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W e consider a patient admission problem to a hospital with multiple resource constraints (e.g., OR and beds) and a
stochastic evolution of patient care requirements across multiple resources. There is a small but significant propor-

tion of emergency patients who arrive randomly and have to be accepted at the hospital. However, the hospital needs to
decide whether to accept, postpone, or even reject the admission from a random stream of non-emergency elective patients.
We formulate the control process as a Markov decision process to maximize expected contribution net of overbooking costs,
develop bounds using approximate dynamic programming, and use them to construct heuristics. We test our methods on
data from the Ronald Reagan UCLA Medical Center and find that our intuitive newsvendor-based heuristic performs well
across all scenarios.
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1. Introduction

The health-care industry is a major component of the
US Economy, representing around 17% the GDP
(OECD 2012). The United States spends more on
health care as a portion of its GDP and on a per capita
basis ($7146) than any other nation in the world
(WHO 2011). In addition, health-care costs are rising
exponentially (SSAB 2009). Public funds cover about
45% of these costs and the amount of public funding
in health care is expected to double by 2050 (Gupta
and Denton 2008). This cost explosion in health care
over the last decades has spurred the use of opera-
tions management techniques for various problems in
this field ranging from process design, capacity allo-
cation, aggregate planning, admissions control, and
appointment scheduling. Pierskalla and Brailer (1994)
provide an excellent overview of these problems.
Of particular importance is the patient admission

control problem as this has implications on virtually
every other problem faced in a health-care setting,
such as clinics or hospitals. This problem is concerned
with deciding which patient to admit to the hospital
and at what time. This problem is important from a
patient perspective as it defines the quality, access,
and time component of the service. It is important
from a hospital perspective as different patients bring

different revenues and cause different costs. The
patient mix that arises from an admission policy
hence defines the revenues, costs, and ultimately
profitability of the entire hospital. The solution to the
admission control problem is particularly compli-
cated due the following five reasons. First, many hos-
pitals face multiple resource constraints and
depending upon the patient mix any one of them can
become the bottleneck (Duda et al. 2013). As a conse-
quence, the analysis cannot be restricted to the consid-
eration of one resource, but the resource consumption
of all potential bottlenecks must be modeled. Second,
the arrivals of patients to the hospital are not predict-
able or deterministic. Third, only the admission of
some patients can be controlled, while other patients
must always be accepted immediately. We will refer
to the latter patients, the uncontrolled stream of
admissions, as emergency patients although it may
comprise much more than just life and death emer-
gencies such as those mandated by insurance compa-
nies, government regulations, or cases sought out for
teaching or research purposes. Admission and sched-
uling decisions can only be made for elective patients.
Fourth, resource usage at each stage of the hospital
varies across patients even for the same procedure
and the expected future resource usage needs to
be updated over time. Finally, current admissions
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constrain the admissions of future patients to the
hospital.
Our goal is to assist decision makers with patient

admission and scheduling, which we view as an input
to other scheduling decisions throughout the hospital.
In this sense, our patient scheduling model accounts
for overall capacities of all resources but does not
incorporate or replace daily OR scheduling or bed
assignment decisions. The patient mix resulting from
our model should be viewed as an input to such mod-
els. A result of our model formulation are estimates of
the opportunity costs of units of all potential bottle-
necks for given demand from elective patients. These
values can be used to adjust the contribution from dif-
ferent patient types and hence obtain a ranking or pri-
ority rules for elective admissions. Such a ranking can
then be used to decide how to expand or contract var-
ious practices and to decide block time allocations.
The opportunity costs can also be used to decide how
many units of each resource should be blocked for
emergency patients.
We formulate the elective patient admission control

problem as a Markov decision process (MDP). This
approach is useful to model sequential decision prob-
lems with stochastic characteristics, which possess the
Markovian property (i.e., future states and decisions
are independent from past states, given the knowl-
edge of the present state of the system) and there is a
possibility of observing the system state at decision
instants equally spaced over time (such as a day). This
seems particularly relevant in our context as how a
patient responds to a treatment and the correspond-
ing care requirements are stochastic, while doctors
evaluate and make treatment decisions on patients
each day based on the current health state of the
patient (Schaefer et al. 2004).
Modeling a MDP that incorporates multiple

resource constraints and a stochastic evolution of
patients’ care requirements leads to an MDP formula-
tion that has a state space that is too large to allow for
a direct solution. To overcome this, we resort to
Approximate Dynamic Programming (ADP) to
develop heuristics for this problem and to construct a
bound to evaluate the quality of the heuristics. We test
our heuristics with real data from the Ronald Reagan
University of California at Los Angeles (RRUCLA)
Medical Center and find that our intuitive newsven-
dor heuristic significantly outperforms the current
practitioner-based heuristics. This performance
improves further in resource-constrained environ-
ments with increasing demand from elective patients.

