move game is the appropriate model to assume. In addition, a number of
the previously documented associations between forecast dispersion and asset prices, such as that
in Diether et al. (2002), are robust to the use of two-year forecasts.

3Although scaling forecasts by share price or dispersion by the consensus forecast may be
appropriate in other research designs, I am interested in the measure that analysts use in their
payoff optimization problem. Following evidence in Cheong and Thomas (2011), I assume that this
measure is raw EPS itself.
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persion, I document how this measure varies with analyst coverage. I compute

dispersion as the sample standard deviation over all individual analyst forecasts

in the post-earning announcement window discussed above.4 In Panel A of Table

1, I summarize the average forecast dispersion by coverage. The t-statistic for the

difference in means between consecutive groups is also tabulated in the adjacent

column. The results in Table 1 confirm findings in Diether et al. (2002) and Liu

and Natarajan (2012) that forecast dispersion is positively correlated with coverage

size. In fact, this non-parametric counterpart to the regression coefficients from

the earlier papers indicates that dispersion increases monotonically with coverage.

This increase is statistically different from zero across firms covered by less than 6

analysts. Overall, forecasts for firms covered by 11 analysts are 21% more dispersed

than those covered by only 3 analysts.

A second natural descriptive statistic to consider is the within-firm progression

of dispersion as each analyst forecasts. For each set of forecasts corresponding

to a firm-year, I identify the order of announcements, which I denote as j , using

the ANNDATS variable in the IBES Unadjusted Details File. I then compute a

running version of forecast dispersion by taking the standard deviation over the

first through j -th forecast. I compute this running version of forecast dispersion

for j D 2; 3; : : : up to the total number of analysts for the firm-year. Panel B of

Table 1 reports the average running dispersion for each j where the t-statistic

in the adjacent column corresponds to the difference in means from the average

running dispersion for j � 1. The pattern of dispersion increases as each analyst

forecasts. For example, the average dispersion is 0.169 after the 11th forecast and

0.129 after the second forecast. The difference is significant at 5% level (unsigned

test, t-statistic=6.65).

Although the results indicate that, on average, dispersion increases with more

analysts, the concern remains that this trend is driven mechanically by firms with

higher analyst coverage. To remove the effects of heterogeneity due to total number

4While the sample variance, computed as s2 D 1
N�1

PN
iD1.xi � Nx/

2, is an unbiased estimator of its
population counterpart, the square root of the sample variance (i.e., sample standard deviation) is
biased in small samples. There are no results for unbiased estimators of the population standard
deviation except under very specific distributional assumptions about the underlying data. This
observation does not change the discussion of the results that follow although the t-statistics in
Table 1 could be overstated. The implications of the bias in sample standard deviation for estimating
my model parameters are addressed in Section 6.
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of analysts, I compute a demeaned version of running dispersion, where I subtract

from raw dispersion after the j -th analyst by the average for the corresponding

coverage size in Panel A. This quantity is then normalized by adding a constant such

that for j D 2, average demeaned dispersion is the same as average raw dispersion.

As the last two columns of Table 1, Panel B shows, the demeaned running dispersion

still increases, although more modestly, with j . The average difference in this

variable after the 11th and the 2nd forecast is 0.026 (t-statistic=4.31).

My next set of tests is motivated by evidence from prior papers that the magni-

tude of analysts’ forecast error is highly correlated with dispersion (Diether et al.

(2002),BKLS). Confirming results from previous research, I find that the Pearson

(Spearman) correlation between the absolute value of the first analyst’s forecast

error, denoted as jLEADFEj, and analyst forecast dispersion is 0.43 (0.46).5 I

extend this analysis further by examining the progression of dispersion conditional

on jLEADFEj. Panel C of Table 1 reports the progression of running dispersion

based on a sort of firm-years into terciles using jLEADFEj. In contrast to the

previous analysis, I discard the first forecast to remove the mechanical impact that

the first analyst’s forecast would otherwise have on forecast dispersion. I find that

forecasts are most dispersed in the highest tercile of jLEADFEj, where the running

dispersion ranges from 0.173 after the third forecast to 0.273 after the eleventh

forecast. In contrast, for firm-years in the lowest tercile of jLEADFEj, dispersion

ranges from 0.055 to 0.093. Similar to the pattern in Panel B, dispersion increases

almost monotonically with every subsequent analyst for all three subsamples. Col-

lectively, the evidence suggests that the same set of underlying economic primitives

drive variation in both jLEADFEj and dispersion. The levels of jLEADFEj and the

sequence of dispersion documented in Table 1 as well as the correlations between

the two form the basis for the discussion of model calibration and estimation that

follows.

In the final analysis of this section, I establish a benchmark for the performance

of a descriptive approach, based on the association between forecast dispersion and

firm characteristics, at explaining the data. Since my previous analysis suggested

that the lead forecast error and forecast dispersion have a shared component, I
5The precise motivation for using only the first forecast (rather than the forecast error in

consensus) will be discussed in the next several sections.
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also estimate the association between the same characteristics and jLEADFEj.

After dropping observations due to the non-availability of data, my sample is

comprised of 122; 391 forecasts and 21; 787 firms-years. I randomly select 19; 560

observations, representing approximately 90% of the sample, for estimation. The

remaining observations are retained for assessing out-of-sample fit. The exact

model I estimate is:

Yit D
0 C 
1ASSETSit C 
2BTMit C 
3PRCit C 
4COVit C 
5SIZEit C 
6RDit

C 
7RDMISSit C 
8SALESit C 
9jACCRjit C 
10LOSSit C 
11BETADECit

C 
12LEVit C 
13PAST VOLit C �it ;

(1)

where the dependent variable Yit is either the natural logarithm of analyst forecast

dispersion, DISPit , or the natural logarithm of the magnitude of the lead ana-

lyst’s forecast error, jLEADFEjit . The cross-sectional determinants of DISP and

jLEADFEj I use, all measured at the earnings announcement date that marks the

start of the measurement window used for sample selection, are largely similar to

those considered in prior studies such as Diether et al. (2002) and Liu and Natara-

jan (2012). These include total assets (ASSETS) and accruals (jACCRj), both on

a per share basis, share price (PRC ), the book-to-market ratio (BTM ), analyst

coverage (COV ), R&D Expense (RD) which is set to zero if missing, an indicator

variable if R&D Expense is missing (RDMISS ), the leverage ratio (LEV ), the CRSP

Beta decile (BETADEC ) and the standard deviation of earnings per share over the

previous eight quarters PAST VOL. I estimate (1) with both calendar-year fixed

effects and industry fixed effects determined using the Fama-French 48 Industry

Classifications.

Table 2 presents the results from estimating the determinants model in (1).

Across the DISP and LEADFE regressions, the sign and, in many cases, the

magnitude of the coefficients are similar. I find that firms with more assets as

well as those with higher B/M ratios, analyst coverage, R&D activity, accruals and

historical volatility tend to have both higher dispersion and lead forecast error. Also

both constructs are negatively associated with market capitalization, sales and
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Beta. Loss firms exhibit higher dispersion and lead forecast error than non-loss

firms. Finally, the sign of the association with price and leverage ratio are not

consistent across the two regressions, although in all but one case the coefficients

were not significant. Taken together, these common associations with firm risk

proxies provide further support for the notion that both dispersion and the unsigned

forecast error for the lead analyst measure similar economic constructs.

4. A MODEL OF ANALYSTS’ BELIEFS & STRATEGIC INTERACTION

This section outlines the model. I discuss the assumptions about the information

that analysts use to form their beliefs about earnings and I provide expressions for

the first two analyst’s beliefs to illustrate how they vary with underlying parameters

followed by numerical examples of dispersion in beliefs for select assumptions about

model parameters. Then I describe the analyst’s payoff function. Given the assumed

payoffs and information structure, I discuss, using the two-analyst example, the

strategic behavior arising from optimization of the payoff function. I also compute

numerically the model-predicted dispersion for certain assumptions about analysts’

incentives to bias. A side-by-side comparison using results from the previous section

show that the average dispersion and forecast error documented in the data are

almost identical to those computed from the model.

4.1 Analysts’ Information and Beliefs

A. Assumptions

The model considers analysts’ use of public and private information to forecast

earnings A at some horizon. Conditional on only the public information, A is as-

sumed to be normal with mean �0 and variance �2. That is, �0 is a prediction about

future earnings which aggregates all firm and industry earnings announcements,

management disclosures and other information that all market participants observe

and �2 captures the precision of the prediction. In colloquial terms, firms with large

(small) � ’s are difficult (easy) to forecast using contemporaneous earnings news

irrespective of analyst forecasts. As such, it is natural to interpret � as a measure

of fundamental uncertainty or information asymmetry about A. Throughout the
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remainder of the paper, I refer to �0 as prior prediction based on public news and �

as the uncertainty parameter.

There are J analysts who sequentially issue forecasts fj according to an exoge-

nously determined order. All analysts fully observe public information and I assume

there is no new information once a forecasting game as started.6 In addition, each

analyst’s research activity produces a private signal sj D A C �j � "j where "j is

the unit Normal random variable. Equivalently, conditional on actual earnings

A, signals sj are independently normally distributed with mean A and variance

�2j . The analyst forecasting in the j -th order observes his own signal sj , the j � 1

preceding forecasts f1; : : : ; fj�1 and the inferred signal from preceding analysts’

forecast Os1.f1/; : : : ; Osj�1.fj�1/. Collectively, the observed information gives rise to

posterior beliefs about earnings.

B. Expressions for the First Two Analysts’ Beliefs

Prior to specifying the analyst’s objective function, I provide expressions for the

first two analysts’ forecasts as well as the resulting forecast dispersion under the

assumption that analysts honestly announce their beliefs and that all analysts

signals have the same variance (i.e., �j D �;8j ). Since the model assumes that A

and sj are jointly normal, the posterior distribution of each analyst’s beliefs is linear

in the earnings prediction based on public information �0 and the private signal sj .

I use �j to denote mean of the posterior beliefs for j .7 For the first analyst, this is:

�1 D
�2

�2 C �2
�0 C

�2

�2 C �2
s1: (2)

In Equation (2), the weighting is consistent with familiar intuition in the sense

that very noisy signals (i.e., high values of � ) induces the analyst to place a higher

weight on the prior prediction from public news. Similarly, to the extent that the

firm has high fundamental uncertainty (i.e., high values of �), the first analyst
6I acknowledge that this assumption does not hold exactly in the data to the extent that industry

peer firms announce earnings once the first analyst has forecasted.
7Following prior studies which consider analyst forecast dispersion as a measure of disagreement

or divergence of beliefs, it may be natural to think of this construct as the difference between the
�j ’s in my model. Section 5 discusses my assumptions about the cross-sectional heterogeneity in
disagreement, and the extent to which this concept differs from the cross-sectional heterogeneity in
uncertainty.
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places a higher weight on his own private signal. The mean of the second analyst’s

posterior beliefs can be expressed as:

�2 D
�2

2�2 C �2
�0 C

�2

2�2 C �2
s2 C

�2

2�2 C �2
Os1.f1/: (3)

Equation (3) is similar to (2) in that the magnitude of � and � jointly determine

the weighting placed on analyst 2’s private signal relative to the prior prediction

based on public news. However, analyst 2’s forecast also places some weight on

his inferences about 1’s signal upon observing f1. Since I have assumed that both

analysts forecast their analysts truthfully, then f �1 D �1 and (2) can be re-arranged

as:

s1 D
f1.�

2 C �2/ � �2�0

�2
:

Since the second analyst’s conjecture must be rational given analysts 1’s choice of

f �1 , Os1
�
f �1 .s1/

�
D s1 and (3) can be written as:

�2 D
�2 C �2

2�2 C �2
f1 C

�2

2�2 C �2
s2: (4)

Finally, since I assume that the second analyst also forecasts his beliefs, with

f �2 D �2, then the standard deviation after the second forecast is proportional to

the absolute value of the difference between the first two analysts’ forecasts:

jf �2 � f1j D
�2

2�2 C �2
js2 � f1j: (5)

The quantity in equation (5) is increasing in � , consistent with the intuition that

holding fixed f1, high fundamental uncertainty induces the second analyst to

disagree with the first analyst.8 The expression generally declines in � , reflecting

the fact that an imprecise private signal is weighted less in �2.9

8Of course, according to Equation (2), the cross-sectional variation in f1 also arises endogenously
with � and � . I discuss how this endogeneity enters into my estimation in the next section.

