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Abstract

In this paper, I develop an option-pricing model that formally incorporates a dis-
closure event. The model suggests that an understanding of a firm’s disclosure policies
can aid in effi ciently pricing its options. The reason is that these policies impact the
distributions of jumps in the firm’s equity price, which affect the expected payoff to
the firm’s options. Specifically, I find that 1) more informative disclosures lead to
greater volatility in the firm’s equity price upon their release, raising pre-disclosure
option prices and 2) disclosures that are more informative for good-versus-bad news
lead to skewness in the firm’s equity price upon their release, adjusting the relative
pre-disclosure prices of out-of-the-money and in-the-money options. The magnitude of
these effects depends upon investors’uncertainty and the extent of systematic versus
idiosyncratic information contained in the disclosure. Using these results, I develop
measures of a disclosure’s properties based on option prices that may be calculated on
an event-specific basis.
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1 Introduction

The effect of firms’disclosures on their market prices is a topic at the core of accounting

research. This research is grounded in disclosure theory, which analyzes how a firm’s disclo-

sure affects its equity price when investors update their beliefs regarding the firm’s value in

response to the release of new information (e.g., Holthausen and Verrecchia (1988)). Yet,

empirical research also finds that firms’disclosures impact their option prices.1 Furthermore,

option-pricing theory suggests that these prices should impound investors’beliefs regarding

an asset’s value differently than equity prices, as options have non-linear payoff structures

(e.g., Breeden and Litzenberger (1978)). This raises the theoretical questions of how a dis-

closure impacts a firm’s option prices and whether the traded prices of options can be used to

assess the properties of a disclosure. To address these questions, I develop an option-pricing

model that incorporates a disclosure event and characterize its impact on option prices. In

the process, I demonstrate that option prices may be used to measure the disclosure’s prop-

erties on an event-specific basis, including the overall amount of novel information it provides

to investors and the amount of information it provides given good-versus-bad news.

In developing my analysis, I depart from the framework applied in conventional option-

pricing models, such as the Black-Scholes-Merton (BSM) model. This framework takes

the process followed by a firm’s stock price as an exogenous input, yielding an option’s

price as a function of this process. As a result, incorporating disclosure into these models

requires making a direct assumption on how the disclosure affects this process. For example,

prior literature incorporates a disclosure into the BSM model by assuming that it increases

equity-return volatility by an arbitrary amount around the disclosure’s announcement (Patell

and Wolfson (1979, 1981)). This approach is not well suited to address how a disclosure’s

properties influence its effect on option prices because it is not clear how these features

affect the firm’s equity-price process. To remedy this issue in my model, I begin with the

1See Patell and Wolfson (1979, 1981), Rogers, Skinner, and Van Buskirk (2009), Diavatopoulos et al.
(2012), Atilgan (2014), amongst others.
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distribution of the firm’s cash flows, rather than stock returns, as the primitive. I then derive

the firm’s equity-price process as an endogenous outcome of the information that investors

receive regarding these cash flows, including a disclosure event. This enables me to analyze

how the disclosure’s properties impact the equity-price process, and in turn, how they impact

option prices.

I model the disclosure event as the public release of novel information to investors. This

release leads to an endogenous jump (i.e., discontinuity) in the firm’s equity price. While

consistent with empirical evidence (e.g., Lee and Mykland (2006)), this finding contradicts

prior studies of disclosure’s impact on option prices, which assume that disclosure has a

continuous impact on equity prices in order to satisfy the assumptions necessary to employ

the BSM framework. In my model, the distribution of the jump induced by the disclosure

is directly determined by the disclosure’s properties.

I focus on how two widely-studied properties of the disclosure affect the jump’s distri-

bution: the expected amount of information contained in the disclosure, which I term the

disclosure’s informativeness, and the amount of information it contains regarding “good”

relative to “bad”news, which I term the disclosure’s asymmetry. The disclosure’s informa-

tiveness is relevant to studies of disclosure quality or decision usefulness to equity holders,

while the disclosure’s asymmetry is relevant to several settings found in prior work. For

instance, models of voluntary disclosure suggest that when firms have discretion in a disclo-

sure decision, they release high-quality information when performing well and no information

when performing poorly (Verrecchia (1983), Dye (1985), Jung and Kwon (1988)). Conversely,

specific accounting procedures may produce disclosures that are inherently more informative

for losses than for gains (Basu (1997), Guay and Verrecchia (2006)). Likewise, models of

earnings management suggest that firms’disclosures may be more informative for bad than

for good news (Laux and Stocken (2012), Bertomeu, Darrough, and Xue (2015)).

Consistent with classical results from disclosure theory, I show that a more informative

disclosure increases the expected magnitude of the disclosure-induced equity-price jump in
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proportion to investors’prior uncertainty regarding the firm’s value (Holthausen and Verrec-

chia (1988)). I then link the expected magnitude of this jump to the level of pre-disclosure

option prices. Since options have convex payouts, when the expected magnitude of this

jump is larger, the expected payoffs to options of all strikes increase, causing their prices

to rise. Therefore, pre-disclosure option prices of all strikes increase in the disclosure’s in-

formativeness in proportion to investors’prior uncertainty regarding the firm’s value. This

result suggests that the run-up in implied volatility documented prior to earnings guidance

and earnings announcements might be broken down into the product of the amount of novel

information contained in earnings and investors’prior uncertainty (Rogers, Skinner, and Van

Buskirk (2009), Van Buskirk (2011), Billings, Jennings, and Lev (2015)).2

Next, I show that a disclosure that is more informative for good-versus-bad news creates

positive skewness in the disclosure-induced equity-price jump. To understand this result,

consider a firm releasing earnings that might reflect either positive or negative news. Should

these earnings be more informative for good news than bad news, equity prices will respond

more strongly to positive earnings surprises and less strongly to negative earnings surprises.

This implies that the distribution of the jump in the equity price upon the earnings’ re-

lease will exhibit more variation on the upside than the downside. I find that through

this jump skewness, disclosure’s asymmetry increases the pre-disclosure prices of out-of-the-

money (henceforth, OTM) call options relative to the prices of in-the-money (henceforth,

ITM) call options (and vice versa for the prices of put options). The reason is that jump

skewness implies a greater probability of equity-price spikes, which are necessary for an OTM

call option to pay off.

Conceptually, the model that I develop should yield option prices around disclosure events

that are closer to options’fundamental values than those generated by prior option-pricing

models, which do not explicitly consider the properties of firms’disclosures. A subset of

2Implied volatility is derived using the Black-Scholes model, which does not hold in my setting as the
disclosure leads to a price jump and prices that are not log-normally distributed. Nonetheless, numerical
simulations suggest that implied volatility, while calculated using the “wrong”model, still behaves as stated
here.
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prior option-pricing models incorporate jumps in firms’prices with varying statistical dis-

tributions; these jumps are thought to capture information events including firm disclosures

(e.g., Merton (1976), Bates (1996)). However, in these models, the distribution of equity-

price jumps is taken as a given, and thus they must be implemented by using historical

data to estimate this distribution. This approach generally cannot fully capture the charac-

teristics of future disclosures, as this data may be limited and subject to noise, and firms’

accounting procedures may periodically change.

In the remainder my analysis, I assume that option traders at least in part incorporate

the features of a firm’s disclosures in their pricing model. In this case, I find that option

prices contain information regarding a disclosure’s properties that cannot be gleaned from

equity prices. To make this idea concrete, consider again the example of a firm announc-

ing its annual earnings. If earnings are above expectations, the magnitude of the resulting

equity-price reaction reveals how informative the firm’s earnings are given that the firm has

performed well, since the size of this reaction is proportional to the disclosure’s informative-

ness (Holthausen and Verrecchia (1988)). However, this price reaction does not reveal the

counterfactual of how informative the earnings report would have been if the firm instead

had performed poorly.

Importantly, both of these reactions are necessary to assess earnings’overall informa-

tiveness and asymmetry, since these properties depend on both how informative earnings

are for good and bad news. Researchers implicitly address this issue by using a time series

of equity-price reactions for a given firm or the equity-price reactions of a cross-section of

comparable firms. These approaches come at the expense of strong assumptions: the first

assumes that disclosure regimes are stationary, while the second assumes that a large subset

of firms have similar disclosure policies. This implies that neither approach can be applied

to study the properties of disclosures that are not similar to other firm disclosures.3

On the contrary, I find that a researcher can learn both the disclosure’s informativeness

3Many types of 8-K’s might fall into this category, such as impairments, outcomes of director elections,
issuance of debt, etc., which capture events that occur infrequently.
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and asymmetry by examining a single firm’s option prices prior to a single news event. Intu-

itively, the model predicts a one-to-one mapping between these properties of the disclosure

and observed pre-disclosure option prices. Thus, just as a researcher can use option prices

to back into the level of return volatility using the BSM model, so too can they use these

prices to back into a disclosure’s properties using my model. I demonstrate precisely how

to empirically measure a disclosure’s properties using the model. The measures I develop

obviate the need to assume stationarity of a firm’s disclosure policies or similarity across

firms and increase statistical power. Furthermore, they provide an ex-ante view of disclo-

sure’s properties, which may be more fitting to some empirical settings than the ex-post view

provided by equity-price measures (Rogers, Skinner, and Van Buskirk (2009)).

Finally, my results imply that the BSM model should fail to explain observed option

prices around disclosure events. It has long been known that empirically-observed option

prices differ from those predicted by the BSM model, which suggests that the market uses

more sophisticated models (e.g., Derman and Miller (2016)). Prior work attributes empirical

inconsistencies with the BSM model to violations of its assumptions that stock prices are

continuous and log-normally distributed, but refrains from addressing the economic forces

that create these features in firms’ returns (e.g., Merton (1976), Heston (1993), Bakshi,

Cao, and Chen (1997), Dupire (1997)). My results suggest that disclosures cause firms’

returns to violate these assumptions since they induce discontinuities into returns that are

potentially skewed.4 An implication of this result is that around disclosure events, investors’

risk-aversion should play a role in pricing options even upon conditioning on the firm’s equity

price. I show that the magnitude of a disclosure’s effect on option prices depends on investors’

risk aversion and the amount of systematic versus idiosyncratic information contained in the

disclosure.

Other work has studied the effect of jumps in equity prices on the prices of options. The

4Dubinsky and Johannes (2006) also develop a model in which disclosure leads to a jump in a firm’s equity
price, but exogenously assume that the jump is Gaussian rather than formally modeling an information
release. Furthermore, they focus on measuring the degree of uncertainty created by a disclosure as opposed
to its properties.
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first such paper was Merton (1976), which models an exogenous jump in the stock price and

assumes that this jump is a diversifiable risk. Naik and Lee (1990) generalize his model by

instead taking the dividend process as primitive and assuming that there are non-diversifiable

jumps in this process. In Naik and Lee (1990), investors learn about future dividends from

present dividends; I build on their analysis by allowing investors to also learn from a firm

information release.

Prior literature also studies the information content of option prices, demonstrating that,

under certain assumptions, they can be used to (i) invert the risk-neutral density (Breeden

and Litzenberger (1978)), (ii) invert both state prices and investors’belief distribution about

future returns (Ross (2015)), and (iii) derive the term structure of cost-of-equity capital

(Callen and Lyle (2014)). I contribute to this literature by demonstrating that because the

risk-neutral density around a disclosure is an invertible function of the disclosure’s informa-

tiveness and asymmetry, one can invert these properties from option prices.

My paper is organized as follows: I first demonstrate the major findings in a parsimonious

two-state discrete-time framework with risk-neutral pricing (Section 2). In the remaining

sections, I extend the model to consider investor risk aversion, continuous trade, a general

prior distribution over the equity’s payoff, a general distribution of the disclosure given the

equity’s payoff, and multiple heterogeneous investors. In Appendix A, I develop empirical

measures of a disclosure’s properties using my results.