1.1. Related Literature
Our study can be related to several streams of litera-
ture in the area of application and in the methodolo-
gies employed. In terms of the application, our work

is connected to work in health-care management on
appointment scheduling/patient admission and treat-
ment planning, as well as revenue management for
hospitals and hotels.
The basic problem of patient admission and

appointment scheduling is concerned with assigning
appointment times to patient requests such that
patient waiting time, server idle time, and/or server
overtime is minimized. Usually, it is assumed that
patients only need access to one (type of) resource,
such as the OR, a diagnostic facility, or a bed, at the
time of their appointment. An early discussion of
when to schedule elective patients in the presence of
mandatory (or emergency) patients, which must be
accepted immediately, when the number of beds is
limited is given in Kolesar (1970). Overviews of
appointment scheduling research can be found in
Cayirli and Veral (2003), Mondschein and Weintraub
(2003), and Gupta and Denton (2008). More recent
works include Patrick et al. (2008), Liu et al. (2009),
Robinson and Chen (2010), Gocgun et al. (2011), Saure
et al. (2012), and Patrick (2012).
Most literature in patient admission and schedul-

ing has assumed that the hospital has only one
potential bottleneck, see for example, Gerchak et al.
(1996), Shmueli et al. (2003), Helm et al. (2011), or
Kim et al. (2013). As the process analysis by Duda
et al. (2013) shows, the hospital we considered is con-
strained by more than one resource. Given a certain
patient mix, there is usually only one bottleneck. For
different patient mixes, however, different resources
constrain the capacity of the facility leading to differ-
ent bottlenecks. Since in patient admission, the
patient mix is determined dynamically, it is critical
that all potential bottlenecks are considered.
Acknowledging that there can be more than one con-
straining resource in a hospital, Kusters and Groot
(1996) present a statistical model for the prediction of
resource availability. Patient admission problems
that consider more than just one constraining
resource were suggested by Adan and Vissers (2002)
and Vissers et al. (2005). While they view the prob-
lem as deterministic and model it as a mixed integer
program, simulation is used to find good admission
policies in Oddoye et al. (2009). Adan et al. (2011)
formulate a two-stage planning procedure for a hos-
pital with four resources and stochastic length of stay
to minimize the deviations of the resource consump-
tion from a given target utilization. Within this
stream of literature, the papers of Helm and Van
Oyen (2010) and Huh et al. (2013) are most closely
related to ours. Focussing on the tradeoff between
throughput and blockage, Helm and Van Oyen
(2010) restrict their attention to beds in different
wards and do not model other resources. To model
demand for beds in different wards, they consider an
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open network of infinite server queues; admission
decisions are obtained by a mixed integer program
that aims at a trade-off between throughput and
blockage. They test their approach with real data but
cannot determine how close their solution is to the
true optimum. In contrast to focussing on through-
puts, we maximize contribution from patients using
an ADP framework. This approach is flexible enough
to allow for any set of constraining resources,
inspires an intuitive heuristic, and naturally provides
an upper bound to our objective function. Huh et al.
(2013) recently suggested a MDP formulation for a
multiresource allocation problem with two job types
(elective and emergency). To minimize the dis-
counted sum of waiting costs and lost revenue due to
reneging elective patients over a finite horizon, they
allow for evolving and possibly correlated informa-
tion about the distribution of demand and capacity.
In contrast to our study, they do not allow for patient
heterogeneity in resource consumption within the
group of emergency and elective patients and
assume that patients only consume resources for one
period. Further, their model specifies how many elec-
tive patients to admit for the current period but not
the timing or sequence of service.
There has been a significant body of literature on

treatment planning. For an overview on treatment
planning, see Sox et al. (1988). While these earlier
models mostly focused on decision trees, more recent
approaches favor the use of MDP, as in Sonnenberg
and Beck (1993), Naimark et al. (1997), Schaefer et al.
(2004), and Alagoz et al. (2010). In our work, we do
not model treatment planning while making admis-
sions decisions as they are typically made by different
entities at different points of time. For example, the
hospital administration makes decisions on admis-
sions and scheduling, while treatment plans are
exclusively developed by doctors after assessing the
patient once they have been admitted. We assume
that for each patient, a finite stage MDP can be formu-
lated to find the optimal treatment plan. Given the
optimal policy for treatment, the patient’s recovery
hence follows a Markov chain. Kapadia et al. (1985)
suggest how to estimate the transition probabilities in
such a context. To the best of our knowledge, the only
other paper in admission planning and scheduling
that models patients in terms of their recovery state is
Nadal Nunes et al. (2009). Trying to achieve a target
utilization, they, however, do not allow for emer-
gency patients or scheduling elective patients into
future time periods. Although they allow for stochas-
tic resource usage, their admission model assumes
that demand from elective patients is constant and
deterministic in each period. From a practical point of
view, the complexity of their model does not lead to
any managerial insights and can only be applied to

extremely small problem instances due to the curse of
dimensionality.
Another related application is the field of revenue