9Since s2 D AC �"2, there is also an indirect effect which gives rise to more dispersed s2’s, the
weighting effect will always dominate.
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C. Numerical Examples of Dispersion in Beliefs

In Panel A of Table 3, I provide the expectation of model-predicted progression of

dispersion, still maintaining the honest-forecasting assumption, for certain values

of � and � . To be consistent with the approach used to describe the data in Section

3, I use only forecasts issued for the second, third and up to the eleventh forecast

so that f1 does not mechanically enter into dispersion. The values provided are an

expectation because private signals sj are unobservable to the researcher. Rather,

I use the assumption that sj D A C �"j to compute expected forecast dispersion

one should expect to observe after integrating over many draws of "j . For example,

taking an expectation over Equation (5) gives:

E
�
jf �2 � f1j

�
D

�2

2�2 C �2

"
�

r
2

�
e
�
.A�f1/

2

2�2 C .A � f1/

�
1 � 2ˆ

�
f1 � A

�

��#
;

where ˆ.�/ is the standard normal cumulative distribution function.

In column (1), I assume that � D 0:35; � D 0:1, while in column (2) I assume that

� is 1.41 and � is 0.4. Across both columns, I fix the magnitude of the difference

between actual and �0 to 0.6.10 In both cases, the model predicts that, on average,

dispersion should be 0.146 after the eleventh analyst has forecasted. According to

Panel C of Table 1, this quantity matches exactly the average running dispersion

after the eleventh forecast for firms in the middle tercile of jLEADFEj. In the

adjacent two columns, I report the expected dispersion under the alternative as-

sumptions that � D 1:1; � D 0:56 and that � D 1:64; � D 0:7. According to the model,

dispersion should be 0.173 after the third forecast under both sets of assumptions.

This amount is consistent with average dispersion observed in the data after the

third forecast for firms in the highest tercile of jLEADFEj (see last column of Table

1, Panel C).

Note that the differences between column (1) and (5) thru (6) illustrate the effect

of changing either � or � while fixing the other parameter as well as �0 constant.

Comparing column (1) with column (5), increasing � from 0.35 to 0.4 increases

dispersion for the entire sequence. This is consistent with the expectation that
10The model predictions are only unique up to the difference between the two. For example, the

model implied dispersion is the same for A D 0:2; �0 D 0:8 and A D 0 and �0 D 0:6
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dispersion should increase with the uncertainty. In column (6), the assumption

about � is higher than that in column (1). This change reduces analysts’ weighting

on their private signal and results in a decrease in dispersion of beliefs. Column (7)

assumes all the same parameters as column (1) except that �0 is 0.8 instead of 0.6.

Increasing this parameter reduces the dispersion in beliefs at every point in the

forecasting sequence.

Although with the assumed parameters in columns (1) and (2), the model

can explain dispersion after the eleventh forecast for mid-LEADFE firms, its

predictions about dispersion over the earlier forecasts are too high relative to

the data counterpart in Table 1. Similarly, in columns (3) and (4), the selected

parameters is able to explain dispersion after the third forecast for high LEADFE

firms. However, the model predictions about dispersion as more analysts announce

is too low relative to what is observed in the data. As alluded to in the previous

section, a model that incorporates additional features of the institutional setting

could potentially provide predictions that better explains the data.

To summarize, I show that with certain assumptions about �0; � and � , the

model can produce numerical predictions about the dispersion we should except to

observe, on average, which fall in the approximate range as descriptive statistics

about dispersion in the data. There are multiple sets of parameters that can explain

dispersion exactly at a certain point in the progression of forecast announcement.

However, it appears that there are no feasible assumptions about � and � which

allow the model to reproduce the observed dispersion over the sequence of analysts’

forecast announcements.

4.2 Analysts’ Payoffs

A. Assumptions

My assumption about analysts’ payoffs is primarily motivated by previous

evidence suggesting that analysts’ career outcomes are related to their accuracy

as well as the extent they deviate from consensus (Hong et al., 2000; Hong and

Kubik, 2003). However, it is important to acknowledge that there is an extensive

assortment of other incentives giving rise to forecast bias that is well established in
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analyst research.11 Further, managers are known to manage their guidance and

subsequent earnings to just-meet forecasts. I consider the importance of deviation

from consensus in analysts’ payoffs because there is an intuitive link to the second

moment of analyst forecasts (i.e., forecast dispersion). Other types of behavior,

which primarily impact the first moment of analyst forecasts, could be incorporated

into future extensions of this simple model. Additionally, surveys of sell-side

analysts (Groysberg et al., 2011; Brown et al., 2015) reveal that their forecasts

are determined by a rich confluence of institutional features which give rise to

incentives unrelated, at least directly, to forecast accuracy or to deviation from

consensus itself. Rather than using a richer, potentially analytically intractable

model, I assume that for analysts other than the lead analysts, their forecasting

decision can be approximated by an objective function comprised of the absolute

value of forecast error and the absolute value of deviation from consensus (i.e., the

average over analysts who have already announced):

Lj D jfj � Aj C �

ˇ̌̌̌
ˇfj � 1

j � 1

j�1X
kD1

fk

ˇ̌̌̌
ˇ ; j D 2; 3; : : : ; J; (6)

where � weights the importance of deviating from consensus relative to the

importance of being accurate. It may be appealing to refer to � as the herding

parameter. Such a use of herding would be loosely comparable to the setting con-

sidered in in Scharfstein and Stein’s (1990) herding model. That analysts infer

private information impounded in preceding analysts’ forecasts is itself considered

herding behavior in other papers in this literature irrespective of any career con-

cerns. This second type of herding is non-strategic and is closer to the behavior

modeled in Banerjee (1992), though neither models can be directly applied to an

analyst forecasting setting. My model allows for both kinds of behavior and, as

such, throughout the paper I refrain from applying the term to �.

Although in (6) I assume that forecast accuracy and deviation from consensus

are determined based on their absolute values, I do not rule out the possibility

that it is the squared forecast error and squared deviation that actually matter to

analysts. However, assuming a quadratic objective function gives rise to equilibrium
11Some of these include future access to management (Lim, 2001; Francis and Philbrick, 1993)

and investment banking relations(Lin and McNichols, 1998).
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forecast strategies where � is not identified separately from � and � . That is, absent

an assumption about the value of �, the parameter of interest � cannot be uniquely

estimated from the data. Evidence from Gu and Wu (2003) and Basu and Markov

(2004) also supports a linear loss function. In addition, it is also possible that

analysts are not only concerned with their deviation from forecasts that have

already been announced but also with the forecasts from peers who have yet to

announce. I do not make this latter assumption because, relative to (6), the resulting

equilibrium does not sufficiently improve my ability to explain forecast dispersion

observed in the data to justify the additional computational complexity. Another

assumption implicit in (6) is that all analysts have the same preferences (i.e., � is

common to all analysts). In a separate paper (Xiao, 2015), I allow for the possibility

that � is indexed by j and I show that with other sources of variation in the data

beyond forecast dispersion, it may be possible to determine whether the objective

function is based on absolute value or squared terms and whether analysts are

forward looking with respect to peer forecasts.

Since consensus forecast is undefined for the lead analyst,12 an additional

assumption is required about f1. I assume that the first analyst forecasts the mean

of his beliefs, with f �1 D �1 where �1 is given by (2). Since the variance operator

is invariant to addition or subtraction by a constant, this assumption is robust to

the extent that the first analyst includes an upward bias that does not depend on

� or � perhaps due to conflicts of interests documented in previous research, as

long as the remaining analysts also include the same bias. Most notably, however,

this assumption would not hold to the extent that there is the type of self-selection

in analyst coverage suggested in McNichols and O’Brien (1997) because observed

forecasts would be systematically related to the expectation of a truncated normal

distribution, which depend on � and � .13

12Because I assume that the start of each forecasting game commences with the earnings an-
nouncement and because there is a dearth of forecasting activity immediately preceding the event,
I assume that the average over any forecasts already issued at the earnings announcement to be
stale and does not enter into the lead analyst’s objective function.

13See results in Hayes (1998) and Hayes and Levine (2000) for the derivation this relation.
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B. Optimal Forecasting Strategy for Second Analyst

To illustrate the effect of � on forecast dispersion between the first two analysts,

the second analyst’s forecasting strategy when � > 0 is:14

f �2 D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�2 C O�2 �ˆ

�1
�
1C�
2

�
if �2 < f1 � O�2 �ˆ�1

�
1C�
2

�
f1 if �2 2

�
f1 � O�2 �ˆ

�1
�
1C�
2

�
; f1 C O�2 �ˆ

�1
�
1C�
2

��
;

�2 � O�2 �ˆ
�1
�
1C�
2

�
if �2 > f1 C O�2 �ˆ�1

�
1C�
2

�
;

(7a)

In contrast, when � < 0, the second analyst forecasts according to:

f �2 D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�2 C O�2 �ˆ

�1
�
1C�
2

�
if �2 < f1

�2 if �2 D f1;

�2 C O�2 �ˆ
�1
�
1��
2

�
if �2 > f1

(7b)

where the mean of the second analyst’s beliefs �2 is given by (4)15 and where

O�2 D
�2�2

2�2C�2
, used to denote the variance of the second analyst’s posterior beliefs,

increases with both � and � . The ˆ�1.�/ refers to the inverse of the standard normal

cumulative distribution function. In Equations (7a) and (7b), the optimal strategy

f �2 is a function of �2 and consensus, which in this case, is simply the first analyst’s

forecast f1. To further illustrate the second analyst’s behavior, Figure I includes

plots of f �2 assuming � < 0 and � > 0. Both plots are centered at f1 and I vary �2

along the horizontal axis. In both cases, the analyst forecasts honestly �2 when

f1 D �2 (i.e., the consensus coincides with the mean of his beliefs) and the strategy

is symmetric around this point. When � > 0, the analyst biases16 away from �2

in the same direction as f1. For values of �2 close to f1, the optimal forecast for

analyst 2 is the corner solution of f �2 D f1. The range of �2, relative to f1, that

induces the corner solution increases with �, � and � . For values of �0 sufficiently

far from f1, the analyst issues a forecast between f1 and �2, where the distance

from �2 is a constant quantity, in the sense that it does not depend on �2 or f2, and
14The analytical solutions for j > 2 and accompany proofs are included in Xiao (2015).
15This equality holds because I have assumed that the f �1 D �1.
16Note that through the paper I use the term bias to refer to the difference between f �j and �j .

This quantity may or may not be related to the more conventional notion of bias, which is the
difference between observed forecasts and actual.
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varies with � , � (through O�2 in Equation (7a) and (7b)) and �. When � is negative,

the analyst always biases from �2 whenever �2 ¤ f1. If the mean of analyst 2’s

beliefs �2 is greater than f1, then f �2 will be exceed �2 and if �2 is less than f1,

then f �2 will be less than f �2 as well. Similar to the case where � is positive, the

magnitude of the bias increases with � , � and �. Visually, Figure I shows that there

is a “jump” in the direction of forecast bias around �2 D f1 and that the size of the

jump increases with the magnitude of all three parameters.