2 Parsimonious model

In this section, I develop a version of the model with two states, three periods and risk-neutral

pricing, which transparently conveys my main findings. In the subsequent sections, I extend

the model to consider investor risk aversion, continuous trade, and general distributions,

and find that the results in this section continue to hold. To begin, consider a risk-neutral

representative investor who trades in a firm’s equity, a risk-free bond in unlimited supply
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Figure 1: Timeline.

with return normalized to zero, and European call and put options. The firm’s payoff takes

the form of a dividend x̃ paid to its equity holders at the end of the model, which takes

values of xL or xH > xL. Ex ante, the market perceives xL and xH to be equally likely.

Prior to the payment of the dividend, the firm releases a disclosure ỹ concerning the

outcome of x̃. The model’s timing is intended to reflect a scenario where the market an-

ticipates this disclosure and, prior to the disclosure, trades in both equity and options that

expire after the disclosure. Specifically, the model has three dates. First, there is an initial

“pre-disclosure” date (date 0) during which trade occurs in anticipation of the disclosure

event. Then, at date 1, the firm releases the disclosure ỹ and the market reopens. Finally,

at date 2, the dividend is paid. The timeline of the model is depicted in Figure 1.

The options traded by the investor take on strike prices k ∈ [xL, xH ] and mature at date 1

(i.e., after the disclosure’s release); call payoffs are defined as max (P1 − k, 0) and put payoffs

as max (k − P1, 0), where P1 is the firm’s price at date 1. I assume that the disclosure ỹ takes

one of two possible values that correspond to good and bad news, yH and yL, respectively,

where:

Pr (ỹ = yH |x̃ = xH) = λ− η (1)

Pr (ỹ = yL|x̃ = xL) = λ+ η,

and λ + η;λ − η ∈
[
1
2
, 1
]
. Let a disclosure regime correspond to a set of parameters (λ, η),

which capture the disclosure’s statistical relationship with the firm’s performance. The

parameter λ captures the disclosure’s overall, or on-average, informativeness, as a larger
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value of λ reflects a disclosure regime that is more likely to accurately reflect the true state

of the world. The parameter η captures the disclosure’s informativeness for good-versus-bad

news, which I also refer to as its asymmetry. As η rises, the investor’s outlook regarding

the firm’s performance rises more given good news and falls less given bad news, that is,

∂
∂η

Pr (x̃ = xH |ỹ = yH) > 0 and ∂
∂η

Pr (x̃ = xH |ỹ = yL) > 0.

The disclosure’s overall informativeness, as captured by λ, corresponds to the amount

of novel information it provides to investors, and thus applies to empirical studies that

examine the amount of valuation-relevant information a firm provides to investors. The

disclosure’s asymmetric informativeness, as captured by η, applies to at least two distinct

empirical settings. First, models of voluntary disclosure suggest that when allowed discretion

in accounting choices, firms release more information given good than bad performance,

suggesting that discretion corresponds to a larger level of η (Verrecchia (1983), Dye (1985),

Jung and Kwon (1988)).5 Second, this notion of a disclosure’s informativeness for good-

versus-bad news corresponds directly to the definition of accounting conservatism found in

Gigler and Hemmer (1999), Bagnoli and Watts (2005), Chen et al. (2007), Suijs (2008), and

Bertomeu et al. (2016). Under this definition, conservatism leads to more frequent issuance of

bad news irrespective of the state and hence disclosure that is more informative for good news

than bad news. Other theoretical work uses different definitions of conservatism that often

have opposing predictions (see Ewert and Wagenhofer (2012) and Beyer (2016) for insightful

discussions of this issue). The model speaks only to the informativeness of disclosure for

good-versus-bad news; the precise mapping between this concept and conservatism depends

upon how one defines conservatism.6

Note that while I take the disclosure regime as exogenous, the model could be applied

5While voluntary disclosure equilibria are trivially unravelling in a two-state Verrecchia (1983) model,
general voluntary disclosure equilibria can be analyzed in the set up I consider in Section 5. The finding
that discretion in disclosure choices tends to lead to greater prices of OTM options relative to ITM options
continues to hold in that section.

6From an empirical perspective, this implies there is an ambiguity in how to map conservatism into
the measure I develop. However, as discussed in Ewert and Wagenhofer (2012), this is equally a concern
for conventional measures of conservatism such as the Basu measure. A higher value of η in my model
corresponds to a lower value of the Basu measure.
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to study endogenous disclosure equilibria (voluntary disclosure, disclosure bias, etc.). The

important property of these equilibria in affecting option prices is their impact on the distri-

bution of the post-disclosure equity price. For example, if the disclosure regime results from

a voluntary disclosure game, the results of the model could be applied to the endogenous

properties of the disclosure regime that arise in equilibrium.

2.1 Analysis

I begin by deriving the equilibrium equity and option prices. Since the investor is risk

neutral, the firm’s price at date t is simply the investor’s expectation of the terminal dividend.

Therefore, at date 0 the firm’s price is E [x̃] for any disclosure regime. At date 1 the firm’s

disclosure is public, such that the firm’s price is the investor’s expectation of x̃ given the

disclosure, E [x̃|ỹ]. Risk neutrality also implies that options are priced at their expected

payoffs; I focus on pre-disclosure option prices for reasons that I discuss at the end of this

section.

Lemma 1 The firm’s pre-disclosure stock price, P0, equals E [x̃]. The firm’s post-disclosure

stock price equals:

P1 (ỹ) =

(λ−η)xH+(1−λ−η)xL
1−2η if ỹ = yH

(1−λ+η)xH+(λ+η)xL
1+2η

if ỹ = yL.
(2)

The pre-disclosure prices of call and put options with strike price of k equal:

ΦC (k) = E [max (P1 (ỹ)− k, 0)] ; (3)

ΦP (k) = E [max (k − P1 (ỹ) , 0)] .

Note that the option price can be explicitly calculated by using the distribution of equity

prices that is implied by the lemma. With these results established, we may examine how

the disclosure regime impacts the prices of equities and options.
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2.1.1 Disclosure’s impact on equity prices

I first study the impact of the disclosure regime on equity prices in order to establish a

baseline of what may be learned by a researcher who observes equity prices alone.7 Note

that the disclosure’s properties have no impact on the pre-disclosure equity price because

it is priced at its ex-ante expected payoff E [x̃]. As this expected payoff is a fundamental

feature of the firm’s dividend, it is not changed by the properties of information that is

released about this dividend. The result suggests that pre-disclosure equity prices contain

no information regarding the properties of the disclosure.8

Although the disclosure’s properties do not affect pre-disclosure equity prices, they do

affect the distribution of equity returns on the disclosure date. Specifically, a more infor-

mative disclosure increases the variance of returns on the disclosure date in proportion to

xH −xL. Note that xH −xL captures the investor’s uncertainty regarding the firm’s payoffs,

since V ar [x̃] ∝ (xH − xL)2. Thus, this result follows directly from Bayes’rule, which sug-

gests that a more informative signal increases the variation in posterior beliefs in proportion

to prior uncertainty. Furthermore, disclosure that is more informative for good-versus-bad

news leads to greater positive skewness in returns. Such asymmetric disclosure causes the

market to place greater weight on the disclosure when it contains good news and less weight

on the disclosure when it contains bad news. This creates a distribution that exhibits more

variation conditional on its value exceeding its mean, which manifests as skewness. Note that

these findings are consistent with empirical studies that use firms’return variances around

disclosures to measure their informativeness (e.g., Beaver (1968)) and return skewnesses

around disclosures to measure their conservatism (e.g., Givoly and Hayn (2000)).

7One might conjecture that in a two-state model, since options can be replicated by trading in an equity
and the risk-free asset, a researcher could acquire the same information from equity prices as they could
from option prices. Note this is not the case, since the weights required to replicate the option using the
stock and the risk-free asset are themselves a function of the disclosure’s properties, and thus, are unknown
to the researcher.

8While this result might seem fairly specific to the set up at hand, it in fact holds for any utility function
or distribution as long as there is a representative investor or investors are homogenous. Even when this is
not the case, the essential point is that since option prices with different strikes are differentially reflected
by future returns, observing these prices provides more information than observing equity prices alone.
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The following lemma formalizes these results, where “equity returns on the disclosure

date”are defined as the change in price induced by the disclosure, P1 (ỹ)−P0, and skewness

refers to Pearson’s measure,
E[(z̃−E[z̃])3]

E[(z̃−E[z̃])2]
3
2
.

Lemma 2 1) The properties of the disclosure regime have no impact on the pre-disclosure

equity price.

2) An increase in the disclosure’s informativeness increases the variance of equity returns on

the disclosure date in proportion to payoff uncertainty, xH − xL, and has no effect on return

skewness.

3) An increase in the disclosure’s informativeness for good-versus-bad news increases the

skewness of equity returns on the disclosure date.

Despite the fact that disclosure affects the distribution of equity returns on the disclosure

date, the amount of information a researcher can learn from equity prices is limited. The

reason is that a researcher does not directly observe this distribution but instead observes

only the equity returns induced by the realized disclosure report, ỹ, which translates into

a single observation from this distribution. In order to fully understand the disclosure’s

properties, one would have to observe the equity-price reaction to every possible outcome

of the disclosure, ỹ, an impossible task. Prior empirical literature addresses this issue by

estimating the distribution using multiple firm disclosures and appealing to the law-of-large

numbers (Beaver (1968), Givoly and Hayn (2000)), or by assuming that disclosure is equally

informative for any level of firm performance (the earnings-response coeffi cient literature).

The former approach requires the assumption that the properties of the firm’s disclosures do

not change over time and cannot be used for sporadic disclosures that are dissimilar from

other firm disclosures, such as 8-K’s, and reduces statistical power. The latter approach

rules out the possibility of asymmetric disclosure regimes.
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2.1.2 Disclosure’s impact on option prices

Next, I consider how the disclosure regime impacts option prices, demonstrating their incre-

mental information content. In my analysis, I focus on the pre-disclosure prices of options

that mature immediately after the disclosure; at the end of the subsection, I discuss why the

information in these prices is suffi cient for the information in the prices of short- and long-

maturity options before and after the disclosure.

First, since more informative disclosure increases the variability in equity prices in pro-

portion to payoff uncertainty, xH − xL, it increases the pre-disclosure prices of all options

in proportion to xH − xL. Second, by creating skewness in equity returns, increasing the

informativeness of the disclosure for good-versus-bad news increases (decreases) the prices

of OTM call (put) options and decreases (increases) the prices of ITM call (put) options.

Intuitively, this skewness increases the probability of upper-tail equity returns. These ex-

treme returns increase the expected payoffs to OTM call options, which require an increase

in the equity price to pay off (the converse holds for put options). This effect is familiar

from the prior option-pricing literature that prices options as a function of exogenously given

equity-return moments (e.g., Bakshi et al. (2003), Christoffersen et al. (2006)). I summarize

these results in the following proposition.

Proposition 1 1) An increase in the disclosure’s informativeness weakly increases the pre-

disclosure prices of options of all strikes and strictly increases equally the pre-disclosure

prices of options with strikes k ∈ (P1 (yL) , P1 (yH)). The size of this effect increases in pay-

off uncertainty, xH − xL.

2) An increase in the disclosure’s informativeness for good-versus-bad news weakly increases

the pre-disclosure prices of OTM call (ITM put) options and weakly decreases the pre-

disclosure prices of ITM call (OTM put) options that mature just after the disclosure; the

relationships are strict for options with strikes k ∈ (P1 (yL) , P1 (yH)).