management. Capacity control in revenue manage-
ment deals with the control of the selling process of a
perishable resource. Since hospital resources are ser-
vices that cannot be stored for future time periods, we
can view patients as customers that ask for a certain
combination of perishable resources at a certain price.
However, in contrast to classical network revenue
management, we have the following important dis-
tinctions: (1) uncontrolled demand in the form of
emergency patients, (2) uncertain resource require-
ments because initially it is uncertain how much of
each resource a patient needs each day, (3) flexibility
in the assignment of resources since, within a certain
planning horizon, we can decide on what day a
patient should be admitted, and (4) an infinite plan-
ning horizon, where resources perish sequentially.
For overviews on revenue management, and in partic-
ular network revenue management, see Talluri and
van Ryzin (2004) and Chiang et al. (2007). Hotel reve-
nue management can be viewed as a special kind of
network problem that is close in terms of application.
An overview is presented in Pullman and Rodgers
(2010). Early work includes Bitran and Mondschein
(1995) and Bitran and Gilbert (1996). Recently, a hos-
pital revenue management problem was suggested by
Ayvaz and Huh (2010). While they also model emer-
gency and elective patients, their understanding of
the two groups differs from ours since emergency
patients can be rejected if the hospital runs out of
capacity and elective patients need not be scheduled
for a future time period but wait until there is capacity
to serve them. Further, they assume that all patients
need exactly one unit of one single resource at the day
of admission (and no resources on later days). Patients
hence have deterministic and equal resource usage.
In terms of methodology, overviews on ADP can be

found in Bertsekas and Tsitsiklis (1999), Bertsekas
(2005), and Powell (2007). These overviews cover
mainly simulation-based approaches to ADP. How-
ever, we use the linear programming (LP) approach
to ADP. The LP approach was first suggested by
Schweitzer and Seidmann (1985), but has gained
attention only in the past decade. Recent papers
include de Farias and Van Roy (2003), Adelman
(2003, 2004), de Farias and Van Roy (2004, 2006),
Adelman (2007), and Adelman and Mersereau (2008).
The LP approach has been applied in a patient admis-
sion/scheduling problem to a diagnostic resource by
Patrick et al. (2008) and for chemotherapy in Gocgun
and Puterman (2014). In contrast to our work, Patrick
et al. (2008) aims at controlling waiting times (rather
than contribution) by rejecting or postponing the
treatment of outpatients. Patients differ in terms of
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priority but all require exactly one unit of one
resource unlike our model that can handle multiple
and time varying resource requirements. Similarly,
patients in Gocgun and Puterman (2014) all require
one time slot and purely aim at scheduling patients
within a given target window.

1.2. Contributions
This study makes the following contributions to both
the application and methodology domains:

1. To the best of our knowledge this study
enhances existing patient admission models
by considering the expected net contribution
maximizing elective patient admission and
scheduling problem under stochastic evolu-
tion of patients health and care requirement
with multiple resource constraints or bottle-
necks which change depending upon elective
admissions or patient mix. As stated in Gupta
and Denton (2008), both these aspects are
important and open challenges in the litera-
ture. In this context, we provide a novel for-
mulation of an average contribution
maximizing MDP for this problem which
schedules elective admissions in current and
future time periods.

2. We use concepts from ADP to address the curse
of dimensionality inherent in this realistic but
more complicated formulation. In particular,
we use an affine approximation of the bias
function to obtain approximate values for the
marginal cost of using one unit of each resource
the hospital provides to its patients. Since the
resulting linear problem is still hard to solve,
we show how a judiciously chosen state space
extension can lead to a more tractable upper
bound without changing the approximation
architecture. This formulation determines
approximate values for the marginal cost of
using one unit of each resource the hospital
provides to its patients, connecting our ADP
approximation to a newsvendor model.

3. We use the established connection to the
newsvendor model to suggest a novel heuris-
tic, which we compare to standard price-
directed heuristics in a numerical study. The
heuristic uses some key insights gained
through the approximation and has the
advantage of being less computationally
intensive than the price-directed heuristics.
Further, it is easy to communicate to practi-
tioners as it can be viewed as an extension of
a rule that is already used in practice. These
heuristics also provide lower bounds for this
problem. We apply our methods to real

data from the RRUCLA medical center and
show that the performance of the newsven-
dor-inspired heuristic is very competitive,
outperforming greedy strategies, and policies
that were reported to us from practice by far.

In the next section, we introduce the model and for-
mulate the optimization problem as a MDP. In section
3, we suggest an intuitive upper bound problem based
on the deterministic version of this problem. In section
4, we formulate the optimality equations, introduce
the ADP approximation, prove structural results, and
suggest an algorithm to solve for the optimal approxi-
mation parameters. This provides an improved upper
bound. In section 5, we suggest heuristics based on
these approximation parameters. In section 6, we ana-
lyze a small example in detail and also demonstrate
the performance of our methods using data from the
RRUCLA Medical Center. In section 7, we offer con-
clusions and provide future research directions.