C. Numerical Examples of Forecast Dispersion Implied by Model Equilibrium

In Panel B of Table 3, I report numerically the model predictions about expected

forecast dispersion for specific assumptions about the underlying parameters. The

approach is similar to the one used in Section 4.1, except of course that the previous

analysis assumed a honest forecasting setting (equivalent to � D 0). I use the

equilibrium forecast strategies from solving the loss function assumed in (6). Since

the expectation of forecast dispersion cannot be computed analytically, I use a

numerical integration routine. To provide maximum comparability with the model

predictions reported in Panel A, I maintain the assumption that � D 1:1 across all

the computations.

In the first column, I use the assumption that � D 0:6; � D 0:1 while �0 is

assumed to be $0:1 greater or less than actual earnings. The model predicted

dispersion ranges from 0.052 after the third forecast to 0.101 after the eleventh

forecast. Referring back to Table 1 Panel C, the running dispersion for firms in

the lowest tercile of jLEADFEj is 0.055 at j D 3 and 0.093 at j D 11, which

are approximately the same. In fact, a side-by-side comparison reveals that the

model predictions are quite close at explaining running dispersion at every j . The

analogous comparison can be made between the sequence of running dispersion

for the Mid jLEADFEj firms in Table 1 and column (2) of Table 3. If I assume that

� D 0:9; j�0 � Aj D 0:1 and � D 0:1, the model implied dispersion ranges from 0.083

to 0.146 which closely tracks the 0.085 to 0.146 range in the data.

At first glance, it may be counter-intuitive that to the extent analysts prefer to

be close to consensus, dispersion actually increases as each analyst announces his

forecast. To clarify the impact of �, consider first, for example, the difference in
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model-implied between columns (1) and (3) where the assumptions only differ by

�. At every j between 3 and 11, increasing � from 0.1 to 0.7 reduces the predicted

dispersion. Underlying this reduction is analysts’ choice to deviate from beliefs

towards consensus which, in turn, is driven by the fact that their objective function

rewards them for being close to consensus. However, a different analysis is required

for how dispersion varies with j for a fixed positive value of � (as well as � and

�). As the � > 0 curve in Figure I shows, the analyst only forecasts differently

from consensus when the mean of his beliefs, determined by his private signal, is

sufficiently extreme relative to consensus. As a statistical regularity, the presence

of additional analysts will increase the probability that very unlikely signals will

be drawn to induce a forecast that differs from consensus. In addition, the “flat”

interval in Figure I is decreasing in the marginal cost of being incorrect. Holding

fixed the other parameters, this marginal cost is higher for later analysts because

their beliefs are more precise.17 As j grows large, this interval will disappear and

the randomness from sj will always be reflected in forecast dispersion. Put together,

these two features of the model produce predictions about dispersion that increase

with j .

Finally, � also has important implications for the sensitivity of dispersion with

respect to � . In each of columns (1), (3) and (5), I assume that � D 0:3 while in

columns (2), (4) and (6), I assume that � D 0:6. As expected, increasing � increases

overall dispersion (although a portion of this increase is attributable to the change

in assumption about �0). However note that the absolute size of this increase is

the largest (approximately 0.08) across columns (5) and (6) where I assume that

� D �0:7 while the increase is more modest between columns (1) and (2). At the

other extreme where I assume � D 0:7, increasing � by 0.3 results in only a 0.004 to

0.012 increase in dispersion. More formally, the cross-partial of the model-implied

dispersion with respect to � and � is negative. The intuition for the result in the

two analyst case, which generalizes for any j , can be seen from the forecasting

function in either (7a) or (7b).18 � affects f �2 directly through the bias term as well

as indirectly through �2. If � > 0, �2 only matters to the extent that it is far from
17For example, if the analysts are beliefs are so imprecise that their prediction will almost always

be wrong, then there is little cost to forecasting something other than his prediction.
18Since � does not enter into the first analyst’s strategy, f1 can be held fixed. Thus, the impact of

� on the dispersion between analysts 1 and 2 is the same as its impact on f �2
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f1, so the overall impact of � on f �2 is, loosely speaking, the product of its effect on

�2 and the probability that �2 exceeds the interval over which 2 imitates 1. Since

this interval tends to infinity as � approaches 1, � will play a progressively smaller

role in f �2 . In contrast, when � < 0, the analyst always biases away from consensus

unless �2 D f119 where there is a dollar increase in the distance between f �2 and f1

for every dollar of magnitude in difference between �2 and f1. In addition to this

effect, the second analyst’s departure from f1 also includes the product of ˆ�1.1��
2
/

and the posterior variance of his beliefs O�2 (the second term in Equation (7b)). The

former term decreases with � and the latter increases with � . As a result, the

interaction between � and �, f �2 is extremely sensitive to � when � is extremely

negative. The large difference in model-implied dispersion between columns (5) and

(6) reflects this sensitivity.

To summarize, my empirical model assumes that analysts’ payoffs are jointly

determined by the absolute forecast error and the absolute deviation from consensus.

I parametrize the relative importance of relative importance of the latter measure

through the parameter � in Equation (6). To the extent that � ¤ 0, the analyst’s

forecasts are influenced by both their beliefs about earnings and strategic conduct.

The model predicts that strategic incentives should manifest in the data in one

of three ways. First, strategic conduct arising from positive (negative) values

of � reduces (increases) forecast dispersion for a given number of analysts who

have announced. Second, it affects the direction and magnitude of the change in

dispersion each analyst announces. Finally, large (small) values of � attenuates

(amplifies) the extent to which cross-sectional differences in � is reflected in forecast

dispersion.

5. ESTIMATION

The model I describe in the previous section has four parameters unobservable

to the researcher: the earnings predictions based on public information �0, the

fundamental uncertainty about earnings � , the variance of the noise in analysts’

private signals � and the relative weighting of deviation from consensus in analysts’

payoff function �. Whereas �0 varies almost certainly by firm and � is assumed
19Since the beliefs are normally distributed, the probability of this event is 0.
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to be the same across all analysts, I consider both the possibility that � and � are

the same across all firms and analysts, respectively, and the possibility that there

is cross-sectional heterogeneity. In my discussion of the empirical approach, it is

important to emphasize that the intent of the estimation is not to conclusively

determine the sign of �. Rather, I focus on how inferences about � and � vary by

allowing for the possibility that � ¤ 0.

I select my sample using the exact procedure described in Section 3. In partic-

ular, I use the 19,560 firm-years which were randomly sampled from the 21,787

observations with available data to estimate the determinants model in (1). I merge

the IBES data to the Nelson Directory of Investment Research, which contains data

on analyst characteristics (e.g., All-Star Status) as well as details of the employing

research firm, using the Analyst-Broker Translation File.

5.1 Econometric Assumptions

As shown in the previous section, analysts’ forecast strategies depend on the

mean of their posterior beliefs about earnings. This mean is a weighted average

between their private signals, the earnings prediction based on public information

�0 (“direct effect”) and, in the case of analysts forecasting second and later, infer-

ences about previous analysts’ signals which in turn is a function of �0. However,

the model predicts that this latter function of �0 exactly offsets the direct effect of

�0 in determining beliefs. As such, �0 only enters into the first analyst’s forecast

strategy. This result can be seen, for example, in Equation (4) and generalizes for

all j D 2; 3; : : : ; J .

Although �0 can be estimated from the data using any one of the earnings

predictions models from previous research, this process introduces econometric

noise that is not informative about the economic primitives of interest. However,

since the analytical features of the model allow me to sever the dependence of

forecasts on the parameter for all but the first analyst, I do not attempt this

estimation. Instead, I assume that the true value of the parameter satisfies �0 D
f1.�

2C�2/�s1�
2

�2
, where the expression follows from inverting (2) and the assumption

that the first analyst is honest. Clearly there is a trade-off because the actual
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observed value of f1 must be used in computing the model-predicted dispersion.20

To mitigate the concern about the resulting mechanical correlation between the

model and data, I only consider dispersion over forecasts starting from the second

analyst.

In addition, I assume that in the cross-section, the earnings prediction based on

public information for firm i and period t exhibits the following relation to actual

earnings:

�0;it D Ait C �it � �it ; (8)

where �it is the standard normal variable. That �0;it is equal to Ait in expectation

follows mechanically from how the parameter is defined in Section 4.1. However,

an econometric assumption is needed about the extent to which �0;it varies relative

to Ait in the data. Since �0;it is an earnings prediction which aggregates, amongst

other news, the latest earnings announcement, it is natural to think that this

variation is systematically related to the firm’s uncertainty itself. Put differently, in

the cross-section, firms with high � are hard to forecast using �0;it precisely because

past earnings news tends to be far from future earnings. Equation (8) assumes that

both sources of uncertainty are exactly equal, although in future extensions I plan

to relax this assumption with the inclusion of additional noise terms.

The assumption in Equation (8) along with the assumption that the first analyst

is honest can be substituted into (2) so cross-sectionally, the first analyst’s forecast

error satisfies:

f �i1t D Ait C
�2it�i1t

�2it C �
2
i1t

"i1t C
�it�

2
i1t

�2it C �
2
i1t

�it ;

where "i1t , originally defined in Section 4.1 as a component of the first analyst’s

noise term, is unit normal by assumption and since �it is also unit normal, the sum

of the last two terms in this expression is also normal with mean 0 and variance

equal to the sum of the squared weights on "i1t and �it . Thus I re-write the first

analyst’s forecast error as:

f �i1t � Ait D

q
�4it�

2
i1t C �

4
i1t�

2
it

�2it C �
2
i1t

�it ; (9)

20Since the model predictions about dispersion are only unique up to the unsigned difference
between f1 and A, knowledge of the magnitude of the first analyst’s forecast error is sufficient.
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where �it is a random unobservable term specific to each firm i and year t and is

distributed N.0; 1/.

I estimate four models that differ based on assumptions about cross-sectional

heterogeneity in � and � . I consider the two extreme cases in this heterogeneity. In

the “No Heterogeneity” model, I assume that forecast dispersion can be explained

by a uncertainty parameter common to all firm-years, with �it D � , and that all

analysts’ private information are equally precise. That is, � is common across

analysts.

In the pairs of models where � is assumed to vary across analysts, I assume

that the parameter is a function of observable analyst characteristics. This choice

is motivated by evidence from other studies that analysts’ forecast accuracy sys-

tematically vary with analysts’ ability and resources (Clement, 1999; Mikhail et al.,

1997). I select two common proxies used in such studies and specify:

�2jt D �
0

0 C �
0

1exprjt C �
0

2expr
2
jt C �

0

3employerszjt ; (10)

where expr is the analyst’s forecast experience, measured in the number of years

where the analyst has issued a forecast in IBES and employersz is the log of the

total number of analysts employed at the same brokerage firm as analyst j , both of

which are measured at the calendar year end previous to time t . These two mea-

sures are rough proxies for the precision of analyst’s information, where in future

extensions I will incorporate additional and more refined measures. There is no

theoretical basis for the functional form assumed in (10). I include expr2 along with

expr to allow for declining returns to forecast experience but the appropriateness of

this specification is untestable. In addition, the two variables could linearly affect

the standard deviation �jt or precision parameter 1
�jt

rather than the variance itself.

I consider the fit of these alternate specifications as a robustness check.