The proposition suggests that by examining option prices of different strikes, a researcher
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can determine both the overall informativeness of the disclosure and its informativeness for

good-versus-bad news. This is formalized in the following corollary.

Corollary 1 Observing pre-disclosure option prices reveals both the disclosure’s informative-

ness and its informativeness for good-versus-bad news, i.e., it reveals the parameters (λ, η)

given knowledge of xH − xL.

The proof shows how λ and η may theoretically be backed out from observed call option

prices. In Appendix A, I develop simple empirical measures for the parameters λ and η that

are robust to investor risk aversion and continuous trade. First, λ may be captured by the

price of an ATM option normalized by a measure of investor uncertainty such as equity-

price volatility or firm size. Intuitively, Proposition 1 states that λ increases the prices of

options of all strikes. Note, however, there are two hurdles in implementing this approach

empirically. First, the firm’s payoff uncertainty, xH − xL, determines the magnitude of the

effect that λ has on option prices; this can serve as an omitted variable in empirical analysis.

In Appendix A, I show that dividing by an estimate of xH − xL corrects for this potential

bias. The second hurdle is the fact that pre-disclosure option prices are also affected by the

extent to which they are ITM or OTM (i.e., P0 − k), in a nonlinear fashion that interacts

with xH − xL; by examining ATM options, this issue can be avoided.

Next, I show that η may be captured by the difference between the prices of a moderately

OTM and a moderately ITM call option divided by the difference in their strike prices,

controlling for the asymmetry of the firm’s cash flows and the measure of informativeness.

Note that choosing which ITM and OTM contracts to compare involves a trade-off. First,

the size of the effect detailed in Proposition 1 is larger for options that are further from

being ATM. However, options that are further from being ATM are typically less liquid; this

is especially true for deep ITM options, which, given that their returns resemble those of

equities, are infrequently traded.

Prior literature typically applies a very different approach to utilizing the information in

option prices. This literature calculates model-free implied return variances and skewnesses,
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which capture the variance and skewness of the risk-neutral distribution, and associate them

with variables of interest (e.g., Jackwerth and Rubinstein (1996), Britten-Jones and Neu-

berger (2000), Bakshi et al. (2003), Figlewski (2009)). As Lemma 2 suggests that the

disclosure’s informativeness and asymmetry manifest in return variance and skewness, one

might conjecture that these such measures could be used to capture the disclosure’s proper-

ties. Indeed, these measures capture the disclosure’s properties when the disclosure concerns

idiosyncratic risk, as in the current section, since in this case the risk-neutral distribution

is the same as the true distribution. However, in the Internet Appendix,9 I show that this

approach entails several identification problems when the disclosure contains a systematic

component, which arises from the disconnect between the risk-neutral distribution and the

true return distribution.

To this point, I have considered only the pre-disclosure prices of options that expire

soon after the disclosure. Note that their post-disclosure prices cannot contain incremental

information over the equity price, as they are simply a function of the equity price. However,

one may question whether the prices of options that mature further into the future might

also contain information regarding the disclosure’s properties. Thus, consider options that

mature at date 2; to ensure these options have value, assume the firm’s dividend is paid after

their expiration or that the options are dividend adjusted. The payoffs to long-horizon call

(put) options equal max (x̃− k, 0) (max (k − x̃, 0)). Applying the results from Breeden and

Litzenberger (1978), the post-disclosure prices of these options enable the derivation of the

conditional distribution of x̃ given the realized disclosure ỹ, f (x̃|ỹ). While this distribution

contains more information regarding the disclosure’s properties than the realized equity

price, E [x̃|ỹ], it is still not suffi cient to calculate the properties of the disclosure in general.

Therefore, an analysis of pre-disclosure short-horizon option prices alone is suffi cient to

capture the information contained in option prices of all maturities both before and after

the disclosure.10

9The Internet Appendix may be found at https://sites.google.com/site/kcsmith2231/internet-appendices.
10I note that this is somewhat specific to the present set up. Post-disclosure option prices may be useful in
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3 Investor risk aversion and systematic disclosure

In this section, I extend the model to the case where the investor is risk averse with respect

to the outcome of the information disclosed by the firm. This corresponds to a disclosure

that concerns the outcome of a systematic event, which may represent a disclosure by a

large firm or a macro-forecast. To implement investor risk aversion into the model, I make

one modification to the assumptions in the prior section. Specifically, assume now that the

representative agent has a general risk-averse utility function u (·) as a function of their

wealth at time 2, satisfying u′ (·) > 0 and u′′ (·) ≤ 0. While the reader might express concern

that I model risk aversion and systematic risk in a model with only a single equity security,

I note that the results extend naturally to the case of many correlated equities.

The BSM model argues that investors’risk preferences play no role in pricing an option

conditional on the present level of and distribution of equity prices, as option prices are

determined purely by the assumption of no-arbitrage. However, options can be priced by

no arbitrage only when the firm’s stock price follows a continuous process (see, e.g., Merton

(1976)). As the disclosure in my model causes the equity price to jump, investors’preferences

must be considered in pricing options (note that the relationship between my model and BSM

will become more clear in the next section, in which I consider continuous trade).

I find that in the presence of risk aversion, disclosure has a nuanced effect on option

prices because it both increases options’expected payoffs and the riskiness of their payoffs.

Nonetheless, Proposition 1 continues to hold, but the magnitude of the effects outlined in the

proposition depend upon the degree of the investor’s risk aversion. To begin, again consider

how the disclosure impacts equity prices.

Lemma 3 The firm’s pre-disclosure stock price P0 equals E [u′ (x̃)]−1E [x̃u′ (x̃)] and the

firm’s post-disclosure stock price P1 (ỹ) equals E [u′ (x̃) |ỹ]−1E [x̃u′ (x̃) |ỹ]. Consequently,

1) The firm’s ex-ante and ex-post equity prices include risk premia.

examining other properties of the disclosure that I do not consider here, such as its informativeness regarding
the firm’s risk.

16



2) The ex-ante equity price is unaffected by the disclosure.

3) The expected post-disclosure equity price, E [P1 (ỹ)], increases in the informativeness of

the disclosure.

4) Observing pre- and post- disclosure equity prices (P0, P1 (ỹ)) is insuffi cient to learn the

disclosure’s properties λ and η.

The equity is priced using the standard asset-pricing Euler equation, and thus equals

the sum of the equity’s payoff in each state of the world multiplied by the representative

investor’s marginal utility in that state. This price exhibits three intuitive features that are

important in pricing options. First, it exhibits a risk premium, that is, P0 and P1 (ỹ) fall

short of the market’s expectations of terminal value at the respective dates, E [x̃] and E [x̃|ỹ],

implying that the firm’s expected returns exceed the risk-free rate. Second, the ex-ante (date

0) equity price is unaffected by the disclosure and its properties, λ and η. This result mirrors

the findings of Ross (1989) and Christensen et al. (2010) and is directly assumed in Patell

and Wolfson (1979, 1981). Finally, the size of the post-disclosure risk premium decreases as

the firm releases a more informative disclosure, consistent with the findings in Lambert, Leuz,

and Verrecchia (2007). Intuitively, disclosure reduces uncertainty, which in turn reduces the

investor’s effective risk aversion. Again, equity prices are insuffi cient to learn the disclosure’s

properties, λ and η, because the researcher only observes the equity response associated with

the realized disclosure ỹ and because the ex-ante equity price is independent of λ and η.

Next, consider disclosure’s effect on pre-disclosure option prices.

Proposition 2 The pre-disclosure prices of call and put options with strike k ∈ (P1 (yL) , P1 (yH))

that expire just after the disclosure equal:

ΦC (k) =
E [max (P1 (ỹ)− k, 0)u′ (x̃)]

E [u′ (x̃)]
; (4)

ΦP (k) =
E [max (k − P1 (ỹ) , 0)u′ (x̃)]

E [u′ (x̃)]
.

Consequently,
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1) Investor risk aversion decreases (increases) the pre-disclosure prices of call (put) options

of all strikes.

2) An increase in the disclosure’s informativeness weakly increases the pre-disclosure prices

of options of all strikes and strictly increases the pre-disclosure prices of options with strikes

k ∈ (P1 (yL) , P1 (yH)). The size of this effect increases in payoff uncertainty, xH − xL.

3) An increase in the disclosure’s informativeness for good-versus-bad news increases the

pre-disclosure prices of OTM call (ITM put) options and decreases the pre-disclosure prices

of ITM call (OTM put) options.

4) Conditional on knowledge of the investor’s utility function u (·), pre-disclosure option

prices reveal the disclosure’s properties, λ and η.

As with the equity price, the equilibrium option price follows from the Euler equation

and equals the sum of the option’s payoff in each state of the world multiplied by the

representative investor’s marginal utility of wealth in that state. As the investor’s wealth

at the end of the model stems from the firm’s dividend and call (put) options’payoffs are

positively (negatively) correlated with this dividend, the price of these options include a

positive (negative) risk premium.

The next part of the proposition concerns the robustness of results in the prior section

to investor risk aversion. Note that when the investor is risk averse, the disclosure’s infor-

mativeness has three effects on option prices; I refer to these effects as the expected-payoff

effect, the option-risk effect, and the cost-of-capital effect. I provide the intuition under-

lying these effects for call options. First, the expected-payoff effect carries over from the

risk-neutral analysis conducted in Lemma 2: more informative disclosure affects options’

expected payoffs by increasing the variance of the equity price. However, this increase in

variance also increases the riskiness of the options payoff, which I term the option-risk effect.

For instance, if an option is ITM prior to a disclosure event, it is possible that price falls in

response to the disclosure, leading the option to expire OTM. Importantly, this risk is priced

by the investor, pushing down the option’s pre-disclosure price. Finally, the fact that more
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informative disclosure reduces the equity risk premium after its release tends to increase call

options’expected payoffs, pushing up their prices; I refer to this as the cost-of-capital effect.

Part 2 of the proposition states that the expected-payoff and cost-of-capital effects dominate

the option-risk effect: more informative disclosure continues to increase option prices.

An increase in the disclosure’s asymmetry also impacts option prices through the expected-

payoff, option-risk, and cost-of-capital effects. As in the risk-neutral case studied in the prior

section, the expected-payoff effect is positive for OTM call options and negative for ITM call

options. Furthermore, asymmetry in the disclosure causes options to be more likely to pay off

when the underlying state is high; that is, loosely speaking, it increases call options’betas,

which drives their prices downward. Finally, asymmetric disclosure can impact the firm’s

cost of capital, but the direction of this effect is not signable in general, and depends upon

the precise shape of the investor’s preferences. Nonetheless, the net effect of an increase in

the disclosure’s informativeness for good-versus-bad news remains positive for OTM options

and negative for ITM options. Again, option prices reveal the parameters λ and η condi-

tional on knowledge of u (·). In Appendix A, I show that from an empirical point of view, the

qualifier that knowledge of u (·) is required to back out λ and η generally does not represent

a problem to estimation if the investors holding different firms have similar preferences.

I next show that the magnitude of the effect disclosure has on option prices depends

upon investor risk aversion. Define an increase in investor risk aversion as a concavification

of the utility function: u1 is more risk averse than u2 if and only if there exists an increasing,

concave function g such that u1 = g (u2).11

Corollary 2 1) An increase in investor risk aversion magnifies (attenuates) the effect of the

disclosure’s informativeness on the pre-disclosure prices of call options with strikes k > E [x̃]

(k < E [x̃]).

2) An increase in investor risk aversion causes the disclosure’s informativeness for good-

versus-bad news to have a more positive impact on all pre-disclosure option prices.

11See Pratt (1964) and Gollier (2004) for the development of this notion.
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The corollary provides testable predictions on how the extent of systematic versus idio-

syncratic information contained in a disclosure moderates how it influences option prices.