2. Model Formulation

In this section, we formulate the elective patient
admission model. Throughout, we will denote the set
of natural numbers including 0 by N0 and the set of
real numbers by R. The hospital provides service in
the form of R different resources. Each day, there is a
capacity cr 2 N0 of resource r = 1, . . ., R. Capacity
that is not used that day cannot be stored for future
use but perishes.
We will introduce and model the dynamically

changing health state of individual patients in the
hospital granularly to make the model inputs intui-
tive to practitioners but we make a few simplifying
modeling assumptions in the admission process.
First, we assume that hospital utilization has no
impact on the resource usage of the patients. Specifi-
cally, we assume that once the patient is admitted,
the hospital will provide the best service possible,
and utilization or newly incoming requests have no
impact on the treatment of currently admitted
patients. In practice, it may be possible to release
patients earlier than recommended if hospital beds
are scarce (see e.g., Diwas and Terwiesch 2009;
Diwas and Terwiesch 2012). However, consistent
with medical ethics, we do not model such quality-
access-trade-offs in patient treatment but view those
effects as a result of tactical countermeasures.
Because of this assumption, it might be unavoidable
that more units of a resource are requested on a
given day than what is available. We will allow for
these situations based on practical considerations,
but they lead to overtime costs (if, for instance, more
OR time is used than planned), the loss of patient
goodwill (if the lack of a regular bed requires the
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patient to sleep on a hospital gurney in a hallway),
and the cost of inferior care (if a patient is assigned
to a bed in a wing of a different specialty). All these
costs are captured by the appropriate choice of the
penalty cost 0 � pr \1 per unit of resource r per
day which we use to discourage this overuse of
resources. Second, we assume that emergency
patients must always be accepted. Although ambu-
lance diversion might reduce the stream of newly
arriving emergency patients and is reported to be
prevalent in practice (see e.g., Allon et al. 2013), it is
generally viewed as an unpopular measure of last
resort. Further, it can only reduce not fully eliminate
new arrivals since a hospital must always treat walk-
in patients to the emergency department. We hence
do not explicitly model this tactical countermeasure.
Ambulance diversion can, however, be viewed as
one way of reducing overtime. The cost of diverting
an emergency patient to a different hospital is then
accounted for by the corresponding penalty costs. As
a result of these two assumptions, we allow for unre-
stricted overbooking in the analysis below.

2.1. The Patients
Each day, patients arrive in two different forms: emer-
gency and elective patients. Emergency patients are
always admitted immediately. For elective patients,
we allow the hospital administration to determine
admission and scheduling. Depending on the type of
elective patient, there might be a certain time frame
(such as “in the next two weeks”) during which a
patient may be admitted. At the time the patient or
their referring doctor asks for admission, they must
be told when to come to the hospital for admission, or
the patient must be referred to another hospital. We
will call the latter decision a rejection.
Patients admitted to the hospital use resources in a

particular way over time. At the time of admission,
however, the exact resource requirements over time
might not be known because only a limited amount of
knowledge about the patient’s health condition is
available. We call this knowledge the admission diag-
nosis j, j = 1, . . ., J. Patients with the same admission
diagnosis might still react differently to the same
treatment during the early days of their stay and com-
plications that are observed with one patient need not
be observed with the other. We therefore do not
assume that all patients with a given admission diag-
nosis have the same resource requirements over time
but allow them to differ for different patients (as indi-
cated by the literature on medical decision making
e.g., by Schaefer et al. (2004)).
In the following, we explain how individual

patients are modeled. Although the exact resource
requirements might not be known at the time of
admission, we assume that a distribution of resource

requirements is available for each patient. In particu-
lar, we assume that the requirements of any individual
patient with admission diagnosis j on day n after
admission can be described by a Markov chain
fZn; n 2 N0g with initial state 0j, and a state space
that is composed of one absorbing state ⋄ and a finite
number of transient states f0j; 1j; ;Mjg. Transient
states represent health states that determine the
resource requirements of a patient, the absorbing state
represents their discharge from the hospital. We do
not differentiate between different modes of discharge
(home, rehabilitation, transfer, or death) since all that
matters to our problem is that no further resources are
required for this patient. Transition probabilities are
given as pznznþ1 ¼ PðZnþ1 ¼ znþ1jZn ¼ znÞ. As � is
absorbing, we have p�� ¼ 1.
The function urðzÞ assigns resource requirements to

health states z. A patient in state z requires urðzÞ 2 N0

units of resource r on the current day. We expect that
a patient with initial diagnosis j will need
E½urðZnÞjZ0 ¼ 0j� units of the rth resource n days after
admission. For each patient, we assume that we can
observe their current state so that the resource
requirements on the current day are known but the
requirements of future days are only known in distri-
bution. We denote by n = 0 the day of admission.
Since state � represents a discharged patient that no
longer needs resources provided by the hospital, we
have urð�Þ ¼ 0 for all r = 1, . . ., R. We assume that
there is a maximum number of daysN a patient might
stay in the hospital, that is, there exists an N 2 N

with PðZN ¼ �jZ0 ¼ 0jÞ ¼ 1 for all admission diagno-
sis j = 1, . . ., J.
The above assumptions specify the Markov chain

used to model the stay of the patients in the hospital.
These assumptions are quite consistent with actual
practice. To illustrate, consider a patient of type j rep-
resented in the box of the Markov chain in Figure 1. In
this example, consider the two resources: OR time
(r = 1) and surgical beds (r = 2), that is, R = 2. A
patient of type j requires 5 units of resource 1 and 1
unit of resource 2 on the day of admission. There is a