Note that the approaches which assume homogeneity or arbitrary heterogene-

ity represent two extremes along the bias-variance trade-off, where allowing for

heterogeneity reduces bias but increases variance. Although I consider only the

two “corner case” assumptions, depending on the particular research setting that

estimates of � is intended for, there could be other assumptions more appropriately
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positioned on the bias-variance frontier.21

In the Firm Heterogeneity model, the cross-sectional heterogeneity in dis-

agreement is driven entirely by the heterogeneity in the uncertainty parameter �

(through its role in determining the mean of beliefs �j ). That is, a cross-sectional

sort of firms using uncertainty produces the same result as a sort using disagree-

ment. In the Complete Heterogeneity model, the cross-sectional variation in dis-

agreement is jointly determined by firm heterogeneity (through its effect on � ) and

analyst heterogeneity (through its effect in � under the assumption in Equation

(10)). In particular, while I allow for the possibility that disagreement has a firm-

specific and an analyst-specific component, I do not allow for a firm-analyst pair

specific component (i.e., � is indexed by i; j and t). As intuition would suggest,

identification of heterogeneity at such a granular level would be challenging.

5.2 Identification

In Section 3, I computed the average running dispersion for subsamples of firms

sorted based on the magnitude of jLEADFEj. For the purposes of this stylized

discussion, I assume that the average dispersions reported in Table 1 corresponds

to a single firm (or a group of homogenous firms).

A. Identification of � and �

For simplicity, first consider Panel A of Table 3 where I assume analysts forecast

honestly or, equivalently, �=0. The table shows that when for a fixed value of �0,

there are multiple permutations of � and � such that the model-computed forecast

dispersion will reasonably reproduce the average forecast dispersion in the data

at a particular point. For those particular pairs of � and � , the model will also

generate close to identical dispersion for the entire forecasting sequence. Therefore,

the two parameters cannot be identified solely using dispersion data. The intuition

is that based on only observing forecast dispersion, either in the cross-section or

within firm-period, one cannot distinguish whether the variation is driven by noise

in analysts’ private information or by uncertainty in the earnings prediction based
21For example, one could assume that � is constant within an industry. Alternatively, if the

empirical test requires sorting firms into portfolios based on dispersion, the � could be estimated as
an average for firms in the top quintile.
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on public information.22 This necessitates the use of data on the location of forecasts

relative to the earnings prediction itself.

Since the model assumes that the earnings prediction is equal to actual in

expectation, the a natural variable to use is the relative distance between forecasts

and actual earnings (i.e., the magnitude of the forecast error).23 The BKLS measure

of uncertainty is also constructed using actual forecast data. However, whereas the

earlier measure is based on the magnitude of the consensus forecast error, I use the

unsigned forecast error for the lead analyst. The motivation for this choice is that

Equation (2) provides a closed form expression for the expectation of lead analyst’s

forecast error (under the assumption that analyst 1 forecasts his beliefs) while the

expected forecast error for subsequent analysts have to be simulated numerically.

However, this choice does not affect the estimated parameters. Finally, using actual

earnings fundamentally changes my estimates of � and � into ex-post measures.

As noted in Sheng and Thevenot (2012), ex-ante measures of uncertainty may be

more appropriate depending on the empirical setting. Certainly, any portfolio tests

of expected returns has to be constructed using an ex-ante measure. I discuss in

the last section that, notwithstanding my use of ex-post earnings data to estimate

the parameters, the resulting measures of � and � can be easily converted into an

ex-ante measure.

Referring back to Panel A of Table 3, although the progression of model predicted

dispersion is essentially identical in the first two columns and last two columns,

respectively, there are notable differences in the expected forecast error. By exploit-

ing the observation that the bottom quantity in the first (fourth) column is closer to

the average jLEADFEj reported in Panel C of Table 1 for the middle (top) tercile of

the variable (1:541 and 0:366, respectively), I conclude that the parameters in these

two columns are more plausible than those in the second (third) columns. However,

for most plausible parameters of � and � , the model-predicted lead forecast errors
22It can be shown that only the ratio between � and � are identified. There could be a case

made that if the researcher is interested in only the cross-sectional variation in � , a monotonic
transformation of the parameter suffices. However, to the extent that � also differs in the cross-
section, then the economic interpretation of this ratio becomes less clear.

23Although, the underlying this assumption is that earnings predictions are statistically unbiased,
I continue to use bias to refer exclusively to the extent to which analysts’ forecast depart from their
beliefs. Similarly, the observed forecast error may or may not be related to bias under this latter
definition.
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do not appear to match the quantities in the data even in approximate terms. For

example, the difference between the an average jLEADFEj of 1.541 and the model

prediction of 0.677 is quite substantial.

B. Identification of �

From the discussion in Section 5.1, the observed forecast dispersion at a specific

point (for example, after all analysts have forecasted) in the forecasting sequence

allows me to estimate one of � and � while the magnitude of the forecast error

distinguishes between the two uniquely. However, my model also provides predic-

tions about the progression of dispersion after each analyst has forecasted which is

also observed in the data. It is this variation which I use to estimate to the weight

on deviation from consensus in analysts’ payoffs, �. After extensive simulations

of the equilibrium in my model, I find that for most plausible ranges of � and � ,

there are admissible values of � such that the forecast dispersion will increase,

decrease or do both over the forecasting sequence. Further, the magnitude of these

increases/decreases appear to be sensitive to even modest changes in �. Though

identification can not be proven theoretically, my analysis strongly suggests that

� can be recovered using the joint distribution of forecast dispersion and forecast

error.

To provide additional intuition for how � can be recovered, consider for example

the comparison between the first column in Panel A and the second column in Panel

B of Table 3. In Panel A, where � D 0 by assumption and where I fixed � at 0:35 and

� at 1:1, the model-predicted dispersion of 0.146 is exactly consistent with the data

at j D 11 but too high for all the earlier forecasts. As I gradually increase �, the

progression of dispersion will change to an increasing pattern. However, holding

fixed the assumption about � , a higher value of � is needed such that dispersion

after the 11th forecast is still 0.146. Of course, increasing � also has an effect on

the model-implied lead forecast error. More generally, allowing � to be positive (or

negative) will improve the model’s ability to explain observed dispersion at certain

points in the forecasting sequence while trading off the fit at other points. This

latter deterioration can be compensated by adjusting � and � , but the adjustment

will in turn affect how well the model explains lead forecast error. In the case of
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the example I use in Table 3, changing in assumptions about � and � produced

improvements along both dimensions.

C. Identification of cross-sectional heterogeneity in �

Much of the preceding discussion is premised on the model-predicted path of

dispersion for a fixed value of � . Of course it is unlikely that the parameter within

a dataset which we think exhibits vast across-firm heterogeneity in the quality of

the information environment. However, Section 4.2 notes that when � ¤ 0, then

forecast dispersion may exhibit very extreme sensitivity or almost no sensitivity to

underlying heterogeneity in � . It follows that the magnitude of the cross-sectional

heterogeneity in � is not identified separately from �. That is, for a one unit of

cross-sectional heterogeneity in � , the model can generate anywhere between 0:1

and 10 units of cross-sectional variation in dispersion. Conversely, one unit of

cross-sectional variation in forecast dispersion can be rationalized by as low as 0:1

or as high as 10 units of heterogeneity in � (along with appropriate assumptions

about �).

To further clarify the previous discussion of the negative cross-partial of disper-

sion with respect to � and � , consider again the second analyst’s forecast strategy

in Figure I. For the � > 0 case, the flat section of the � > 0 plot implies that there

is a range of �2’s that will generate produce identical forecasts. As such, if the

researcher approximates �it with the sample average ( N�), the choice has no effect

on the model fit as long as N� is sufficient close to �it . In contrast if � < 0, then any

approximation noise in �it will be amplified by � and induce substantial variation

in the model prediction.

5.3 Moment Restrictions

The three unobserved parameters are � � .�; �; �/, where following the discus-

sion the previous section �0 no longer has to be estimated and where each of �

and � could be vector that corresponds to each firm-year or analyst in the data.

These have to be chosen simultaneously such that, on average, multiple predictions

from the model match their data counterparts. Further, all 3 parameters, or sets of

parameters, have a highly non-linear effect on the model predictions. As such, it is
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intractable to estimate � , � and � with an OLS approach. Rather, I use Simulated

Method of Moments (SMM), which formalizes the procedure I used to produce Table

3 3 such that they are close to Panel C of Table 1. With the addition assumptions I

made in Equation (8) about the cross-sectional variation in �0;it , it would no longer

suffice that the model explains dispersion and forecast error for one particular

tercile in the latter table. Instead, the differences in LEADFE across the bottom,

middle and top terciles have to be rationalized by the estimated value of � .

The model generates a set of predictions about the sequence of dispersion after

each analyst has forecasted, which I formally define as:

�j .�; jLEADFEj;x/

D

vuuut 1

j � 1
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where x is a J � 2 matrix of analyst-specific characteristics. In addition, I use Dijt

to denote the running dispersion that I compute in Panel C of Table 1. Recall that

the variable is defined as the population standard deviation over the 2nd through

the j -th forecast. For each j between 3 and 11, the following moment restriction

can be used:

hdisp;j .�; jLEADFEjit ;xit/ D
NX
iD1

TX
tD1

X
j2Œ3;Jit �

�j .�; jLEADFEjit ;xit/ �Dijt ; (11)

where the inner-most summation is used because, obviously, we do not observe

running dispersion for a firm-year in the data beyond the total number of analysts

who issued forecasts.

The model also provides predictions about analysts’ forecast error. In particular,

note that in Equation (9), j�jit follows the standard half-normal distribution, with

mean
q

2
�

. So another moment restriction (or another set of moment restrictions)

can be constructed using the observed and model prediction about the first analyst’s
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forecast error:
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: (12)

In the two models where I do not consider firm-heterogeneity, (12) is used as a single

additional moment in addition to those based on dispersion. In future iterations of

the paper, I plan on using two separate moment restrictions depending on the sign

of the LEADFE.

In the Firm Heterogeneity and Complete Heterogeneity models, rather than

averaging over the entire sample, I require that hfe holds exactly at every i and

t over a trivial sample size of 1. Note that in general, doing a numerical search

for tens of thousands of �it is computationally infeasible. Under this approach, for

every candidate guess about � in the estimation, �it can be solved in closed-form as

a function of LEADFEit . This is equivalent to imposing an infinitely large weight

on hfe relative to hdisp;j .

Since the sample moments in (11) are computed over vectors of differing lengths,

the standard theory on the optimal weighting matrix does not apply. In the No

Heterogeneity and Analyst heterogeneity models, I weight each of the moments

equally. In the Firm and Complete Heterogeneity Models, I weight the dispersion

moments using the length of the moment vector (i.e., the number of firms-years

where there was a j -th forecast). As discussed, for these two models, I set the

forecast error moments equal exactly. Although these choices are ad-hoc, the

weighting matrix only affects efficiency and have no bearing on the consistency of

my estimates.

6. RESULTS

6.1 Parameter Estimates

Table 4 contains the parameter estimates for each of the four models with differ-

ing assumptions about the cross-sectional heterogeneity. With the No Heterogeneity

(“NH”) model, I find that the noise in analysts’ private signal has standard devi-

ation �it D 1:05 while the uncertainty in the earnings prediction based on public
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information is �it D 1:21. The economic interpretation of the estimates can be

expressed in terms of a well-known property of the normal distribution. In the

case of � , the interpretation is that, on average, actual earnings will deviate from

the earnings prediction by less than $1:21 ($2:42) approximately two-thirds (95%)

of the time. Similarly, � D 1:05 has the interpretation that there is a two-thirds

chance that the subjective component of analyst’s information will fall within $1 of

actual earnings. Alternatively, the estimate for � can be thought of as the standard

deviation of analysts’ earnings predictions in the absence of any public news. In

addition, my estimates of � and � can be used to compute the variance of each

analyst’s posterior beliefs (i.e., O� in Equations (7a) and (7b)). The model implied

reduction in average uncertainty as a result of analysts’ forecasting activity is

35%. Finally, the NH model suggests that analysts are rewarded for being close to

consensus, with � D 0:288.