The intuition underlying the first part of the corollary for call options is as follows. An

increase in risk aversion amplifies the negative option-risk and positive cost-of-capital effects

that the disclosure’s informativeness has on option prices. However, the relative size of these

effects depends on an option’s strike. Specifically, the (positive) cost-of-capital effect is simi-

lar for call options of differing strikes; it simply pushes up the equity price, increasing options’

ex-post payoffs. On the other hand, the (negative) option-risk effect has a greater impact

on low-strike than high-strike call options, as investors holding ITM options have "more to

lose" from a downswing in the equity price. The second part of the corollary follows because

risk aversion amplifies the effect that η has on the equity price when call options pay off,

P (yH). The reason is that η reduces the probability that a high signal results from poor

performance, and thus decreases the investor’s uncertainty given yH .

4 Continuous-time formulation

The model developed to this point may be criticized on the grounds that its results are diffi -

cult to compare to conventional option-pricing models in which investors trade continuously

and the firm’s stock price evolves according to a diffusion process. In this section, I demon-

strate that the results in the prior section continue to hold in such a setting. Specifically,

assume now that the investor trades the bond, stock, and options continuously over a period

[0, T ]. The final period T corresponds to time 2 in the discrete-time model: it is the time

at which the firm pays off x̃ to its equity holders. I now assume that x̃ can be decomposed

into two independent subcomponents, one that the firm discloses about, õ, and one related

to other information released by external sources, d̃:

x̃ = õ+ d̃. (5)

20



I choose to include this second component of cash flows, õ, in the model in order to allow

the firm’s price to evolve continuously for reasons unrelated to the disclosure event. Its

presence leads to a price process similar to the one found in the BSM and related option-

pricing models. The results in this section continue to hold in the absence of this term, or

if this term is correlated with d̃. At date 0, the investor has a prior that õ has a log-normal

distribution with parameters µ0 and σ
2
0 > 0. The investor receives information continuously

regarding õ, which captures information that is gradually embedded into the firm’s price.

This may stem from forces such as information processing or private information gathering.

In particular, assume that the posterior beliefs of the investor regarding õ evolve according

to the following stochastic process:

dµt =
σ0

T
1
2

dBt; (6)

dσ2t = −σ
2
0

T
dt,

where Bt is a Brownian motion. Intuitively, these belief dynamics capture the limit of a

discrete-time model in which investors receive normally-distributed signals regarding log õ in

each of many time periods, as the time between each period and the precision of each signal

approach zero (Lipster and Shiryaev (2001)). Moreover, since σ2T = σ20 +
∫ T
0
−σ20

T
dt = 0, at

the final date T , investors know õ, i.e., eµT = õ.12 Note that while I make rather specific

assumptions on the stochastic process followed by the investor’s beliefs regarding õ, as I

discuss at the end of the section, the results are highly robust to various assumptions on this

process.

Next, assume that d̃ has the same distribution as the dividend in Section 2: d̃ = xH with

probability 1
2
and d̃ = xL with probability 1

2
. Assume that the firm releases a disclosure ỹ

regarding d̃ at date τD ∈ (0, T ) that has the same conditional distribution as in Section 2.

Finally, assume that ỹ is independent of õ and Et [õ], ∀t ∈ (0, T ).

12Note that this type of framework is standard in the continuous-time asset pricing literature; see, e.g.,
Naik and Lee (1990), Scheinkman and Xiong (2003), and Buraschi and Jiltsov (2006).
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Denote a call (put) option’s price at time t as a function of the current stock price Pt, the

option’s maturity date τM and strike price k as ΦC
t (Pt, k, τM) (ΦP

t (Pt, k, τM)). Applying

Bayes’rule to determine the representative investor’s beliefs at each time point, solving her

optimization problem, and substituting the market-clearing condition yields the following

lemma:

Lemma 4 The firm’s share price equals:

Pt =
Et [x̃u′ (x̃)]

Et [u′ (x̃)]
. (7)

The call and put option prices are equal to:

ΦC
t (Pt, k, τM) =

Et [max (PτM − k, 0)u′ (x̃)]

Et [u′ (x̃)]
; (8)

ΦP
t (Pt, k, τM) =

Et [max (k − PτM , 0)u′ (x̃)]

Et [u′ (x̃)]
.

The equity and option prices are continuous during the non-disclosure windows [0, τD) and

(τD, T ], and jump on the disclosure date τD.

The lemma states that the firm’s equity and option prices continue to be valued using

the conventional Euler equation in the continuous-trade framework. These prices evolve

continuously in the non-disclosure windows as investors continuously receive information

about the terminal dividend and jump on the date of the disclosure. Figure 2 plots a

numerical example of pre- and post- disclosure equity and option prices under the assumption

that λ = 1 and η = 0. Notice that the equity and option prices evolve continuously prior to

the date of the disclosure, T = 10, at which point they jump up or down depending upon the

news provided in the disclosure. After the disclosure, they again evolve continuously until

the dividend is paid at date T = 20.

I next show that the effects of disclosure on equity and option prices highlighted in Lemma

2 and Proposition 1 continue to hold in the continuous-trade setting. In order to state this
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Figure 2: This figure was generated by simulating pre- and post- disclosure equity and call
option prices, given binary d̃ ∈ {−1, 1} and a symmetric disclosure that perfectly recognizes
the true d̃. In the example, disclosure occurs at day 10, and the option matures at day 20.

formally, let the “pre-disclosure equity price”refer to limt→τ−D
Pt and the “pre-disclosure call

(put) option price” refer to limt→τ−D
ΦC
t (Pt, k, τM) (limt→τ−D

ΦP
t (Pt, k, τM)). Furthermore,

refer to the “equity returns at the disclosure date”as the change in the firm’s equity price

induced by the disclosure, PτD − limt→τ−D
Pt. Given these definitions, the statements in

Lemma 3, Proposition 1, and Corollary 2 apply directly to the continuous-trade setting.

Proposition 3 Results 1-4 in Proposition 2 continue to hold in the continuous-trade frame-

work for options that mature just after the disclosure (at date τD). Results 1-2 in Corollary

2 also continue to hold in the continuous-trade framework for these options if u (·) exhibits

non-increasing absolute risk aversion.

The intuition for this result is straightforward: in the continuous-trade setting, the dis-

closure’s properties affect the jump in price on the disclosure date in the same manner in

which they affect the change in price from date 0 to date 1 in discrete-trade setting. A

slight complexity arises because õ serves as a source of background risk that can modify the

representative investor’s risk preferences. This does not affect the results in Proposition 2,

since it holds for any parameterization of investor risk aversion. However, for the compar-

ative statics results articulated in Corollary 2 to continue to hold in the presence of this
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Figure 3: This figure compares pre-disclosure option prices under a fully informative disclo-
sure (λ = 1, η = 0) and a completely uninformative disclosure

(
λ = 1

2
, η = 0

)
. The left-hand

plot depicts an ATM call option’s price as a function of xH − xL under the two policies.
The right-hand plot depicts call options’prices as a function of their strike under the two
policies.

background risk, a technical, albeit reasonable condition must hold: the investor must have

non-increasing absolute risk aversion. Figure 3 presents comparative statics on the effect of

disclosure’s informativeness on call option prices, taking the extreme approach of compar-

ing a fully informative disclosure (λ = 1, η = 0) to the case of completely noisy disclosure(
λ = 1

2
, η = 0

)
. The left figure demonstrates that the effect of disclosure on option prices

increases in uncertainty over d̃, xH − xL. The right figure plots the effect of disclosure on an

option’s price against the option’s strike.

Figure 4 depicts the impact of asymmetric informativeness on call option prices, compar-

ing the case in which the disclosure is more informative for good than bad news (λ = 0.7, η = 0.1)

to the case in which the disclosure is symmetric (λ = 0.7, η = 0). The upper plot demon-

strates that the effect of asymmetric informativeness on the price of an option depends on

whether the option is OTM or ITM; the pre-disclosure stock price in the figure equals 1,

the point at which the two price lines cross. The lower-left plot demonstrates the effect

on an ITM call option, while the lower-right plot demonstrates the effect on an OTM call

option, as a function of uncertainty regarding d̃. Intuitively, greater uncertainty magnifies
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Figure 4: This figure depicts pre-disclosure call option prices under the regimes
(λ = 0.7, η = 0.1) and (λ = 0.7, η = 0); the former is representated by the dashed lines and
the latter by the solid lines. The upper plot depicts call options’prices as a function of their
strike; the lower-left plot depicts the price of an ITM call option as a function of xH − xL;
the lower-right hand plot depicts the price an OTM call option as a function of xH − xL.

the response to disclosure and hence amplifies how asymmetric disclosure affects the relative

prices of OTM and ITM options.

Many option-pricing models allow for greater generality in the stochastic process followed

by the firm’s equity than the one that endogenously arises in this section. For instance, sev-

eral models allow the volatility of price to depend upon time and/or the present equity price

or to possess a stochastic component (Hull and White (1987), Heston (1993), Dupire (1997)).

Moreover, models allow for exogenous jumps in the stock price with varying distributions

(Kou (2002)). Since in my framework the terminal dividend is taken as the exogenous con-

struct, to be included in the model, these features of the stock-price process would have to
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arise endogenously from changes in the market’s beliefs. For instance, stochastic volatility

could arise due to uncertainty over the amount of information to arrive regarding õ. Jumps

in the stock price at times other than τD may arise due to information releases other than

the disclosure, large investors’liquidity shocks, etc. Time- and price- dependent volatility

might arise if the market’s incentives to acquire information depend upon their wealth or

otherwise dynamically change (Vanden (2008)).

Nonetheless, the introduction of these additional features would have no qualitative im-

pact on my results. The reason is that, subject to minor regularity conditions, the proof of

Proposition 3 does not depend upon the stochastic process followed by the stock price in

the periods [0, τD) and (τD, T ]. Intuitively, the proposition concerns the prices of options

just prior to the disclosure that expire soon after the disclosure. The dynamics of price

in non-disclosure periods only impact these options’prices through introducing a source of

background risk in the representative investor’s consumption. But, since the proposition

holds for any risk-averse investor preference function, and since introducing background risk

preserves risk aversion (Gollier 2004), the results are robust to the price dynamics in the

non-disclosure windows.

5 Generalized information structures

In this section, I generalize the binary information structure in the previous section in order

to demonstrate that my focal results are applicable to a broad range of settings found in the

prior theoretical-disclosure literature. The approach I take is to allow for full generality in

the distribution of the firm’s payoff and the conditional distribution of the firm’s disclosure

given this payoff. I then characterize properties of the disclosure that are both necessary and

suffi cient for the results in Proposition 1 to hold, which capture general conceptions of the

disclosure’s informativeness and asymmetry in an intuitive matter. Finally, in the Internet

Appendix, I show that these conditions are met in several settings studied in prior disclosure
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literature.

Suppose now that the representative investor is risk-neutral.13 Let d̃ now follow an

arbitrary distribution satisfying E
[∣∣∣d̃∣∣∣] < ∞ that possesses a CDF Fd̃(·) with support

[dL, dH ] where dL ∈ [−∞, dH) and dH ∈ (dL,∞].14 Moreover, suppose the disclosure ỹ,

which takes values in Υ, has an arbitrary statistical relationship with d̃. Denote the CDF of

ỹ given d̃ as Fỹ|d̃ (·) and assume that E
[∣∣∣d̃|ỹ = z

∣∣∣] <∞ ∀z ∈ Υ. I now refer to a disclosure

regime Ri as a distribution function of ỹ given d̃.