Figure 1 Example of a Patient Representation
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0.90 probability that no complication occurs. In that
case, the patient needs to be monitored for 2 days
after the original surgery. There is, however, a 0.01
probability that the patient will not survive the sur-
gery and will not require further resources. Finally,
there is a probability of 0.09 that they survive but suf-
fer from a complication, which results in a follow-up
surgery using 2 units in the OR on the next day. In
case of a complication, there is a 0.05 probability that
the patient will not survive the second surgery. If the
patient survives, they need a bed for another 2 days
after the second surgery.
We assume that there only is a finite number of

admission diagnosis, j = 1, . . ., J. Elective patients
with the same admission diagnosis can bring different
expected contributions f to the hospital depending on
their insurance, even if they use the exact same
resources. Further, they can be scheduled any time
within a certain time horizon, that is, within the next t
days. This horizon may depend on the admission
diagnosis and possibly other factors. We denote the
combination of initial patient state as given by the
admission diagnosis j, expected contribution f, and
horizon t as the type ðji; fi; tiÞ of an elective patient
and assume that there is only a finite number of types,
i = 1, . . ., I. Although emergency patients also bring
some contribution to the hospital, we do not explicitly
model their contribution since this part of the process
cannot be controlled.

2.2. Scheduling Elective Patients
Each day, the hospital has to decide about the admis-
sion and scheduling of elective patients before emer-
gency patients are observed. To represent a patient of
type ðji; fi; tiÞ that has been scheduled for admission
in s ≤ t time periods, we introduce patient states
�ti; . . .; �1i. A patient scheduled for admission in
s � ti time periods diagnosed with j is in state �si.
Although our model is flexible enough to allow for
cancelations by elective patients in general, for the
sake of simplicity we restrict ourselves to no cancela-
tions in the following. As a consequence, we have
pð�siÞð�sþ1Þi ¼ 1. Consequently, the full state space of
an elective patient of type i with diagnosis j is
f�ti; . . .; �1i; 0ji ; . . .; Mji ; �g. Figure 1 represents a
patient type with t = 1. Emergency patients with
admission diagnosis j only have the subset
f0j; . . .; Mj; �g as their state space. Let

Z0 ¼
[I
i¼1

f�ti; . . .;�1i; 0ji ; . . .;Mji ; �g [
[J
j¼1

f0j; . . .;Mj; �g

be the union of all patient state spaces.
We assume the daily arrival distribution is known.

Specifically, letting Di be the random number of

elective patients of type i asking for admission, and Xj

the number of emergency patients with admission
diagnosis j, we know PðD~ ¼ d~Þ and PðX~ ¼ x~Þ for ran-
dom D~ ¼ ðD1; . . .; DIÞ, d~ ¼ ðd1; . . .; dIÞ, random
X~ ¼ ðX1; . . .; XJÞ, and x~ ¼ ðx1; . . .; xJÞ. Further, there
exist values dmin

i , dmax
i , xmin

j , xmax
j , with

Pðdmin
1 �D1 � dmax

1 ; . . .; dmin
I �DI � dmax

I ;

xmin
1 �X1 � xmax

1 ; . . .; xmin
J �XJ � xmax

J Þ ¼ 1:

We assume independence to capture the case where
we cannot learn anything about upcoming emer-
gency demand by observing elective demand.

2.3. The Hospital
To estimate the number of free units of resource r in
the coming days, it is sufficient to know all states of
all currently admitted and scheduled patients. Fol-
lowing this thought, we model the state of the hospi-
tal as a vector of states z~ ¼ ðz1; z2; . . .Þ of patients that
were admitted to the hospital in previous periods and
elective patients that are already scheduled but not
yet admitted. We will refer to the kth element of z~ as
the health state of patient number k. Our assumption
that patients stay for a maximum of N time periods in
the hospital and the way we choose the indices of
newly arriving patients ensure that the dimensional-
ity of z~does not grow to infinity over time and can be
restricted to a fixed finite value (as shown in Theo-
rem 1 below).
Using this notation, we let the state of the hospital

on day n be the vector of patient states after they have
evolved to day n but before the emergency and elec-
tive patients have been admitted that day. As a conse-
quence, not all patient states z 2 Z0 can actually be
observed, but only those states z for which there
exists an z0 2 Z0 with pz0z [ 0. Denote the set of all
such states by Z0 � Z0. So if ti ¼ 0, one might have
0ji 62 Z0. Further let Z ¼ Z0 [

SR
r¼1f1Iþrg with

urð1JþrÞ ¼ 1 and ur0 ð1JþrÞ ¼ 0 for all r0 6¼ r ¼ 1; . . .; R.
(The states 1Iþr can be viewed as health states of
artificial patients and are introduced for technical
reasons, which we explain in detail in the proof of
Theorem 3.)