In columns (2)-(4) of Table 4, I report the estimated parameters assuming that

�it differs for each firm. In the Firm Heterogeneity (“FH”) model, the estimates

of � and � are 1:43 and 0:087, respectively. Since the moment restriction in (12)

holds exactly by construction, I can substitute the estimated value of � into the

expression to solve for �it . In contrast, when I fix � to be homogeneous but allow

� to vary by analyst, the Analyst Heterogeneity (“AH”) column indicates that the

variance of analysts’ signals �jt decreases with exprjt (coefficient is �0:18), which is

consistent with previous evidence showing that analysts’ accuracy increase with

experience. The coefficient on expr2 is positive, suggesting that there is a declining

return to experience. Also in the AH model, � increases with the size of the analyst’s

research firm, although the estimate is not significantly different from zero.24 The

estimated of uncertainty (� D 1:24) is similar to that from the NH model. Based on

these estimates, on average an additional year of experience improves the analyst’s

forecasting ability such that there is a 4% reduction in uncertainty. Finally, in the

Complete Heterogeneity (“CH”) Model, I find that the relation between �jt and expr

is similar to the relation in the AH model. I also find that � is 0:2 in the CH Model.
24For extreme values of expr and employersz, the expression for �it becomes negative. Thus, I

use the Œ��C notation to impose a 10�4 lower bound on the parameter.
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6.2 Assessment of Model Fit

In the bottom row of Table 4, I report the J-Test statistics for all four models.

Note that due to lack of theory on the appropriate weighting matrix when the

sample moments are constructed from vectors of varying lengths, the statistics

are not exact. I compute the J-Test using the length of the longest moment vector

(i.e., the total number of firm-years in the sample) and even with this conservative

approach, I do not reject the null hypothesis in the J-Test of over-identifying

restrictions at the conventional levels for three out of the four models.25 Since

the four models differ by the choice of moments and moment weighting matrix,

they cannot be ranked on their fit to the data in a statistical sense. Based on the

qualitative observation that the sample and model implied path of dispersion differ

by no more 0:08 in all four models, I conclude that all models perform equally well

at explaining observed dispersion even though there are substantial differences in

assumptions.

To further assess the validity of my model, I consider the out-of-sample per-

formance at predicting forecast dispersion. Using the 2; 227 randomly selected

observations from the sample described in Section 3, I compute the model-implied

dispersion at the estimated parameter O� . I then compare the overall dispersion

in the data with the model-prediction over the same number of analysts. For ex-

ample, if a firm-year in the holdout sample was covered by four analysts over the

post-earnings announcement window, I use my model prediction for the dispersion

after the fourth analyst. The root mean of the squared prediction error (“RMSE”) is

reported in Table 5. The RMSE value for the No Heterogeneity model is 0:164. The

Firm Heterogeneity model under-performs with the highest RMSE of 0:230. Adding

analyst heterogeneity to this model lowers the RMSE slightly to 0:217. These two

results are unsurprising considering that in my estimation procedure, I required

that the model prediction about forecast error match the data exactly. Inherent in

this requirement is a trade-off in how well the model is able to explain dispersion.

In contrast, with the assumptions that there is no firm heterogeneity in � , both

forecast error and dispersion are weighted approximately equally in estimating the
25Although the p-values I report are based on the usual �2 critical values, the asymptotic distribu-

tion of the statistic is probably not exact.

32



parameters. Finally, the model with only analyst heterogeneity exhibits the best

out of sample performance with a RMSE of 0.153.

To provide a benchmark of the performance of more descriptive approaches,

I use the regression estimates in Table 2 (i.e., the O
 ’s in Equation (1)) to form

out-of-sample predictions.26 The resulting RMSE of the prediction is 0:228, which

exceeds the RMSE for all four model-based approaches. Of course, this may not

be a misleading comparison because in the model-based approach requires the

use of realized earnings as an input. To mitigate this concern, I also consider

the prediction performance of the determinants regression in (1) augmented with

consensus forecast error as an additional explanatory variable. The resulting

RMSE is 0.219 which is lower than that for the Firm Heterogeneity model but

still under-performs relative to the other three model based approaches. Finally,

predictions from a regression with only consensus forecast error has a RMSE of

0.237.

6.3 Simulation of Counterfactual Policies

I consider various counterfactual simulations, where I form predictions about

average model-implied dispersion from changing one model parameter or assump-

tion while holding fixed the other assumptions and parameters at their estimated

values. In each counterfactual, I use the estimates I obtained from Table 4 where

there is no heterogeneity in � and � across firms and analysts. I first consider a

policy which would remove their peer incentives and compensate them only for their

forecast accuracy, which is equivalent to assuming that � D 0, and a policy which

would reverse the direction of peer incentives. That is, whereas my estimation

produces O� D 0:288, I assume that � D �0:288 instead. Additional counterfactuals

policies include doubling or reducing by half the precision of the earnings prediction

based on the earnings announcement news � and the precision of analysts’ private

information � . Finally, I impose a policy where all the parameters remain the same

as those reported in Table 4 but analysts do not observe previous analysts’ forecasts

and thus are not able to infer the embedded private information.

The predicted average dispersion after the j-th forecast for the counterfactual
26The prediction is appropriately adjusted for the fact that the dependent variable in the regression

has been log-transformed
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policies are reported in the rows of Table 6, with the actual dispersion observed in

the data also reported for reference. Bootstrapped standard errors for the predicted

average dispersion appear in parentheses below the point estimates. Note that

in some cases, the direction of the counterfactual change in dispersion relative

to observed may differ from that relative to the model-implied dispersion at the

estimated parameters.27 The counterfactual policies in rows (1), (2) and (7) exhibit

the largest difference relative to observed dispersion. Increasing the precision of

public earnings announcement news two-fold, an apparently substantial economic

shock to the information environment, would reduce average dispersion after

the third analyst’s forecast by a mere 0.014, from the observed value of 0.128

to 0.114 while changing analysts’ incentives such that they are only concerned

about their forecast accuracy would produce a change of 0.318 so that average

dispersion after the third analyst’s forecast would be 0.446. Reversing the sign of

peer incentives or switching to an independent forecasting setting where analysts

are unable to infer previous analysts’ information would produce similarly large

effects. Collectively, the results indicate that forecast dispersion would be relatively

insensitive to changes in analysts’ information environment such as changes in the

amount of public disclosures or the quality of analysts’ private research activities.

Contemporaneous or independent policy changes to observability of peer analysts’

actions or to the incentive environment would effect more pronounced changes.

Table 6 also illustrates the importance of accounting for the number of analysts

forecast dispersion is measured over when analyzing the effects of prospective policy

changes. In row (5), a counterfactual policy which increases the standard deviation

of the noise in analysts’ private information � results in a forecast dispersion

of 0.119, 0.143 and 0.158 after the third, fourth and fifth analyst, respectively.

These levels are in fact less than the observed levels of 0.128, 0.145 and 0.155.

The policy would only increase the average dispersion after the sixth analyst. As

discussed in Section 4.2, increasing � reduces the weight analysts place on their

private information as well as increase the variability of the private information
27For example, in row (4), the counterfactual dispersion after the 11-th forecast is 0.170. This

estimate is greater than its data counterpart of 0.168 but less than the model-implied dispersion
at the estimated parameters. In any case, the 0.002 difference between the counterfactual and
observed dispersion is within one standard error of the point estimate and thus, it is not possible to
reject the null hypothesis that the two estimates are the same at the conventional levels.
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itself. Between the two opposing effects, the former dominates when dispersion is

measured amongst only early analysts and as more analysts forecast, the latter

effect becomes the dominating one. In addition, comparing rows (1) and (2) shows

that a counterfactual which rewards analysts for deviations from peer forecast

produces lower dispersion relative to one which removes all peer incentives up

through the first six analysts but higher dispersion after the seventh analyst

forecasts.

6.4 Implications of Estimates for Measuring Uncertainty

Consider the expression for �it in the CH column of 4 or others based on variants

of the model-based approach as a candidate measure of uncertainty for future

empirical studies. There are several advantages to the measure. First, since it

is consistent with a theoretical model about the economic setting, it allows the

researcher to infer the dollar per share variability of the earnings distribution.28

When combined with the expression for �jt , the researcher also learn something

about the dollar per share change in this variability as analysts announce their

forecasts. The firm-level measure can be computed with a variable that can be

easily constructed in the data and a straight-forward formula with clear economic

intuition. Further, theoretical intuition suggests that inferences from analyst data

about uncertainty should be adjusted for the characteristics of the analysts and the

comparison of the out-of-sample performance of models with and without analyst

heterogeneity in Table 5 confirms this intuition. Equation (10) can be expanded to

include arbitrary permutations of analysts characteristics thought to be important

for inferences about uncertainty such that the resulting estimates of � and � are

theoretically consistent.

However, there are two primary drawbacks. First, my model-based approach

requires data on realized earnings and thus produces an ex-post measure of uncer-

tainty. As I discuss in Section 4.2, any inferences about uncertainty from analyst

data beyond a rough approximation of the ratio of � and � necessitates the use

of an earnings expectation in some form. If an ex-ante measure is required in a
28Of course, historical earnings volatility also provides this interpretation. The premise underlying

the use of analyst-based measures is that it is a more contemporaneous measure to the extent that
there is time-varying volatility.
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particular research setting, an earnings expectation based on, for example, the

cross-sectional regression approaches in Hou et al. (2012) and So (2013) can be

substituted in place of actual earnings in my proposed measure, although recent

work in Gerakos and Gramacy (2013) suggests that a simpler random walk model

performs equally as well as more saturated models.29 Of course, to the extent that

the superiority of the model-based measure relative to a descriptive approach that

also uses realized earnings as an input demonstrated in Table 5 disappears when

the comparison is made using expected earnings, scrutiny of the deficiencies in the

earnings prediction model is beyond the scope of this paper.

A second concern is that my firm-level estimates of � does not exhibit the

optimal out-of-sample performance in Table 5. As alluded to earlier, allowing for

full heterogeneity in � increases the variance of estimates. There are computational

limitations on searching over tens of thousands of parameters that simultaneously

explain forecast error and dispersion. Thus, the choice to prioritize fitting the

former moment over the latter also increases the variance. The former source

of variance can be reduced by applying some smoothing between observationally

similar firms, such as those in similar industries. Regarding the latter source

of variance, improvements are theoretically possible with development of more

efficient numerical routines. However, it is not clear that they would enhance our

inferences about uncertainty in an economically meaningful way.

6.5 Impact of Measure on Empirical Applications that Use Dispersion

To explore the implications of my estimates of earnings uncertainty, i.e., �it , I

re-examine results from a well-known empirical test from prior research based

on dispersion. Specifically, I perform portfolio return tests similar to those from

Diether et al. (2002) using both dispersion and my model estimates of earnings

uncertainty.30 Table 6 presents the average monthly returns, in percentages, based

on sorting by either forecast dispersion or my model estimates. RET6, RET12 and
29It is acceptable to use actual earnings to estimate the model parameters as long as a separate

sample is used for prediction.
30In addition to the fact that Diether et al. (2002) is arguably one of the more well-known empirical

results amongst studies on forecast dispersion, examining realized returns has the advantage over
other outcomes such as the implied cost of capital due to the well-known empirical measurement
issues associated with the latter.
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RET24 are average raw returns measured over the period starting from the month

after the 30 day post-earnings announcement window used for my sample selection

and ending six, twelve and twenty four months later, respectively. ARET6, ARET12

and ARET24 are the market-adjusted counterparts of RET6, RET12 and RET24,

where the market-adjusted returns are computed by subtracting raw returns by

the CRSP value weighted return for the same month.