The general notions of a disclosure’s informativeness and asymmetry definitions that I

develop are based on the fact that the disclosure impacts the equity price through its effect

on the investor’s posterior expectation of d̃, ξ̃Ri. An uninformative disclosure regime rarely

changes the investor’s beliefs, leaving her posterior expectation of ỹ, E
[
d̃|ỹ
]
very close to her

prior belief, E
[
d̃
]
. On the other hand, a highly informative disclosure causes the investor’s

beliefs, E
[
d̃|ỹ
]
, to change substantially based upon the information contained in the disclo-

sure. Generalizing this idea, a disclosure regime can be considered more informative than

another if it leads to more variation in the investor’s posterior expectations. Thus, consider

the following definition of informativeness, which makes this idea precise by appealing to the

concept of second-order stochastic dominance.

Definition 1 Let ξ̃Ri ≡ E
[
d̃|ỹ;Ri

]
denote the posterior expectation of d̃ under a disclosure

regime Ri. A disclosure regime R2 is higher quality than a disclosure regime R1 if and only

if ∀a > 0,
∫ a
dL
Fξ̃R2

(z) dz ≥
∫ a
dL
Fξ̃R1

(z) dz, that is, ξ̃R1 second-order stochastic dominates

ξ̃R2.
15

13Note that the effect of disclosure on security prices when both payoff distributions and investor utility
are fully general is a diffi cult question even in the absence of a derivative (Gollier and Schlee (2011)). Thus,
tractably analyzing more general distributions requires a simpler assumption on investor preferences. The
results in this section are most applicable to idiosyncratic disclosure.
14Generally, in the applications, it makes sense to restrict dL to be nonnegative, such that the firm’s share

price is nonnegative. However, in demonstrating how definitions of conservatism in prior literature that
often include unbounded normal distributions conform to the present model, it is necessary to allow dL to
be negative.
15Note that by the law-of-iterated expectations, E

(
ξ̃∆1

)
= E

(
ξ̃∆2

)
is fixed at the prior mean, E (η̃). As

a result, an equivalent definition is that ξ̃∆2
is a mean-preserving spread of ξ̃∆1

.
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Importantly, this definition is both necessary and suffi cient for Part 1 of Proposition 1

to hold.

Proposition 4 A disclosure regime R2 is more informative than a disclosure regime R1 if

and only if the pre-disclosure prices of options of all strike prices are higher under R2 than

R1.

In the Internet Appendix, I demonstrate that several conventional definitions of disclosure

informativeness found in the literature (including the one used in the previous sections)

indeed rank disclosure regimes according to Definition 1, suggesting that for a fairly large set

of distributions, my results continue to hold. However, note that some disclosure policies are

not capable of being ranked using this definition of informativeness. For instance, consider

two disclosure regimes: the first is a setting of voluntary disclosure studied by Verrecchia

(1983) whereby a firm discloses d̃ whenever it lies above some threshold TV , and refrains

from disclosing d̃ whenever it falls below TV . Conversely, consider the conservative disclosure

regime studied by Guay and Verrecchia (2006) whereby a firm discloses d̃ whenever it falls

below the threshold TC and refrains from disclosing whenever it lies above TC . Then, for any

pair of thresholds (TC , TV ), it can be shown that these disclosure regimes cannot be ranked

based on this definition.

An implication of this result is that even if the voluntary disclosure regime perfectly

reveals the firm’s performance to investors except in the case of a highly unlikely large loss,

and the conservative regime reveals only highly extreme, very unlikely losses, the regimes

still cannot be ranked based on informativeness. Moreover, because the definition is both

necessary and suffi cient to increase the prices of options of all strikes, this implies that the

conservative regime increases the price of some options relative to the voluntary regime,

even when it on average reveals much less information (specifically, deep ITM options).

The takeaway is that empirical tests may indeed use the prices of options to compare the

informativeness of two disclosure regimes, but only if option prices of all traded strikes are
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greater under one regime than under the other (controlling for the present stock price and

investors’prior uncertainty).16

Next, consider a general notion of disclosure’s asymmetry, which is an extension of the

previous definition.

Definition 2 A disclosure regime R2 is more informative for good-versus-bad news than a

disclosure regime R1 if and only if for a < E
[
d̃
]
,
∫ a
dL
Fξ̃R2

(z) dz ≤
∫ a
dL
Fξ̃R1

(z) dz, while for

a > E
[
d̃
]
,
∫ a
dL
Fξ̃R2

(z) dz ≥
∫ a
dL
Fξ̃R1

(z) dz.

The definition extends the previous one in the sense that a disclosure policy may be

called more informative for good-versus-bad news when it leads to more variation in the

investor’s beliefs given that it leads her beliefs to be revised upwards (ξ̃Ri > E
[
d̃
]
), and less

variation given that it leads her beliefs to be revised downwards (ξ̃Ri < E
[
d̃
]
). Also in the

Internet Appendix, I demonstrate how several conventional definitions of conservative and

aggressive disclosure found in the literature map into this criterion including the one used

in the previous sections. Given this definition, Part 2 of Proposition 1 extends naturally

to the case of a general distribution, and again, it is in fact both a necessary and suffi cient

condition for the result to hold.

Proposition 5 A disclosure regime R2 is more informative for good-versus-bad news than

disclosure regime R1 if and only if:

1) The pre-disclosure prices of OTM call (put) options that mature at time τD are higher

(lower) under R2 than R1, and

2) the pre-disclosure prices of ITM call (put) options that mature at time τD are higher

(lower) under R1 than R2.

16Note this condition may be violated due to liquidity reasons absent from the model, even when the
disclosure is in fact more informative.
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6 Multiple investors with heterogenous beliefs

While the model is framed in terms of a representative investor, in reality, there are many

investors trading in firms’options that likely have heterogenous information and beliefs. In

this case, I demonstrate that option prices reveal a weighted average of investors’beliefs

about the properties of the disclosure. In particular, suppose that there exists a continuum

[0, 1] of competitive risk-averse investors again with arbitrary utility function u (·). Their

beliefs are heterogenous in the sense that the ith investor perceives the CDF’s of d̃, ỹ|d̃, and

õ to be F i
d̃
, F i

ỹ|d̃, and F
i
õ, respectively. In order to rule out the case in which an investor

wishes to buy or sell an infinite amount of an asset, suppose that the investors’beliefs are

mutually absolutely continuous. Then, the following result establishes that this extension is

equivalent to the case in which there is a representative investor with some risk-averse utility

function and an average of the individual investors’beliefs. As a result, the directional effect

of the results considered in the previous sections remain unchanged.

Proposition 6 The equilibrium equity and option prices in a model with heterogenous in-

vestors is equivalent to one in which there is a single risk-averse representative investor with

beliefs equal to the average market belief.

This result suggests that even if only a subset of investors in the market understand

the properties of an upcoming disclosure, their beliefs will be impounded into prices. Thus,

option prices may still be used to measure a disclosure’s properties.

7 Conclusion

In this paper, I analyze an option-pricing model that formally incorporates an anticipated

disclosure event. I demonstrate how the disclosure’s informativeness and asymmetry affect

option prices prior to its release. The model suggests that the disclosure’s properties are

an important determinant of options’expected payoffs, suggesting that a knowledge of ac-
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counting systems can lead to more effi cient pricing of option contracts. Moreover, my results

suggest that in an effi cient market, option prices can serve as a useful measure of investor’s

beliefs regarding an upcoming disclosure’s properties. The measures developed can be calcu-

lated on a disclosure-event basis, obviating the need for strong assumptions underlying prior

empirical measures.

In part, the paper’s contribution is to build a rigorous, yet tractable, framework in which

the effect of a disclosure on option prices may be analyzed. While the present paper focuses

on only two properties of a disclosure, it may also be interesting to study how other features

of a disclosure, such as bias, persistence, smoothness, etc., manifest in option prices. The

model also takes the statistical properties of the disclosure as exogenous in order to maintain

a focus on how these properties affect option prices. Another extension of the model would

endogenize the disclosure to be made by a decision maker, such as a manager, who cares

both about equity and option prices, in order to show how features such as proprietary costs

or information uncertainty might be backed out from option prices.

8 Appendix A: Empirical estimation

In this appendix, I detail the empirical approach to measuring a disclosure’s informativeness

and asymmetry using call option prices. For simplicity, I develop the measures in the discrete-

time risk-aversion case, but they are easily shown to be robust to continuous trade.17 In the

Internet Appendix, I show how these measures extend to the case of an asymmetric prior,

and demonstrate the need to control for asymmetry in the firm’s fundamentals.

Note that the model suggests that attention should be restricted to call options whose

expiration date is after the disclosure date but as close to the disclosure date as possible;

furthermore, option prices should be measured just prior to the disclosure event. Intuitively,

this ensures that the option’s price is minimally affected by sources of volatility other than the
17In the case of general distributions, there is no single parameter corresponding to informativeness or

asymmetry that can be measured, but Propositions 4 and 5 nonetheless suggest a directional relationship
between these properties and the measures developed in this section.
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disclosure at hand, which could confound the measures. Suppose that the traded options with

expiration closest to the announcement have strike prices k1,...,kn. According to Proposition

2, recall that the theoretical price of a call option with strike ki ∈ (P1 (yL) , P1 (yH)) equals:

ΦC (ki) =
(λ− η) (xH − ki)u′ (xH) + (1− λ− η) (xL − ki)u′ (xL)

u′ (xH) + u′ (xL)
. (9)

We wish to map observed option prices into this formula in order to develop estimators of

λ and η. First, consider an estimator of disclosure’s informativeness, λ. Let P ∗ denote the

last-quoted equity price prior to the disclosure event and let ΦC (P ∗) denote the price of the

call option with strike closest to P ∗ at time close to the time P ∗ is quoted. Substituting

ki = P ∗ into expression (9) and simplifying, we find that:

ΦC (P ∗) =
u′ (xH)u′ (xL)

(u′ (xH) + u′ (xL))2
(xH − xL) (2λ− 1) . (10)

Assuming that the investors holding any given firm have similar preferences, the term

u′(xH)u′(xL)

(u′(xH)+u′(xL))
2 can be seen as a constant. This implies that:

λ ∝ ΦC (P ∗)

xH − xL
. (11)

Note that if the investors holding any given firm have different risk aversions, this might

confound empirical tests. Expression (11) is not quite an empirical estimate of λ, as the

denominator xH − xL, which captures investors’prior uncertainty regarding the firm’s per-

formance, clearly varies across disclosure dates and is likely correlated with prominent firm

characteristics such as firm size and leverage. However, suppose we have a consistent esti-

mator ẑ of xH − xL; then, we can use expression (11) to derive a consistent estimator λ̂ for

λ:

λ̂ =
ΦC (P ∗)

ẑ
. (12)

Intuitively, we simply normalize the ATM option price by ẑ. This leaves the question of how
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to estimate xH−xL; I offer two possibilities. First, suppose that investors receive information

regarding x̃ leading up to the disclosure date either publicly or privately. Then, equity prices

leading up to the disclosure date vary as this information is impounded into price, and the

size of this variation should be directly related to xH − xL, such that historical equity-price

volatility leading up to the disclosure may proxy for xH − xL.18 However, this measure may

be confounded by the properties that drive the amount of information regarding x̃ that is

impounded into returns prior to the disclosure. A second possible estimator ẑ is the firm’s

stock price, which roughly captures the amount of (dollar) uncertainty faced by investors if

firms’expected cash flows and cash flow variances are linked. Note that another approach is

to match on size, price volatility, and/or other measures of xH − xL rather than normalizing

by their values.

Next, consider the estimation of η. Expression (9) implies that for any kj 6= ki,

η =
ΦC (kj)− ΦC (ki)

kj − ki
+
u′ (xL) + (u′ (xH)− u′ (xL))λ

u′ (xH) + u′ (xL)
. (13)

Thus, consider an estimator:

η̂ =
ΦC (kj)− ΦC (ki)

kj − ki
. (14)

Expression (13) suggests that this estimate is valid contingent on controlling for our estimator

λ̂; this is because λ also affects the relative price of option contracts with different strikes.