2.4. Expected Contribution and Overbooking
If the demand by elective patients is given by d~ and
the hospital accepts ais patients of type ðji; fi; tiÞ for
admission in s days with s ¼ 0; . . .; ti, i = 1, . . ., I, it
must hold that

Pti
s¼0 ais � di, ais 2 N0 for such an

action to be feasible. If we let fi denote the expected
contribution of an admitted elective patient, the
expected contribution of action ais is hencePI

i¼1 fi
Pti

s¼0 ais.
Since our extended definition of emergency patients

covers teaching and research cases, elective patients
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can be purely viewed as a source of income. Thus, our
goal is to find a dynamic admission and scheduling
policy for elective patients that depends on current
hospital utilization with the aim of maximizing the
expected contribution minus penalty costs in the pres-
ence of emergency patients. Since the time window
during which a newly arriving elective patient must
be admitted to the hospital is usually relatively short,
we do not consider discounting in our model.
On the current day, the combined resource require-

ments of all patients in the hospital in state z~ is given
by
P1

k¼1 urðzkÞ for r = 1, . . ., R. To this, we must add
the resource requirements of all elective patients that
will be admitted today,

PI
i¼1 ai0urð0jiÞ, as well as the

resource requirements of the random number of
emergency patients that will appear during the day,PJ

j¼1 urð0jÞXj.

Writing ½x�þ ¼ maxf0; xg, resource r is overbooked
by

"X1
k¼1

urðzkÞ þ
XI
i¼1

ai0urð0jiÞ þ
XJ
j¼1

urð0jÞXj � cr

#þ

units on a day with hospital state z~.
The expected contribution from elective patients

minus overbooking costs add up to

XI
i¼1

fi
Xti
s¼0

ais �
XR
r¼1

prE

 "X1
k¼1

urðzkÞþ

XI
i¼1

ai0urð0jiÞ þ
XJ
j¼1

urð0jÞXj � cr

#þ!
:

ð1Þ

2.5. Dynamics
Using days as time periods, assume the hospital is in
state z~ in the current time period, demand d~ is
observed, and action A ¼ ðaisÞi¼1;...;I;s¼0;...;ti

is taken.
We also assume that the hospital cannot influence the
number of emergency patients X~ with different
admission diagnosis to be admitted throughout that
time period. After this period’s emergency and sched-
uled elective patients have been admitted, time moves
forward, that is, patient states evolve.
We assume that patient care is the number one pri-

ority and patients will always be treated such that the
best possible treatment is guaranteed. In particular,
we do not assume that hospital administration can
choose actions to speed up patients’ discharge for the
sake of resource usage optimization. While this might
be done in some situations, it is not ethical and the goal
of this study is not to recommend such actions. Patient
states hence evolve purely randomly, given the best
care the hospital can provide. So a patient in state zwill

be in state z0 in the next period with probability pzz0 .
Within the hospital state vector z~ ¼ ðz1; z2; . . .Þ, we
will refer to zk as the patient state of patient k and say
that patient number k is unused if zk ¼ �.
Each day, a maximum of

PI
i¼1 d

max
i requests for

electives and
PJ

j¼1 x
max
j emergency requests arrive.

The time between the request and discharge is
no longer than N þ ti time units for elective
patients and no longer than N time units for
emergencies. So there can never be more than
K ¼

PI
i¼1 d

max
i ðti þNÞ þ

PJ
j¼1 x

max
j N\1 patients

scheduled for admission or currently admitted but
not yet discharged. In other words, there will always

be at least
PI

i¼1 d
max
i þ

PJ
j¼1 x

max
j unused patient num-

bers within the first K patient numbers.
When new patients are admitted, we assign them to

a random unused patient number between 1 and K.
So let K1 ¼ fk 2 f0; . . .; Kg with zk ¼ �g be the set
of “unused” indices, that is, indices of discharged
patients, and define j(‘) be the (randomly chosen) ‘th
unused patient number, ‘ ¼ 1; . . .; jK1j. The values of
j(‘) are chosen sequentially, starting with ‘ = 1 and j
(‘) = k with probability 1=jK‘j for all k 2 K‘, where
K‘þ1 ¼ K‘ n fjð‘Þg.
Let z~0ðz~; x~; AÞ ¼ ðz01; z02; . . .Þ be the state of the hos-

pital after the admission and scheduling of the new
elective and emergency patients as given by A and x~,
but before patient states evolved to the following
day’s state. In particular, let

z0kðz~; x~;AÞ ¼ zk for all k : zk 6¼ �; ð2Þ

z0
jð1þ
Pj�1

j0¼1
xj0 Þ

ðz~; x~;AÞ ¼ . . . ¼ z0
jð
Pj

j0¼1
xj0 Þ

¼ 0j

for all j ¼ 1; . . .; J;
ð3Þ

z0
jð1þ
PJ

j0¼1
xj0þ
Pi

i0¼1

Psi0 �1

s0¼0
ai0s0 Þ

ðz~;x~;AÞ¼ ...