Panel A summarizes the average future returns for each DISP quintile. The

raw one-year ahead monthly return decreases monotonically, on average, across the

5 DISP portfolios. A hedge strategy from buying low DISP firms and selling high

DISP firms generates monthly returns of 90 basis points, or 10.8% on an annualized

basis. My results are quantitatively similar with those from Diether et al.’s (2002)

portfolio return tests despite some notable differences in methodology.31 Returns

over the six month horizon are largely similar, as are the market-adjusted returns.

Over the 24 month horizon, the returns from the hedge portfolio drops to 68 basis

points a month, or 8.16% per year.

Panels B and C report average returns based on a sort of firms using estimates

of earnings uncertainty from the Firm Heterogeneity model, which I denote using

�FH and from the Complete Heterogeneity model, which I denote using �CH . These

estimates were originally obtained using data on actual forecast errors. For the

purposes of the portfolio tests, I substitute a measure of expected forecast error

in place of actual forecast errors. I use the cross-sectional earnings regression

approach from Hou et al. (2012) to compute expected forecast error. Specifically, the

approach involves estimating pooled cross-section regressions of two-year ahead

earnings on a constant, current earnings, total assets, accruals, the dividend

payment, an indicator equal to 1 for dividend payers and 0 otherwise as well as an

indicator variable for firms with negative earnings and 0 otherwise using previous

ten years of data.32 I construct the expected forecast error using the coefficients

obtained from fitting this model. Hou et al. (2012) finds that, on average, the
31Specifically Diether et al. (2002) uses one-year ahead earnings forecasts with monthly re-

balancing of portfolios based on forecast dispersion measured over the previous month while I use
two-year ahead forecasts based on dispersion after annual earnings announcements. Additionally,
the earlier paper uses a version of dispersion scaled by the consensus forecast (where firms with
a consensus of $0 are sorted into the highest dispersion quintile) while I use the raw standard
deviation without scaling.

32See Equation (1) and accompanying discussion in Hou et al. (2012) for the full details.
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adjusted R2 from its earnings regressions is 0.81.

In Panel B, I continue to find that firms in higher quintiles of �FH earn lower

realized returns. However, the magnitude of such a decline is much smaller. The

twelve month hedge portfolio from a trading strategy based on �FH generates only

a return of 36 basis points a month (4.32% annually), which is likely smaller than

the trading costs required for implementing such a strategy. Comparing the results

in Panels A and B, the difference in future returns between highest and lowest

quintiles drops by a factor of two-third when I consider the model estimates of

uncertainty rather than raw dispersion. This decline is more striking in Panel C

where firms are sorted by �CH . In Panel C, firms with differing levels of earnings

uncertainty, as estimated from the Complete Heterogeneity model, earn similar

levels of future returns. The returns from the long-short portfolio based on the

lowest and highest quintiles of �CH are not significantly different from zero. Across

both Panels B and C, inferences are similar irrespective of the horizon considered

or the use of raw versus market-adjusted returns.

Overall, the fact that using a theoretically-based estimate of earnings uncer-

tainty generates a different association with future returns compared to the asso-

ciation from using forecast dispersion underscores the importance of quantifying

strategy separately from uncertainty and casts doubt on conclusions from previous

research that the latter association is necessarily anomalous. Although my anal-

ysis is not intended to be used for a conclusive reconciliation between theory and

evidence on the market pricing of uncertainty and disagreement, it is loosely consis-

tent with the Diether et al. (2002) explanation that disagreement between analysts

about firm fundamentals proxies for underlying disagreement between investors

and that this latter type of disagreement gives rise to a discount. Specifically, my

evidence suggests that removing the portion of forecast dispersion attributable

to the noise in analysts’ private signals (i.e., their subjective interpretations of

earnings news) has an attenuating effect on the dispersion-return relation. My find-

ing that earnings uncertainty exhibits either no correlation or modestly negative

correlation could still be interpreted as anomalous in the sense that firms with risky

assets should earn a risk premium relative to those with safe assets. However, as

Johnson (2004) asserts, the cross-sectional variation in earnings uncertainty could
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itself by driven by both riskiness in underlying assets and the risk arising from

incomplete information on the analysts’ part. To the extent that this latter kind of

risk dominates the former, then the option value model in Johnson (2004) provides

an efficient-market based explanation for my result, though the predominant theo-

retical prediction in the asset pricing literature is that information asymmetry risk

should result in a risk premium.33

6.6 Additional Analysis and Robustness Checks

I supplement the main empirical estimates with a specification that includes

heterogeneity in analysts’ objective functions. Specifically, I assume that in Equa-

tion (6), � varies depending on the analyst’s employer. I identify the research firm

for the analyst corresponding to each forecast and sort the research firms into

size terciles, where size is determined using the number of analysts who issued

at least one forecast in IBES during the previous calendar year.34 Further, �smal l ,

�medium and �large denote the estimate of � corresponding to analysts employed in

the lowest, middle and highest size terciles of research firms.

The results of estimating the model with heterogeneity in analysts’ objective

functions are presented in Table 9. In column (1), where I assume that all firms’

earnings predictions using public news has the same precision � and all analysts’

private information contain an equal amount of noise � , I find that �smal l D 0:777,

�medium D 0:232 and �large D 0:111. According to this set of estimates, analysts

who work for larger research firms are only modestly penalized for deviating from

peers relative to those working for smaller firms. Of course, in a specification where

I assume that the precision of private information � is the same across analysts

irrespective of the size of research firm they work for, it is possible that to confound

heterogeneity in � for heterogeneity in �. To this extent, I also estimate the model

with heterogeneity in � , with the corresponding results reported in column (2).

Here, I find that �smal l D 0:045, �medium D 0:735 and �large D 0:470. Although I find

that � is positive for all 3 groups, �smal l is not significantly different from zero. It is

no longer clear from these estimates how the strength of analysts’ peer incentives
33See for example, Easley and O’hara (2004) and Diamond and Verrecchia (1991).
34Parameter estimates are similar irrespective of whether this sort is determined based on pooling

together all analysts for a calendar year or pooling together all forecast-analyst pairs.
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vary with the size of their employers. My estimates of � are 1.16 and 1.41 and in

the two specifications. Further, I find that more experienced analysts and those

working for larger firms have smaller estimated values of � ’s.

In footnote 4, I raised the concern that, due to Jensen’s Inequality, the standard

formula for forecast dispersion (i.e., the square root of the sample variance) produces

a biased estimate of the population standard deviation. This bias impacts both

the theoretical and empirical moments equally, but could potentially introduce

distortions in how each of the dispersion moment restrictions�disp;j .�/ are weighted

in the SMM objective function. A well-known property of the SMM estimator is

that consistency holds for any choice of weighting matrix and as such, this specific

source of bias impacts only the efficiency of my estimator.

Nevertheless, to formally address the concerns about using the sample standard

deviation, I present in Panel A of Table 9 the observed and the model-implied

sample variance computed at the estimated parameters from the NH specification

in Table 4. I use this procedure because making the conventional degrees of freedom

adjustment in computing the sample variance results in an unbiased estimate of

the population variance and thus removes any concerns about the impact of bias on

my estimates. The results show that the estimates from a SMM objective function

constructed from dispersion moments generate predictions about variance moments

that are reasonably close to the average variance observed in the data as each

analyst j forecasts. For example, in the data the average sample variance after the

third (eleventh) forecast is 0.053 (0.061) while the predicted sample variance using

the dispersion-based estimates is 0.047 (0.071). The standard errors corresponding

to the model-implied predictions, computed by simulating 1,000 draws from the

distribution of the unobservable term, are small - between 0.001 and 0.002. Thus

the model predictions are significantly different from average variance in the data.

However, the two estimates are similar economically.

To further address concerns arising the computation of forecast dispersion, I

repeat my estimation by substituting the dispersion moment restrictions with their

variance counterpart. That is, instead of using Equation (11) in constructing the

SMM objective function, I replace the moment restrictions with ones based on
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sample variance:

hdisp;j .�; jLEADFEjit ;xit/ D
NX
iD1

TX
tD1

X
j2Œ3;Jit �

Œ�j .�; jLEADFEjit ;xit/�2 �D2
ijt ;

where �j .�; jLEADFEjit ;xit/ and Dijt are as defined in Section 5 and where I

retain the moment restriction based on the first analyst’s forecast error as defined

in Equation (12). Similar to the procedure outlined in Section 5, I consider four

specifications where there is no cross-sectional heterogeneity in the parameters

(“NH”), there is analyst-level heterogeneity in � (“AH”), firm-level heterogeneity in

� (“FH”) as well as heterogeneity along both dimensions (“CH”).

The estimates from this modified SMM objective function are reported in Panel

B of Table 9. Focusing on the NH specification where all firms and analysts

are identical, the estimate of � and � are 1.26 and 1.02, respectively, which are

comparable to the estimate from Table 4 of 1.21 and 1.05. The estimate of � is

0.31. All three estimated parameters are economically indistinguishable from those

obtained from Table 4 and two of them are within the 95% confidence interval

obtained from the earlier table. Thus, I conclude that the main results from my

study are reasonably robust to the bias arising from the use of sample dispersion.

7. CONCLUSION

Quantifying the uncertainty about firm earnings and, in particular, its interac-

tion with analysts’ forecasting behavior plays a critical role in understanding the

implications of information risk for a large assortment of capital market outcomes.

The prevailing assumption underlying numerous accounting and finance studies is

that analyst forecast dispersion is an appropriate measure of uncertainty or related

constructs. Descriptive evidence from previous studies has identified the presence

of biased behavior which cast doubt on such an assumption. My descriptive analy-

sis provides various facts about the within-firm progression of dispersion as well

its relation with the magnitude of analysts’ forecast error, where certain aspects

of these facts are also suggestive of biased behavior. To better understand the

economic setting that gives rise to observed dispersion, I develop a simple model

based on highly stylized assumptions about the information process which shapes
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analysts’ beliefs immediately after earnings announcements and about analysts’

indirect utility function. The equilibrium resulting from the model can reproduce

many of the descriptive facts in the data that would be difficult to explain absent

formal theory.

Although the model predicts an increasing relationship between dispersion

and uncertainty for fixed assumptions about the other model parameters, the in-

teraction between the other unobservable parameters and the strength of this

relationship is fairly complex. This interaction has important implications for

the researcher’s ability to infer from observed dispersion the latter absent some

assumptions about the former. I proceed to estimating the model parameters under

four sets of assumptions which differ on the extent to which firms and analysts

differ. Confirming my analytical predictions, even though the estimates them-

selves may vary substantially depending on assumptions, all four models provide a

comparable fit to the observed data. My model-based estimates exhibit superior

out-of-sample performance relative to those from atheoretic approaches. Further-

more, tests of associations between my model estimates of earnings uncertainty

and future returns alter the inferences from previous empirical papers which exam-

ine associations between forecast dispersion and future returns. Collectively, the

model-based approach produces measures of uncertainty that could enhance the

economic interpretation from future studies about the relation between forecast

dispersion and asset prices.
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Figure I: Forecast Strategy

This figure plots the equilibrium forecasting strategies for the second analyst, de-
scribed in Equations (7a) and (7b), which result from solving the analyst’s objective
function in Equation (6). In this objective function, � weights the importance of
differing from consensus forecast while the other parameters are � (the uncertainty
of the earnings prediction based on public information) and � (the variance of the
analyst’s private signal). The horizontal axis is the mean of the second analyst’s
beliefs about earnings and satisfies (4). The left plot illustrates the forecasting
function f �2 for a fixed assumption about �; � and � while the right plot illustrates
the effect of increasing the magnitude of �; � and � .

f1

f1

�2

f �2

Base Case

� > 0

� < 0

f1

f1

�2

f �2

Increase the magnitude of �; � or �

� > 0

� < 0
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Table 1: Analyst Forecast Dispersion by Coverage and Order

This table reports average analyst forecast dispersion constructed and sorted using several methods.
Panel A presents the average forecast dispersion by analyst coverage. Panel B summarizes the
average forecast dispersion and forecast dispersion demeaned by the coverage size average after the
j -th forecast, where demeaned dispersion has been normalized so that the average raw dispersion
for j D 2 is the same as the demeaned variable.. In Panels A and B, the t-statistic corresponds to
the difference in average dispersion in the row and that in the immediately preceding row and
forecast dispersion is the standard deviation over the individual forecasts. Panel C sorts firm-years
into terciles based on the magnitude of the lead analyst’s forecast error (jLEADFEj) and reports the
average forecast dispersion, computed as the standard deviation, between the 2nd and j -th forecast.
The sample is comprised of 151,728 FY2 forecasts corresponding to 27,327 firm-years, with analyst
coverage between 3 and 11, issued in the 30 day window after annual earnings announcements over
the 1990-2012 period.