Expression (13) also suggests that a linear control is suffi cient. When the representative

agent is risk neutral, note that expression (13) reduces to:

η̂ =
ΦC (kj)− ΦC (ki)

kj − ki
− 1

2
, (15)

suggesting that a control for λ is unnecessary in this case.

While η̂ may be calculated using the prices of any two option contracts in this simple

18It is critical to use price, not return volatility. Using a measure that normalizes by return volatility will
fail to correct for scale effects, i.e., it will be mechanically impacted by firm size.
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setting, the most robust approach is to compare the price of an ITM to the price of an OTM

option contract. The reason is that, as discussed in Section 4, for very general distributions,

OTM option prices relative to ITM option prices increase in disclosure’s informativeness for

good-versus-bad news. On the other hand, in general, the relative prices of, say, deep OTM

to slightly OTM option prices might not exhibit such a pattern.

Next, I note that call options that are substantially ITM are typically illiquid. However,

the effect of η on options that are too close to being ATM is small and thus may be strongly

influenced by noise, leading to low power tests. Thus, in calculating η̂, the optimal choice

may be a moderately ITM and a moderately OTM option contract. In large cross-sectional

studies, a facile approach may be to choose options that are as close as possible to a fixed

fractional percentage away from ATM for each firm. In sum, we have the following estimator:

η̂ =
ΦC (kj)− ΦC (ki)

kj − ki
(16)

for ki moderately greater than P ∗

and kj moderately smaller than P ∗.

9 Appendix B: Proofs of technical results

Throughout the appendix, I demonstrate the results for call options, as the results for put options are proved

in the same manner.

Proof of Lemma 2. Proof of Part 1) This follows trivially given that P0 = xL+xH
2 is not a function of

λ or η.

Proof of Part 2) Note that the variance of returns at date 1 is equal to:

V ar

[
P1 − P0

P0

]
=

1− 2η

2P 2
0

[
(λ− η)xH + (1− λ− η)xL

1− 2η
− xH + xL

2

]2

(17)

+
1 + 2η

2P 2
0

[
(1− λ+ η)xH + (λ+ η)xL

1 + 2η
− xH + xL

2

]2

=
1

4P 2
0

(2λ− 1)
2

1− 4η2
(xH − xL)

2 .
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Differentiating with respect to λ yields:

∂

∂λ
V ar

[
P1 − P0

P0

]
=

2λ− 1

1− 4η2

(xH − xL)
2

P 2
0

> 0. (18)

Clearly, this increases in xH − xL. Next, note that skewness of returns can be reduced to:

Skewness

[
P1 − P0

P0

]
= 4

η√
(1− 4η2)

, (19)

which is unaffected by λ.

Proof of Part 3) Differentiating skewness with respect to η yields:

∂

∂η
Skewness

[
P1 − P0

P0

]
=

∂

∂η

(
4

η√
(1− 4η2)

)
> 0, (20)

since λ ≥ 1
2 and η ≤

1
2 .

Proof of Proposition 1 and Corollary 1. These results are a special case of Proposition 2 when

u (x) = x.

Proof of Proposition 3. Denote by (Ω,F ,Π) a probability space that generates the distributions of x and

P1 described in the main text. In this case, we may view x̃ and P̃1 as functions mapping states ω ∈ Ω into

the real line, and we can write Pr
((
P̃1, x̃

)
∈ A

)
=
∫
{ω:(P1(ω),x(ω))∈A} dΠ (ω). Using this notation, we have

the following result, which is a variation of the well-known Euler condition that holds in complete markets

with utility-maximizing agents.

Lemma 5 The price of an asset that pays off ϕ (ω) in state ω ∈ Ω is equal to
∫
Ω
ϕ(ω)u′(x(ω))dΠ(ω)∫
Ω
u′(x(ω))dΠ(ω)

.

Proof. First, it is well known that markets are dynamically complete given the existence of a complete set

of options, which implies the existence of a stochastic discount factor, π (ω). Therefore, the representative

agent’s problem assuming they have some wealth W can be written as (for a proof, see Back (2010), pg.

150):

max
c(ω)
∀ω∈Ω

∫
Ω

u (c (ω)) dΠ (ω) (21)

s.t.
∫

Ω

π (ω) c (ω) dΠ (ω) = W .

This problem has Lagrangian, where κ is the multiplier:

L
(
{c (ω)}ω∈Ω , κ

)
=

∫
Ω

u (c (ω)) dΠ (ω) + κ

(
W −

∫
Ω

π (ω) c (ω) dΠ (ω)

)
. (22)
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Differentiating pointwise with respect to c (ω) yields:

u′ (c (ω)) Π (ω)− κπ (ω) = 0 (23)

κ =
u′ (c (ω))

π (ω)
.

Utilizing the fact that the risk-free rate is 1, no arbitrage requires that the state prices sum to 1, i.e.,∫
π (ω) dΠ (ω) = 1. This yields:

κ =

∫
Ω

u′ (c (ω)) dΠ (ω) , (24)

such that π (ω) = u′(c(ω))∫
Ω
u′(c(ω))dΠ(ω)

. By the market-clearing condition, in equilibrium, we must have c (ω) =

x (ω), such that π (ω) = u′(x(ω))∫
Ω
u′(x(ω))dΠ(ω)

By the definition of the stochastic discount factor, the lemma now

follows.

Now, note that the vector function (x (ω) , P1 (ω)) maps the state space Ω into the set{(
xH

P1(yH)

)
,
(

xL
P1(yH)

)
,
(

xH
P1(yL)

)
,
(

xL
P1(yL)

)}
. Applying the prior lemma and the joint distribution of these events,

we arrive at the following equilibrium price at time 0:

P0 =
xH Pr (x̃ = xH)u′ (xH) + xL Pr (x̃ = xL)u′ (xL)

Pr (x̃ = xH)u′ (xH) + u′ (xL) Pr (x̃ = xL)
(25)

=
xHu

′ (xH) + xLu
′ (xL)

u′ (xH) + u′ (xL)
,

and the following equilibrium price given yH and yL:

P1 (yH) =
Pr (x̃ = xH |yH)xHu

′ (xH) + Pr (x̃ = xL|yH)xLu
′ (xL)

Pr (x̃ = xH |yH)u′ (xH) + Pr (x̃ = xL|yH)u′ (xL)
(26)

=
(λ− η)xHu

′ (xH) + (1− η − λ)xLu
′ (xL)

(λ− η)u′ (xH) + (1− η − λ)u′ (xL)
and

P1 (yL) =
Pr (x̃ = xH |yL)xHu

′ (xH) + Pr (x̃ = xL|yL)xLu
′ (xL)

Pr (x̃ = xH |yL)u′ (xH) + Pr (x̃ = xL|yL)u′ (xL)
(27)

=
(1 + η − λ)xHu

′ (xH) + (λ+ η)xLu
′ (xL)

(1 + η − λ)u′ (xH) + (λ+ η)u′ (xL)
.
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Proof of Part 1) To see this, notice that for any concave utility function u (·), we have:

P0 =
xHu

′ (xH) + xLu
′ (xL)

u′ (xH) + u′ (xL)
<
xH + xL

2
= E (x̃) ; (28)

P1 (yH) =
(λ− η)xHu

′ (xH) + (1− η − λ)xLu
′ (xL)

(λ− η)u′ (xH) + (1− η − λ)u′ (xL)

<
(λ− η)xH + (1− η − λ)xL

(λ− η) + (1− η − λ)
= E (x̃|ỹ = yH) ;

P1 (yL) =
(1 + η − λ)xHu

′ (xH) + (λ+ η)xLu
′ (xL)

(1 + η − λ)u′ (xH) + (λ+ η)u′ (xL)

<
(1 + η − λ)xH + (λ+ η)xL

(1 + η − λ) + (λ+ η)
= E (x̃|ỹ = yL) .

Proof of Part 2) This follows because xHu
′(xH)+xLu

′(xL)
u′(xH)+u′(xL) is unaffected by λ and η.

Proof of Part 3) Note that:

∂E [P1 (ỹ)]

∂λ
=

∂

∂λ

(1− 2η)

λ−η
1−2ηxHu

′ (xH) +
(

1− λ−η
1−2η

)
xLu

′ (xL)

λ−η
1−2ηu

′ (xH) +
(

1− λ−η
1−2η

)
u′ (xL)

(29)

+ (1 + 2η)

1+η−λ
2η+1 xHu

′ (xH) +
(

1− 1+η−λ
2η+1

)
xLu

′ (xL)

1+η−λ
2η+1 u

′ (xH) +
(

1− 1+η−λ
2η+1

)
u′ (xL)


∝ [u′ (xL)− u′ (xH)] (xH − xL) (2λ− 1)

∗
[
2η (u′ (xH)− u′ (xL)) (2λ− 1) +

(
1− 4η2

)
(u′ (xH) + u′ (xL))

]
.

Since u is concave, u′ (xL) − u′ (xH) > 0. To complete the proof, I show the final term is positive by

considering the two cases in which η ≥ 0 and η < 0. First consider the case η ≥ 0. Then, λ+ η ≤ 1 implies

that λ ≤ 1− η. We thus have:

2η (u′ (xH)− u′ (xL)) (2λ− 1) +
(
1− 4η2

)
(u′ (xH) + u′ (xL)) (30)

≥ 2η (u′ (xH)− u′ (xL)) (2 (1− η)− 1) + (1− 2η) (1 + 2η) (u′ (xH) + u′ (xL))

= (1− 2η) (u′ (xH) (1 + 4η) + u′ (xL) + 4Aη) ≥ 0,

with equality only when η = 1
2 . However, note that η = 1

2 can only occur when λ = 1
2 , in which case λ

cannot be increased any further; thus, it must be the case this expression is strictly positive. Next, consider
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the case in which η < 0. Note that λ+ η > 1
2 implies λ >

1
2 − η such that:

2η (u′ (xH)− u′ (xL)) (2λ− 1) +
(
1− 4η2

)
(u′ (xH) + u′ (xL)) (31)

> 2η (u′ (xH)− u′ (xL))

[
2

(
1

2
− η
)
− 1

]
+ (1− 2η) (1 + 2η) (u′ (xH) + u′ (xL))

=
(
1− 8η2

)
u′ (xH) + u′ (xL)

≥ 2
(
1− 4η2

)
u′ (xH) ≥ 0.

Proof of Part 4) Let P ∗1 (ỹ) be the observed equity price at time 1 given a report ỹ. Note that because P0

is unaffected by disclosure’s properties, nothing may be learned from this price. Next, note that an arbitrary

two-dimensional vector (λ, η) cannot be derived from the single equation:

P ∗1 (ỹ) = I (ỹ = yH)

λ−η
1−2ηxHu

′ (xH) +
(

1− λ−η
1−2η

)
xLu

′ (xL)

λ−η
1−2ηu

′ (xH) +
(

1− λ−η
1−2η

)
u′ (xL)

(32)

+I (ỹ = yL)

1+η−λ
2η+1 xHu

′ (xH) +
(

1− 1+η−λ
2η+1

)
xLu

′ (xL)

1+η−λ
2η+1 u

′ (xH) +
(

1− 1+η−λ
2η+1

)
u′ (xL)

.