¼z0
jð
PJ

j0¼1
xj0 þ
Pi

i0¼1

Psi
s0¼0

ai0s0 Þ
ðz~;x~;AÞ¼�si forall i¼1;...;I;

si¼0;...;ti

:

ð4Þ

In this intermediate state, after admission but before
the health states of admitted patients evolve, the
health states of previously admitted patients remain
unchanged as shown in equation (2). Newly arriving
emergency patients with diagnosis j = 1, . . ., J are
admitted in health state 0j. Since there are xj newly
arriving emergency patients with diagnosis j, equa-
tion (3) assigns the first x1 health states with unused
indices to health state 01, health states with unused
indices x1 þ 1 to x1 þ x2 to state 02 and so on. Since
the number of elective patients of type i to be admit-
ted in s time periods is given by ais, equation (4) sets
ais health states to �si.
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Assume that patient states evolve independently of
each other, and that their evolution is independent of
the arrival process of new patients. Then, when we
start in state z~and do action A, there is a probability ofP

x~PðX~ ¼ x~Þ �
Q1

k¼1 pz0kðz~;x~;AÞz
00
k

of observing hospital
state z~00 ¼ ðz001; z002; . . .Þ the following day. Finally, elec-
tive demand of the next day is observed before the
new admission and scheduling decision must be made.

2.6. The Optimization Problem
The problem of maximizing expected contribution net
overbooking costs can be modeled as a MDP with a
state space that is composed of the current state of the
hospital and the demand from elective patients

ðz~; d~Þ 2 S ¼fððz1; z2; . . .Þ; ðd1; . . .; dIÞÞ : zk 2 Z
8 k ¼ 1; . . .;1;

di 2 N0; d
min
i � di � dmax

i 8 i ¼ 1; . . .; Ig:

The set of feasible actions is given by

Aðz~; d~Þ ¼ fA ¼ ðaisÞi¼1;...;I;s¼ 0;...;ti
:

ais 2 N0;
Xti
s¼0

ais � di 8i ¼ 1; . . .; Ig:

The expected one-stage reward is given by equation
(1). Letting qðx~; d~00Þ be the probability that emer-
gency demand in the current period will be x~ and

that elective demand will be d~
00
the following day,

the transition probability from state ðz~; d~Þ to state
ðz~00; d~00Þ given action A is

X
x~

qðx~; d~00Þ �
Y1
k¼1

pz0
k
ðz~;x~;AÞz00

k
:

Let fðz~n; d~nÞ; AnÞgn¼1;2;... with actions An ¼
ðanisÞn¼1;2;...;i¼ 1;...;I;s¼ 0;...;ti

denote an infinite sequence of
state–action pairs, fXn

j gj¼1;...;J;n¼ 1;2;... an infinite
sequence of emergency demand and let / : S ! A be
the decision function that specifies an action
A 2 Aðz~; d~Þ for every state in S. Define the long-run
average contribution net overbooking costs of the sys-
tem under decision function /, starting from initial
state ðz~0; d~

0Þ as

�Jð/; z~0; d~
0Þ ¼ lim sup

N0!1

1

N0

XN0

n¼1

E

"XI
i¼1

fi
Xti
s¼0

anis

�
XR
r¼1

pr
X1
k¼1

urðznk Þ þ
XI
i¼1

ani0urð0jiÞ
"

þ
XJ
j¼1

Xn
j urð0jÞ � cr�þj z~0; d~

0
� �#

:

We refer to this expression as the long-run time-aver-
age net contribution in the following. Using this

notation, we can formulate the decision maker’s prob-
lem to find an optimal, average net contribution maxi-

mizing decision rule /� from starting state ðz~0; d~
0Þ,

Jðz~0; d~
0Þ ¼ sup

/:S!A
Jð/; z~0; d~

0Þ: ð5Þ

Table 1 summarizes the salient notation in this
study. The following Theorem will be useful in ana-
lyzing the problem in greater detail.

THEOREM 1. The optimal average net contribution
Jðz~0; d~

0Þ is the same for all initial states, that is,
Jðz~; d~Þ ¼ J� for all ðz~; d~Þ 2 S. Without loss of optimal-
ity, the action space can be reduced to actions in

AKðz~; d~Þ ¼ fA ¼ ðaisÞi¼1;...;I;s¼ 0;...;ti
:

ais 2 N0;
Xti
s¼0

ais � di 8 i ¼ 1; . . .; Ig

and the state space can be reduced to a finite state space

SK :¼fððz1; . . .; zKÞ; d~Þ 2 ZK
0 	NI

0 : d
min
i � di � dmax

i

8 i ¼ 1; . . .; Ig:

All proofs can be found in the Appendix. From The-
orem 1, we can conclude that the exact patient admis-
sion problem defined on S has the same average net
contribution equation (5) as the corresponding prob-
lem with restricted state and action spaces SK and AK.