Panel A: Average Dispersion by Coverage

Coverage Average Dispersion t-statistic Observations
3 0.143 6,452
4 0.146 (0.67) 5,127
5 0.158 (3.24) 3,783
6 0.166 (1.79) 3,108
7 0.168 (0.28) 2,401
8 0.173 (0.92) 2,016
9 0.174 (0.18) 1,578

10 0.166 (-1.15) 1,333
11 0.172 (0.73) 1,057

11 less 3 0.028 (4.79)

Panel B: Average Dispersion After j-th Forecast

Running Dispersion Demeaned Dispersion

j Average t-statistic Average t-statistic

2 0.129 0.129
3 0.145 (8.68) 0.145 (8.68)
4 0.153 (4.47) 0.148 (2.05)
5 0.160 (3.41) 0.150 (0.68)
6 0.165 (1.80) 0.152 (0.91)
7 0.168 (0.95) 0.153 (0.35)
8 0.170 (0.58) 0.154 (0.23)
9 0.169 (-0.26) 0.154 (0.03)

10 0.166 (-0.63) 0.155 (0.16)
11 0.169 (0.46) 0.155 (0.01)

11 less 2 0.040 (6.65) 0.026 (4.31)

Panel C: Dispersion after j -th forecast by Terciles of jLEADFEj

j 1 (Low jLEADFEj/ 2 (Mid jLEADFEj) 3 (High jLEADFEj)

3 0.055 0.085 0.173
4 0.070 0.110 0.223
5 0.079 0.122 0.245
6 0.085 0.129 0.258
7 0.087 0.133 0.267
8 0.089 0.134 0.276
9 0.089 0.142 0.275
10 0.092 0.140 0.267
11 0.093 0.146 0.273

Mean jLEADFEj 0.084 0.366 1.541
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Table 2: Cross-Sectional Determinants of Analyst Forecast Dispersion

The table reports the regression coefficients from a regression of the log of forecast dispersion or
the magnitude of the lead forecast error on assets per share(ASSETS), the book to market ratio
(BTM ), analyst coverage (COV ), an indicator for loss firms (LOSS), the log of share price (PRC ),
the log of the market value of equity (SIZE), R&D expense scaled by sales (RD), an indicator for
missing R&D data (RDMISS ), sales scaled by total assets (SALES ), the magnitude of accruals per
share (jACCRj), the Beta decile assignment (BETADEC ), the leverage ratio ( LEV ) and the log
standard deviation of earnings per share over the previous eight quarters (PAST VOL). Industry
fixed effects and calendar time-effects are included in the regressions. Standard errors clustered by
industry and year are shown in parentheses. The constant estimate in the regression is not reported.
The sample is constructed from two-year ahead forecasts issued within 30 days of annual earnings
announcements between 1990 and 2012. All explanatory variables are measured as of the fiscal
year-end pertaining to the earnings announcement. The data includes 19,560 firm-years randomly
sampled from 21,787 covered by between 3 and 11 analysts. ***,** and * denote significance at the
0.01, 0.05 and 0.10 levels (two-tailed test), respectively.

Dependent variable:
log.DISP / log.jLEADFEj/

(1) (2)

ASSETS 0:004��� 0:003���

.0:0003/ .0:0003/

BTM 0:144��� 0:112���

.0:017/ .0:019/

PRC �0:001 0:116���

.0:013/ .0:014/

COV 0:038��� 0:036���

.0:003/ .0:004/

SIZE �0:015�� �0:088���

.0:007/ .0:008/

RD 1:497��� 0:950���

.0:103/ .0:115/

RDMISS 0:193��� 0:146���

.0:018/ .0:020/

SALES �0:089��� �0:060���

.0:011/ .0:012/

jACCRj 0:005� 0:002

.0:003/ .0:003/

LOSS 0:290��� 0:152���

.0:021/ .0:023/

BETADEC �0:024��� �0:037���

.0:003/ .0:003/

LEV � 10�3 �0:009 0:004

.0:018/ .0:019/

PAST VOL 0:194��� 0:197���

.0:007/ .0:008/

R2 0.340 0.226
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Table 3: Model Predictions about Forecast Dispersion and Forecast Error

This table presents the expected forecast dispersion and forecast error for the lead analyst resulting
from the model equilibrium outlined in Section 4 under various assumptions about parameters.
The quantities reported in Panel A are based on the assumption that analysts honestly report
their beliefs and those reported in Panel B are based on the assumption there is strategic behavior
arising from the objective function described in Section 4.2. �0 and � are the mean and standard
deviation of the earnings prediction based on public information. � is the standard deviation in
analysts’ private signal. The parameter � weights the importance of deviation from consensus
relative to forecast error in determining analyst’s payoffs.

Panel A: Model Predictions under Honest Forecasting Assumption

(1) (2) (3) (4) (5) (6) (7)
Parameter Assumptions
� 1.1 1.41 1.1 1.64 1.1 1.41 1.1
� 0.35 0.4 0.56 0.7 0.4 0.35 0.35
j�0 � Aj 0.6 0.6 0.8 0.8 0.6 0.6 0.8

Model Implied Expected Dispersion After j-th Forecast
j=3 0.212 0.210 0.173 0.173 0.216 0.207 0.129
j=4 0.207 0.206 0.190 0.192 0.214 0.200 0.133
j=5 0.194 0.194 0.190 0.194 0.203 0.187 0.128
j=6 0.183 0.183 0.186 0.191 0.192 0.175 0.123
j=7 0.173 0.173 0.181 0.187 0.182 0.165 0.118
j=8 0.165 0.165 0.175 0.182 0.174 0.157 0.114
j=9 0.158 0.158 0.170 0.177 0.167 0.150 0.110
j=10 0.151 0.152 0.166 0.173 0.161 0.144 0.106
j=11 0.146 0.146 0.161 0.168 0.155 0.138 0.103

Model Implied Expected Forecast Error for Lead Analyst
E"1.jf �1 � Aj/ 0.545 0.556 0.637 0.677 0.530 0.566 0.727

Panel B: Predictions Assuming Objective Function in Equation (6)

(1) (2) (3) (4) (5) (6)
Parameter Assumptions
� 1.1 1.1 1.1 1.1 1.1 1.1
� 0.6 0.9 0.6 0.9 0.6 0.9
j�0 � Aj 0.1 0.62 0.1 0.62 0.1 0.62
� 0.1 0.1 0.7 0.7 -0.7 -0.7

Model Implied Expected Dispersion After j-th Forecast
j=3 0.052 0.083 0.001 0.005 0.448 0.525
j=4 0.071 0.110 0.001 0.008 0.474 0.575
j=5 0.081 0.124 0.002 0.010 0.475 0.576
j=6 0.088 0.132 0.002 0.011 0.470 0.567
j=7 0.093 0.137 0.002 0.012 0.464 0.557
j=8 0.096 0.141 0.002 0.013 0.458 0.546
j=9 0.098 0.143 0.002 0.013 0.451 0.535
j=10 0.100 0.145 0.002 0.014 0.445 0.525
j=11 0.101 0.146 0.002 0.014 0.438 0.515

Model Implied Expected Forecast Error for Lead Analyst
E"1.jf �1 � Aj/ 0.071 0.371 0.071 0.371 0.071 0.371
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Table 4: Parameter Estimates

This table reports the Simulated Method of Moments estimates for the empirical model described
in Section 5. � is the uncertainty of the earnings prediction based on public information. � is
the standard deviation in analysts’ private signal. The parameter � weights the importance of
deviation from consensus relative to forecast error in determining analyst’s payoffs. NH refers to
the No Heterogeneity Model where all firms and analysts are assumed to be identical. FH refers
to the Firm-Heterogeneity Model where there is cross-sectional variation in �it . AH refers to the
Analyst Heterogeneity model where there is cross-sectional variation in �jt . CH is the Complete
Heterogeneity Model where there is cross-sectional variation in both dimensions. In the NH and AH
models, I use equal-weighted moments. For the FH and CH models, I weight each of the dispersion
moments by the length of the sample vector. LEADFE is the first analyst’s forecast error for the
firm-year, expr is analyst experience, in years, and employersz is the log of total number of analysts
in the same research firm who issued a forecast in the preceding calendar year. The Œ��C notation
used in reporting the estimate of � and � indicates that whenever the quantity inside the square
brackets is non-positive, the estimated value is 10�4. Standard errors, where applicable, are reported
in parentheses under each point estimate. The sample is constructed from two-year ahead forecasts
issued within 30 days of annual earnings announcements between 1990 and 2012. The data includes
19,560 firm-years randomly sampled from 21,787 firm-years covered by between 3 and 11 analysts.
The row labeled J-Test includes the test statistic for the J-Test for overidentifying restrictions. The
p-value is based on the comparison of the J-Test statistic to the critical values for the �2 distribution.

Panel A: NH and AH Specifications

(1) (2)
NH AH

� 0:288
.0:01/

0:287
.0:02/

�it 1:21
.0:09/

1:24
.0:16/

�ijt 1:05
.0:05/

s�
2:25
.0:22/

� 0:18
.0:02/

exprjt C 0:004
.0:002/

expr2jt C 0:001
.0:001/

employerszjt

�C
J-Test 0.54 0.47
p-value >0.10 >0.10

Panel B: FH and CH Specifications

(3) (4)
FH CH

� 0:087
.0:001/

0:200
.0:003/

�it

1:43
.0:04/

jLEADFE jits�
1:33
.0:04/

�LEADFE2
it

�C
s�

2:9
.0:05/

� 0:49
.0:02/

expri1tC 0:18
.0:002/

expr2
i1t
� 0:36
.0:003/

employerszi1t

�C
�jLEADFE jit �

1:85
.0:05/

� 0:32
.0:12/

expri1tC 0:11
.0:002/

expr2
i1t
� 0:23
.0:003/

employerszi1t�LEADFE
2
it

�C! 12

�ijt 1:43
.0:04/

s�
2:9
.0:05/

� 0:49
.0:12/

exprjt C 0:18
.0:002/

expr2jt C 0:36
.0:003/

employerszjt

�C
J-Test 16.7 2.65
p-value 0.02 >0.10
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Table 5: Comparison of Model-Based and Descriptive Approaches

This table reports the predictive performance, measured in the square root of the mean forecast error
(RMSE), for the four models I describe in Section 5 and the descriptive based approaches. For each
of the No Heterogeneity, Firm Heterogeneity, Analyst Heterogeneity and Complete Heterogeneity
models, I use the parameter estimates reported in Table 4 to compute the model-implied sequence
of dispersion. In the full determinants regression approach, I apply the coefficients from estimating
Equation (1), which are reported in Table 2, to construct a prediction about earnings. I also form a
prediction using a regression of log forecast dispersion on only the unsigned consensus forecast error.
The last prediction is formed by augmenting the regression in Equation (1) with the consensus
forecast error. The RMSE is determined using the difference between actual dispersion and the
model-predicted dispersion. In both cases, the sample is comprised of 2,227 randomly selected to be
excluded from both the estimation samples.