Proof of Proposition 2. Again, applying Lemma 5, the price of an option with strike k ∈ (P1 (yL) , P1 (yH))

is equal to:

ΦC (k) = 2
(P1 (yH)− k) [Pr (x̃ = xH , ỹ = yH)u′ (xH) + Pr (x̃ = xL, ỹ = yH)u′ (xL)]

u′ (xH) + u′ (xL)
. (33)

Substituting the expression for P1 (yH) and simplifying yields:

ΦC (k) = 2 Pr (ỹ = yH)
Pr (x̃ = xH |yH) (xH − k)u′ (xH) + Pr (x̃ = xL|yH) (xL − k)u′ (xL)

u′ (xH) + u′ (xL)
(34)

=
(λ− η) (xH − k)u′ (xH) + (1− λ− η) (xL − k)u′ (xL)

u′ (xH) + u′ (xL)
.

Proof of Part 1) Consider two utility functions u1 and u2 such that u1 is more risk averse than u2. Without

loss of generality (since utilities are ordinal), normalize u′1 (xL) = u′2 (xL) = ν. Let Ai ≡ u′i(xH)
u′i(xH)+u′i(xL) ; I
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show now that A2 > A1. Note first that:

A2 > A1 (35)

⇔ u′2 (xH)

u′2 (xH) + ν
>

u′1 (xH)

u′1 (xH) + ν

⇔ u′2 (xH) > u′1 (xH) .

To see that u′2 (xH) > u′1 (xH), note:

u1 (xL) = u2 (xL) = ν and u1 (·) = g (u2 (·)) (36)

=⇒ g′ (u2 (xL))u′2 (xL) = u′2 (xL)

=⇒ g′ (u2 (xL)) = 1

=⇒ g′ (u2 (xH)) < 1.

Finally, using the fact that u′1 (xH) = g′ (u2 (xH))u′2 (xH), we have desired result. Now, note that given a

utility function ui (·), Φ (k) may be expressed as:

ΦC (k) = (λ− η) (xH − k)Ai + (1− λ− η) (xL − k) (1−Ai) . (37)

Differentiating with respect to Ai yields:

∂ΦC (k)

∂Ai
= (λ− η) (xH − k)− (1− λ− η) (xL − k) . (38)

Note that this is decreasing in k and equal to zero when k = (λ−η)xH−(1−λ−η)xL
2λ−1 , the post-disclosure price

of the firm when the investor is risk neutral and ỹ = yH . As this is an upper bound on the price of the firm

given risk-aversion, any k with strike greater than this value pays off zero always. This completes the proof.

Proof of Part 2) Differentiating expression (34) with respect to λ yields:

∂ΦC (k)

∂λ
=

∂

∂λ

(λ− η) (xH − k)u′ (xH) + (1− λ− η) (xL − k)u′ (xL)

u′ (xH) + u′ (xL)
(39)

=
u′ (xH) (xH − k)− u′ (xL) (xL − k)

u′ (xH) + u′ (xL)
.

Note that, because k ∈ (xL, xH), this expression is definitively positive. To prove that this increases in

xH − xL, note that:
∂

∂ (xH − xL)

u′ (xH) (xH − k)− u′ (xL) (xL − k)

u′ (xH) + u′ (xL)
= 1 > 0. (40)
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Proof of Part 3) Differentiating expression (34) with respect to η yields:

∂ΦC (k)

∂η
=

∂

∂η

(λ− η) (xH − k)u′ (xH) + (1− λ− η) (xL − k)u′ (xL)

u′ (xH) + u′ (xL)
(41)

= −u
′ (xH) (xH − k) + u′ (xL) (xL − k)

u′ (xH) + u′ (xL)
.

Setting u′(xH)(xH−k)+u′(xL)(xL−k)
u′(xH)+u′(xL) = 0 yields k = u′(xH)xH+u′(xL)xL

u′(xH)+u′(xL) . Furthermore, note that this expression

is decreasing in k; this implies it is positive for k < u′(xH)xH+u′(xL)xL
u′(xH)+u′(xL) and negative for k > u′(xH)xH+u′(xL)xL

u′(xH)+u′(xL) .

Proof of Part 4) Note that examining the observed option prices with strikes xL and xH+xL
2 yields an

invertible system of equations in η and λ (these strikes were chosen arbitrarily in the interval (xL, xH):

ΦC (xL) =
(λ− η) (xH − xL)u′ (xH)

u′ (xH) + u′ (xL)
(42)

ΦC
(
xH + xL

2

)
=

(λ− η)
(
xH−xL

2

)
u′ (xH)− (1− λ− η)

(
xL−xH

2

)
u′ (xL)

u′ (xH) + u′ (xL)
.

Proof of Corollary 2. Proof of Part 1) To see this, note that:

∂2ΦC (k)

∂λ∂Ai
=

∂

∂Ai
[Ai (xH − k)− (1−Ai) (xL − k)] (43)

= xH + xL − 2k,

which has the sign of xH+xL
2 − k.

Proof of Part 2) Note that:

∂ΦC (k)

∂η∂Ai
= − ∂

∂Ai
[Ai (xH − k) + (1−Ai) (xL − k)] (44)

= xL − xH < 0.

Since an increase in risk aversion translates to a decrease in Ai and an increase in disclosure’s informativeness

for good-versus-bad news translates to an increase in η, this proves the result.

Proof of Lemma 4. Let (Ω,F ,Π) now denote the probability space generating the distribution of

{Et (õ)}t∈[0,T ], õ, d̃ and ỹ denoted in the text and let {Ft : t ∈ [0, T ]} denote the filtration generated by the

Brownian motion Bt. I show that Lemma 5 extends to this setting. To see this, I appeal to the result from

martingale-pricing theory (e.g., Duffi e (2010) pg. 217), that states when markets are complete and attention

is restricted to the standard definition of admissible trading strategies, the investor’s optimization problem
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may be written:

max
c(ω)
∀ω∈Ω

∫
u (c (ω)) dΠ (ω) (45)

s.t.
∫
c (ω)π (ω) dΠ (ω) = W0,

where π (·) is the unique stochastic discount factor. As in the proof of Lemma 5, taking first-order conditions

and substituting the market-clearing condition yields π (ω) = u′(x(ω))
E[u′(x(ω))] . The expressions for the prices of

the equity and options now follow directly from the definition of the stochastic discount factor. To see that

the equity price exhibits a jump with probability 1 on the disclosure date, note that:

PτD − lim
t→τ−D

Pt (46)

=
EτD [x̃u′ (x̃)]

EτD [u′ (x̃)]
− lim
t→τ−D

Et [x̃u′ (x̃)]

Et [u′ (x̃)]

=
EτD

[
d̃u′ (x̃)

]
EτD [u′ (x̃)]

− lim
t→τ−D

Et

[
d̃u′ (x̃)

]
Et [u′ (x̃)]

.

This is positive for ỹ = yH and negative for ỹ = yL. Option prices may likewise be shown to jump.

Proof of Proposition 4. To begin, I prove the following lemma.

Lemma 6 Let ΦD (k;u (·)) and PD (u (·)) represent the price of the call option with strike k and the pre-

disclosure price of the equity, respectively, in Section 3 when the representative investor has utility function

u (·). There exists an increasing concave function h (·) such that:

lim
t→τ−D

ΦCt (Pt, k, τD) = ΦD

(
k + PD (h (·))− lim

t→τ−D
Pt;h (·)

)
. (47)

Proof. First, note that PτD may be written:

PτD =
E
[(
d̃+ õ

)
u′
(
d̃+ õ

)
|ỹ,FτD

]
E
[
u′
(
d̃+ õ

)
|ỹ,FτD

] (48)

=
E
{
E
[(
d̃+ õ

)
u′
(
d̃+ õ

)
|d̃,FτD

]
|ỹ,FτD

}
E
[
u′
(
d̃+ õ

)
|ỹ,FτD

]
=

Pr (xH |ỹ)xHE [u′ (xH + õ) |FτD ] + Pr (xL|ỹ)xLE [u′ (xL + õ) |FτD ] + E
[
õu′
(
d̃+ õ

)
|FτD

]
Pr (xH |ỹ)E [u′ (xH + õ) |FτD ] + Pr (xL|ỹ)E [u′ (xL + õ) |FτD ]

=
Pr (xH |ỹ)xHh

′ (xH) + Pr (xL|ỹ)xLh
′ (xL) + E

[
õu′
(
d̃+ õ

)
|FτD

]
Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)

,
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where h (z) ≡ E [u (õ+ z) |FτD ]. I note that h (z) is increasing and concave, which follows from differentia-

tion. Now, we can write:

lim
t→τ−D

ΦCt (Pt, k, τD) (49)

= lim
t→τ−D

E

max

Pr (xH |ỹ)xHh
′ (xH) + Pr (xL|ỹ)xLh

′ (xL) + E
[
õu′
(
d̃+ õ

)
|FτD

]
Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)

− k, 0

u′ (x̃) |Ft


= lim

t→τ−D
E

[
max

(
Pr (xH |ỹ)xHh

′ (xH) + Pr (xL|ỹ)xLh
′ (xL)

Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)
− k∗ (Ft) , 0

)
u′ (x̃) |Ft

]
,

where k∗ (Ft) = k− E[õu′(d̃+õ)|FτD ]
Pr(xH |ỹ)h′(xH)+Pr(xL|ỹ)h′(xL) is adapted to Ft. Applying the law-of-iterated expectations:

lim
t→τ−D

E

[
max

(
Pr (xH |ỹ)xHh

′ (xH) + Pr (xL|ỹ)xLh
′ (xL)

Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)
− k∗ (FτD ) , 0

)
u′ (x̃) |Ft

]
(50)

= lim
t→τ−D

E

[
max

(
Pr (xH |ỹ)xHh

′ (xH) + Pr (xL|ỹ)xLh
′ (xL)

Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)
− k∗ (FτD ) , 0

)
h′
(
d̃
)
|Ft
]

+ lim
t→τ−D

E

[
max

(
Pr (xH |ỹ)xHh

′ (xH) + Pr (xL|ỹ)xLh
′ (xL)

Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)
− k∗ (FτD ) , 0

)
|Ft
]

lim
t→τ−D

E
[
h′
(
d̃
)
− u′ (x̃) |Ft

]
+ lim
t→τ−D

Cov

[
max

(
Pr (xH |ỹ)xHh

′ (xH) + Pr (xL|ỹ)xLh
′ (xL)

Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)
− k∗ (FτD ) , 0

)
, h′
(
d̃
)
− u′ (x̃) |Ft

]
.

Note that the second term in this sum is zero. We have:

lim
t→τ−D

E
[
h′
(
d̃
)
− u′ (x̃) |Ft

]
(51)

= E
[
h′
(
d̃
)]
− lim
t→τ−D

E [u′ (x̃) |Ft] .

Now, letting fõ (·|Ft) be the distribution of õ given the information available at time t, note that an appli-

cation of the bounded convergence theorem implies that:19

lim
t→τ−D

E [u′ (x̃) |Ft] = lim
t→τ−D

∫ ∞
0

u
(
d̃+ z

)
fõ (z|Ft) dz (52)

=

∫ ∞
0

u
(
d̃+ z

)
lim
t→τ−D

fõ (z|Ft) dz

=

∫ ∞
0

u
(
d̃+ z

)
fõ (z|FτD ) dz = E [u′ (x̃) |FτD ] ,

19To apply the theorem, note that for z large, since u is concave, there exists a c > 0 such that u′ (z) < c,

and thus for some a > 0, u
(
d̃+ z

)
< a + cz. Further applying the fact that fõ (z|Ft) is the PDF of a

log-normal distribution, this implies that u
(
d̃+ z

)
fõ (z|Ft)→ 0 as z →∞ ∀t ∈ [0, τD]. From here, we can

easily construct a bound on u
(
d̃+ z

)
fõ (z|Ft).
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where the last line follows from the fact that the distribution of õ given Ft is continuous in t for any tra-

jectory of this distribution, since it is log-normal with continuously evolving mean and variance parameters.

Furthermore, by the definition of h (·), h
(
d̃
)

= E [u (x̃) |FτD ], and thus limt→τ−D
E
[
h′
(
d̃
)
− u′ (x̃) |Ft

]
= 0.

Next, note that the third term in the sum is zero. To see this, we have that Pr(xH |ỹ)xHh
′(xH)+Pr(xL|ỹ)xLh

′(xL)
Pr(xH |ỹ)h′(xH)+Pr(xL|ỹ)h′(xL) −

k∗ (FτD ) is non-random conditional on ỹ and FτD and h′
(
d̃
)
− u′ (x̃) is not affected by either ỹ or FτD .

Therefore,

lim
t→τ−D

ΦCt (Pt, k, τD) = E

[
max

(
Pr (xH |ỹ)xHh

′ (xH) + Pr (xL|ỹ)xLh
′ (xL)

Pr (xH |ỹ)h′ (xH) + Pr (xL|ỹ)h′ (xL)
− k∗ (FτD ) , 0

)
h′ (ỹ) |FτD

]
.

(53)

This is equal to ΦD
(
k + PD (h (·))− limt→τ−D

PτD ;h (·)
)
. To see this, recall that the post-disclosure op-

tion price in Section 3 equals Pr(xH |ỹ)xHh
′(xH)+Pr(xL|ỹ)xLh

′(xL)
Pr(xH |ỹ)h′(xH)+Pr(xL|ỹ)h′(xL) given a disclosure ỹ, and k∗ (Ft) = k −

E[õu′(d̃+õ)|FτD ]
Pr(xH |ỹ)h′(xH)+Pr(xL|ỹ)h′(xL) = k −

[
limt→τ−D

PτD − PD (h (·))
]
.

Note that Proposition 2 implies that an increase in risk aversion or a decrease in λ leads to a decrease

in ΦD (k;h (·)) for any k and risk-averse h (·). Thus, by the previous lemma, that parts 1) and 2) of the

proposition generalize to the continuous-trade setting. Next, applying part 3) of Proposition 2 and the prior

lemma, we have that limt→τ−D
ΦCt (Pt, k, τD) increases in η when k − PD (h (·))− limt→τ−D

PτD < PD (h (·))

and decreases in η otherwise. Note that this condition may be written:

k + PD (h (·))− lim
t→τ−D

PτD < PD (h (·)) (54)

k < lim
t→τ−D

PτD ,

which is exactly the condition for the option to be ITM prior to the disclosure; this demonstrates that part

3) of Proposition 2 generalizes to the continuous-trade setting. Finally, part 4) of the proposition follows

again from considering the price of options with two strikes; this yields an invertible set of equations in λ

and η.

I next prove that the results in Corollary 2 generalize to continuous time when u (·) exhibits non-

increasing risk aversion. To do so, I utilize the following result, which is a restatement of Gollier (2004),

Proposition 24.

Lemma 7 Suppose u1 and u2 are increasing concave utility functions and that one of these functions exhibits

non-increasing absolute risk aversion. If u1 (·) is more risk averse than u2 (·) in the sense of Arrow-Pratt,

then u∗1 (r) ≡ E [u1 (r + z̃)] is more risk averse than u∗2 (r) ≡ E [u2 (r + z̃)] for any random variable z̃ that is

independent of all other modeled risks.
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Using this result, it is easily seen that an increase in the risk aversion of u (·) likewise increases the risk

aversion of the function h (·) defined in Lemma 6. Thus, we may again apply the arguments in the proof of

Corollary 2 to the continuous-trade setting.

Proof of Proposition 4. First, I show that pre-disclosure option prices rise in the disclosure’s informa-

tiveness. Given that the investor is risk neutral, we have that for t > τD, Pt = Et [õ] + ξ̃Ri . Since Et [õ] is

independent of ξ̃Ri and has the same distribution under R1 and R2, the distribution of Pt as of time any

time t > τD under R2 is second-order stochastic dominated by this distribution under R1. I next prove the

following lemma.

Lemma 8 The call option price ΦCt (Pt, k, τM ;Ri) following the disclosure (τM > τD), which is implicitly

a function of ξ̃Ri through Pt, is convex in ξ̃Ri .

Proof. Applying the law of iterated expectations, we have:

ΦCt (Pt, k, τM ;Ri) = Et

[
max

(
E [õ|FτM ] + ξ̃Ri − k, 0

)]
(55)

= Et

{
Et

[
max

(
E [õ|FτM ] + ξ̃Ri − k, 0

)
|ξ̃Ri

]}
= Et

[
gt

(
ξ̃Ri

)]
,

where gt (z) ≡ Et [max (E [õ|FτM ] + z − k, 0)]. Note that ΦCt (Pt, k, τM ;Ri) is convex in ξ̃Ri if and only if

gt is convex. This holds because gt (z) has a bounded derivative, and thus, by the dominated convergence

theorem, ∂2

∂z2Et [gt (z)] = Et

[
∂2

∂z2 gt (z)
]
. To see that gt is convex, let fE[õ|Ft2 ]|Ft1

(·) denote the density

function of E [õ|Fτ2
] given the information available at time t1 < t2. We have that:

∂2gt
∂z2

=
d2

∂z2

∫ ∞
k−z

(q + z − k) fE[õ|FτM ]|Ft (q) dq (56)

=
∂

∂x

∫ ∞
k−z

fE[õ|FτM ]|Ft (q) dq

= fE[õ|FτM ]|Ft (k − z) (k − z) > 0.

Now, applying second-order stochastic dominance, we have that ΦCt (Pt, k, τM ;R2) > ΦCt (Pt, k, τM ;R1).

Next, I show if all pre-disclosure option prices are higher under R2 than R1, R2 must be more informative
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than R1. Note that:

lim
t→τ−D

ΦCt (Pt, k, τD;Ri) = lim
t→τ−D

E
[
max

(
EτD [õ] + E

[
d̃|ỹ;Ri

]
− k, 0

)
|Ft
]

(57)

=

∫ dH

ρ(k)

(EτD [õ] + q − k) fξ̃Ri
(q) dq.

where ρ (k) ≡ k − EτD [õ]. Applying integration by parts, we can show that this expression equals∫ dH
ρ(k)

(
1− Fξ̃Ri (q)

)
dq and that E

[
ξ̃Ri

]
=
∫ dH

0

(
1− Fξ̃Ri (q)

)
dq −

∫ 0

dL
Fξ̃Ri

(q) dq. Thus, we have:

lim
t→τ−D

ΦCt (Pt, k, τD;Ri) (58)

=

∫ dH

0

(
1− Fξ̃Ri (q)

)
dq −

∫ ρ(k)

0

(
1− Fξ̃Ri (q)

)
dq −

∫ 0

dL

Fξ̃Ri
(q) dq +

∫ 0

dL

Fξ̃Ri
(q) dq

=

∫ dH

0

(
1− Fξ̃Ri (q)

)
dq −

∫ 0

dL

Fξ̃Ri
(q) dq − ρ (k) +

∫ ρ(k)

dL

Fξ̃Ri
(q) dq

=

∫ ρ(k)

dL

Fξ̃Ri
(q) dq − ρ (k) .

Now, using the fact that ρ (k) does not depend upon the disclosure regime Ri, we have:

lim
t→τ−D

ΦCt (Pt, k, τD;R2)− lim
t→τ−D

ΦCt (Pt, k, τD;R1)

=

∫ ρ(k)

dL

[
Fξ̃R2

(q)− Fξ̃R1

(q)
]
dq. (59)

By assumption, limt→τ−D
ΦCt (Pt, k, τD;R2) > limt→τ−D

ΦCt (Pt, k, τD;R1) ∀k. By varying t and using expres-

sion (59), this implies
∫ q
dL

[
Fξ̃R2

(t)− Fξ̃R1

(t)
]
dt > 0.

Proof of Proposition 5. First, I demonstrate that Definition 2 is suffi cient for the results to hold. From

expression (59), we have:

∫ ρ(k)

dL

[
Fξ̃R2

(q)− Fξ̃R1

(q)
]
dq = lim

t→τ−D
ΦCt (Pt, k, τD;R2)− lim

t→τ−D
ΦCt (Pt, k, τD;R1) . (60)

If R2 is more informative for good-versus-bad news than R1, the left hand side of this equation is positive

when ρ (k) > E
[
d̃
]
, i.e., when k − EτD [õ] > E

[
d̃
]
, and negative otherwise. Note that k − EτD [õ] > E

[
d̃
]

states that the option is OTM prior to the disclosure since limt→τ−D
Pt = E

[
d̃
]

+ EτD [õ]. Necessity of

Definition 2 follows similarly, since, if limt→τ−D
ΦCt (Pt, k, τD;R2) − limt→τ−D

ΦCt (Pt, k, τD;R1) crosses zero

in k from below when k−EτD [õ] = E
[
d̃
]
, the equation implies

∫ z
dL

[
Fξ̃R2

(q)− Fξ̃R1

(q)
]
dq must cross zero

from below when z = E (d).
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Proof of Proposition 6. Note that investor i maximizes the following objective function as a function of

consumption ci (ω):

Ei [u (ci (ω))] =

∫
ω∈Ω

u (ci (ω)) dΠi (ω) . (61)

Let Π (ω) =
∫

Πi (ω) di denote the average investor belief, and let κ̃i denote the Radon-Nikodym derivative

of Πi with respect to Π. Then, we can write the investor’s objective as:

EΠ [κ̃iu (c̃i)] ≡
∫
ω∈Ω

κi (ω)u (ci (ω)) dΠ (ω) . (62)

Now, the First Welfare Theorem implies that the competitive equilibrium in the model is Pareto optimal,

which implies that the equilibrium allocation of wealth, {ci (ω)}i∈[0,1] solves the following maximization

problem for some positive function λ (i):

max

∫
λ (i)EΠ [κ̃iu (c̃i)] di (63)

subject to
∫
ci (ω) di = xi (ω) .

Let u∗i (t) = EΠ [κ̃iu (c̃i) |c̃i = t]. It is easily seen that u∗ is increasing and concave by differentiation.

Moreover, applying iterated expectations, we can rewrite maximization problem (63) as:

max

∫
λ (i)EΠ [u∗i (c̃i)] di (64)

subject to
∫
i

ci (ω) di = xi (ω) .

Standard results now imply that there exists a representative agent with concave utility u∗ (·) equal to the

value function of this maximization problem and beliefs Π (see, e.g., Back (2010) pg. 122).
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10 Notation

10.1 Sections 2-3
x̃ firm dividend

xL, xH realizations of the firm’s dividend
ỹ firm disclosure

yH , yL realized disclosure signals
λ, η statistical properties of the disclosure
Pt equity price at time t
k strike price of an option

ΦC (k) price of a call option with strike k
ΦP (k) price of a put option with strike k

10.2 Sections 4-6
T terminal date at which dividend is paid
õ component of the firm’s dividend orthogonal to the disclosure
d̃ component of the firm’s dividend concerned by the disclosure

µ0, σ0 initial parameters of market beliefs regarding õ
µt, σt parameters of market beliefs regarding õ at date t
Bt Brownian motion that generates market beliefs
τD date of the disclosure released by the firm

ΦC
t (Pt, k, τM) price of a call option at time t given equity price Pt, strike price k, and maturity τM

ΦP
t (Pt, k, τM) price of a put option at time t given equity price Pt, strike price k, and maturity τM

Ri a disclosure regime; corresponds to the conditional distribution of ỹ given d̃

ξ̃Ri the conditional expectation of d̃ after the disclosure ỹ under Ri: E
(
d̃|ỹ;Ri

)
λi weight placed on investor i′s belief in the representative investor’s belief
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