# of Estimated Parameters RMSE

Model-Based Approach
No Heterogeneity Model 3 0.164
Firm Heterogeneity Model 2 0.230
Analyst Heterogeneity Model 7 0.153
Complete Heterogeneity Model 6 0.217

Descriptive Approach
Full determinants regression from Table 2 78 0.228
Regression with consensus forecast error 2 0.237
Full determinants regression with consensus forecast error 79 0.219
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Table 6: Predicted Forecast Dispersion Under Counterfactuals Policies

This table reports the average forecast dispersion in the observed data after the j-th analyst as well as model-predictions under various counterfactual
forecast policies. In row 1, I assume that � D 0 in Equation (6). In row 2, I assume that � D �0:288, which is the negative of the estimated
value of � obtained in Table 4. In row 3(4), I assume that � D 2:42 (� D 0:60) which is twice (half) the estimated value of � obtained in Table 4.
In row 5(6), I assume that � D 2:09 (� D 0:52) which is twice (half) the estimated value of � obtained in Table 4. In row 7, I assume a different
model in which analysts do not observe previous analysts’ forecasts in forming their beliefs about earnings. Bootstrapped standard errors are
reported in parentheses below each estimated prediction. All counterfactual policies use the estimates from Table 4, with homogeneous � and � ,
as the remaining parameter inputs. The sample is comprised of 21,787 firms with between 3 and 11 two-year ahead forecasts in the 30 days fol-
lowing annual earnings announcements between 1990 and 2012. Bootstrapped standard errors are tabulated in the parentheses below the point estimates.

Average Dispersion after the j-th forecast

j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11

Observed 0.128 0.145 0.155 0.161 0.165 0.167 0.167 0.164 0.168
(0.001) (0.001) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004) (0.006)

(1) Remove analysts’ peer incentives 0.446 0.414 0.382 0.355 0.332 0.315 0.300 0.287 0.276
(0.005) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

(2) Reverse sign of peer incentives 0.316 0.341 0.346 0.342 0.336 0.330 0.325 0.320 0.315
(0.005) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

(3) Reduce precision of EA news by half 0.133 0.151 0.161 0.167 0.171 0.174 0.175 0.175 0.176
(0.002) (0.002) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.005)

(4) Double precision of EA news 0.114 0.134 0.146 0.154 0.160 0.164 0.167 0.168 0.170
(0.004) (0.003) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002)

(5) Reduce precision of private signal by half 0.119 0.143 0.158 0.168 0.175 0.181 0.185 0.187 0.189
(0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

(6) Double precision of private signal 0.122 0.141 0.152 0.158 0.163 0.165 0.167 0.168 0.168
(0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

(7) Independent forecasting 0.337 0.385 0.418 0.431 0.437 0.445 0.455 0.462 0.470
(0.026) (0.029) (0.031) (0.031) (0.031) (0.032) (0.032) (0.032) (0.033)
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Table 7: Realized Return Tests Based on Dispersion and Model Estimates

This table presents the monthly raw and market-adjusted returns, expressed in percentages, by
quintiles of dispersion. The sample is comprised of 21,787 firms with between 3 and 11 two-year
ahead forecasts in the 30 days following annual earnings announcements between 1990 and
2012. RET6, RET12 and RET24 (ARET6, ARET12, ARET24) are average raw (market-adjusted)
returns measured over 6, 12 and 24 months starting from the month after the end of the 30 day
post-earnings announcement window. The market adjustment is computed by subtracting the
CRSP value weighted return from the raw returns. In Panel A, firms are sorted into quintiles
based on analyst forecast dispersion DISP . Panel B (Panel C) sorts firms into quintiles based on
�FH (�CH ), which is the estimate of earnings uncertainty from the Firm Heterogeneity (Complete
Heterogeneity) model described in Section 6.1 and Table 4. The expected forecast error, determined
using the cross-section earnings regression approach developed in Hou et al. (2012), is used in place
of actual forecast error to compute the model estimates.

Panel A: Monthly returns by quintiles of DISP

Raw returns (%) Market-adjusted returns (%)

RET6 RET12 RET24 ARET6 ARET12 ARET24

1 (Low DISP ) 1.83 1.74 1.61 1.08 0.94 0.80
2 1.27 1.22 1.26 0.52 0.42 0.44
3 1.25 1.21 1.14 0.51 0.40 0.32
4 1.03 0.95 1.06 0.30 0.15 0.24
5 (High DISP ) 0.83 0.84 0.94 0.08 0.04 0.12

High less Low -1.00 -0.90 -0.68 -1.00 -0.90 -0.68

t-statistic (High=Low) (-8.54) (-10.30) (-11.05) (-9.41) (-11.47) (-11.91)

Panel B: Monthly returns by quintiles of �FH

Raw returns (%) Market-adjusted returns (%)

RET6 RET12 RET24 ARET6 ARET12 ARET24

1 (Low �FH ) 1.55 1.49 1.46 0.81 0.69 0.64
2 1.17 1.21 1.20 0.44 0.41 0.39
3 1.17 1.07 1.15 0.42 0.26 0.33
4 1.12 1.04 1.13 0.38 0.24 0.31
5 (High �FH ) 1.20 1.13 1.08 0.46 0.33 0.26

High less Low -0.35 -0.36 -0.38 -0.35 -0.36 -0.38

t-statistic (High=Low) (-2.88) (-4.08) (6.27) (-3.23) (-4.62) (-6.88)

Panel C: Monthly returns by quintiles of �CH

Raw returns (%) Market-adjusted returns (%)

RET6 RET12 RET24 ARET6 ARET12 ARET24

1 (Low �CH ) 1.39 1.28 1.28 0.65 0.48 0.46
2 1.10 1.04 1.09 0.36 0.24 0.27
3 1.13 1.13 1.18 0.38 0.33 0.36
4 1.22 1.14 1.14 0.48 0.34 0.32
5 (High �CH ) 1.37 1.36 1.33 0.64 0.56 0.52

High less Low -0.02 0.08 0.05 -0.01 0.08 0.06

t-statistic (High=Low) (-0.16) (0.90) (0.91) (-0.09) (1.01) (-1.00)
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Table 8: Estimates from Model which Assumes Analysts Have Different
Objective Functions

This table reports the Simulated Method of Moments estimates for the empirical model described in
Section 5 with the modification that �, the parameter which weights the importance of deviation
from consensus relative to forecast error in determining analyst’s payoffs, varies based on the
size of the analyst’s employer research firm. The value of the parameter corresponding to each
research firm size tercile is denoted as �smal l , �medium and �large. The remaining parameters are
� , the uncertainty of the earnings prediction based on public information and � , which is the
standard deviation in analysts’ private signal. In column (1), NH refers to the No Heterogeneity
Model where all firms and analysts are assumed to be identical and the AH model in column (2)
assumes that the parameter � varies across individual analysts. expr is analyst experience, in
years, and employersz is the log of total number of analysts in the same research firm who issued
a forecast in the preceding calendar year. The Œ��C notation used in reporting the estimate of �
indicates that whenever the quantity inside the square brackets is non-positive, the estimated
value is 10�4. Standard errors, where applicable, are reported in parentheses under each point
estimate. The sample is constructed from two-year ahead forecasts issued within 30 days of
annual earnings announcements between 1990 and 2012. The data includes 19,560 firm-years
randomly sampled from 21,787 firm-years covered by between 3 and 11 analysts. The row
labeled J-Test includes the test statistic for the J-Test for overidentifying restrictions. The
p-value is based on the comparison of the J-Test statistic to the critical values for the �2 distribution.

(1) (2)
NH AH

�smal l 0:777
.0:13/

0:045
.0:20/

�medium 0:232
.0:07/

0:735
.0:26/

�large 0:111
.0:05/

0:470
.0:28/

�it 1:16
.0:09/

1:41
.0:22/

�ijt 1:08
.0:09/

r
Œ 1:63
.0:48/

� 0:157
.0:05/

� exprjt C 0:006
.0:003/

� expr2jt � 0:002
.0:001/

� employerszjt �C

J-Test 0.30 0.27
p-value >0.10 >0.10
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Table 9: Estimates Based on Variance Moments

Panel A reports the observed and model-implied average forecast variance after the j-th analyst
has forecasted. The sample variance is computed based on the sum of squared deviation from
sample mean and averaged over j-1. The model-implied average variance is determined using the
estimates from the NH Model reported in Table 4. Standard errors are obtained from computing the
model-predicted average sample variance using each simulated draw of the unobservable term and
then averaging over 1,000 simulations. In Panel B, I report the parameter estimates from the model
described in Section 5, but with the substitution of moment restrictions based on sample variance
discussed in 6.6. Refer to Table 4 for a description of the model parameters and the NH, AH, FH and
CH specifications. LEADFE is the first analyst’s forecast error for the firm-year, expr is analyst
experience, in years, and employersz is the log of total number of analysts in the same research
firm who issued a forecast in the preceding calendar year. The Œ��C notation used in reporting the
estimate of � and � indicates that whenever the quantity inside the square brackets is non-positive,
the estimated value is 10�4. Standard errors, where applicable, are reported in parentheses under
each point estimate. The sample is constructed from two-year ahead forecasts issued within 30 days
of annual earnings announcements between 1990 and 2012. The data includes 19,560 firm-years
randomly sampled from 21,787 firm-years covered by between 3 and 11 analysts.

Panel A: Comparison of Average Observed and Model Predicted Forecast Variance After the j-th Forecast

j= Observed Model Std. Error

3 0.053 0.047 0.002
4 0.057 0.051 0.001
5 0.059 0.054 0.001
6 0.062 0.058 0.001
7 0.062 0.060 0.001
8 0.063 0.064 0.001
9 0.062 0.065 0.001
10 0.068 0.069 0.001
11 0.061 0.071 0.001

Panel B: Estimates Based on Variance Moment Restrictions

(1) (2)
NH AH

� 0:306 0:251

�it 1:26 1:30

�jt 1:02

q
Œ2:73 � 0:21expr C 0:003expr2 C 0:001employersz�

C

Panel B (Continued): Estimates Based on Variance Moment Restrictions

(3) (4)
FH CH

� 0:101 0:262

�it
1:53jLEADFE jitq
Œ1:49�LEADFE2it �

C

q
Œ2:92�0:38expri1tC0:18expr2i1t�0:26employerszi1t �

C
�jLEADFE jit�

Œ1:86�0:24expri1tC0:11expr2i1t�0:17employerszi1t�LEADFE
2
it �
C
� 1
2

�ijt 1:53

rh
2:92 � 0:38exprjt C 0:18expr

2
jt C 0:26employerszjt

iC

55


	Introduction
	Related Literature
	The Association Between Dispersion and Equity Market Outcomes
	Statistics-Based Measures of Uncertainty and Disagreement

	Descriptive Evidence
	A Model of Analysts' Beliefs & Strategic Interaction
	Analysts' Information and Beliefs
	Assumptions
	Expressions for the First Two Analysts' Beliefs
	Numerical Examples of Dispersion in Beliefs

	Analysts' Payoffs
	Assumptions
	Optimal Forecasting Strategy for Second Analyst
	Numerical Examples of Forecast Dispersion Implied by Model Equilibrium


	Estimation
	Econometric Assumptions
	Identification
	Identification of  and 
	Identification of 
	Identification of cross-sectional heterogeneity in 

	Moment Restrictions

	Results
	Parameter Estimates
	Assessment of Model Fit
	Simulation of Counterfactual Policies
	Implications of Estimates for Measuring Uncertainty
	Impact of Measure on Empirical Applications that Use Dispersion
	Additional Analysis and Robustness Checks

	Conclusion