Table 1 Salient Notation

Symbol Explanation

A ¼ ðaisÞi¼1;...;I;s¼0;...;ti
Number of patients of type i, who asked for
admission in the current period and are
accepted in s periods

cr Daily capacity of resource r
Di ; di Demand from elective patients of type i and its

realization
fi Expected contribution from patient of type i
i,I Patient types i = 1, . . ., I
j, J Diagnosis j = 1, . . ., J
Jðz~; d~Þ Optimal average net contribution, given initial

state ðz~; d~Þ
n Time period
r, R Resources r = 1, . . ., R
pr Per unit per day penalty for overbooking

resource r
ti Horizon during which patients of type i need to

be accepted
ur ðZ Þ Number of units of resource r required by a

patient in state Z
Xj ; xj Demand from emergency patients with

diagnosis j and its realization
Z, z Patient health state and its realization
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Thus, we can rely on the standard theory for MDP as
given in Bertsekas (2007).

3. A Simple Deterministic Upper
Bound

One way of approximating the decision problem is to
replace all demand and resource usage data by its
expected value and to set ti ¼ 0 for all patient types
i = 1, . . ., I. Under this assumption, the expected num-
ber of emergency patient arrives in each time period
and their usage equals the expected usage in each time
period. Any given day,

PJ
j¼1 E½urðZnÞjZ0 ¼ 0j�E½Xj�

units of capacity of resource r will be used by emer-
gency patients that arrived n time periods earlier. In
total, that gives

PN
n¼0

PJ
j¼1 E½urðZnÞjZ0 ¼ 0j�E½Xj�

units of resource r used by emergency patients.
Accepting ai elective patients of type i then usesPI
i¼1 E½urðZnÞjZ0 ¼ 0ji �ai units of capacity of resource

r in n time periods. In the long run,
PN

n¼0PI
i¼1 E½urðZnÞjZ0 ¼ 0ji �ai units of resource r will then

be used for elective patients in each time period.
Maximizing the expected one period net contribu-

tion gives the following decision problem with value
gDUP:

max
ai;i¼1;...;I

XI
i¼1

fiai �
XR
r¼1

pr
XN
n¼0

XI
i¼1

E½urðZnÞjZ0 ¼ 0ji �ai

 "

þ
XJ
j¼1

E½urðZnÞjZ0 ¼ 0j�E½Xj�

1
A� cr

3
5
þ

ð6Þ

s:t: 0� ai �E½Di� 8 i ¼ 1; . . .; I: ð7Þ

The objective (6) maximizes expected contribution
minus penalty cost, while equation (7) enforces the
condition that for each class of patients, we cannot
accept more patients into the hospital than expected
demand.
Problem (6)–(7) can easily be reformulated as a linear

program and solved efficiently for large problem
instances. By the following Theorem, however, it only
gives an upper bound on the expected net contribution.
The actions recommended need not be implementable.

THEOREM 2. Problem (6)–(7) with objective value gDUP

gives an upper bound to equation (5).

4. Approximate Dynamic Programming
and Upper Bounds

In light of Theorem 1, the patient admission problem
(5) can be reduced to a problem with finite state and
action space. This ensures the existence of an optimal

stationary policy. It can be found by solving the
average net contribution maximizing dynamic pro-
gramming optimality equations (c.f. Bertsekas 2007).
So let h : SK ! R denote the bias function and g the
average net contribution. Then, the average net contri-
bution maximizing optimality equations are

hðz~; d~Þ ¼ max
A2AKðz~;d~Þ

XI
i¼1

fi
Xti
s¼0

ais �
XR
r¼1

prE
X1
k¼1

urðzkÞ
" 

þ
XI
i¼1

urð0jiÞai0 þ
XJ
j¼1

urð0jÞXj � cr

3
5
þ1
A

� gþ
X
z00;x~;d~

00
qðx~; d~00Þ

Y1
k¼1

pz0
k
ðz~;x~;AÞz00

k
hðz~00; d~00Þ; ð8Þ

for all ðz~; d~Þ 2 SK with z~0ðz~; x~;AÞ given by equations
(3)–(4).
Let g� be the solution to (8), the maximum expected

average net contribution as given in equation (5). It is
well known that g� is also given by the optimal solu-
tion of the following, LP formulation of this problem
with variables g and h : SK ! R (Bertsekas 2007):

min
hðz~;d~Þ;g

g ð9Þ

g

XI
i¼1

fi
Xti
s¼0

ais �
XR
r¼1

prE

 "X1
k¼1

urðzkÞ

þ
XI
i¼1

urð0jiÞai0 þ
XJ
j¼1

urð0jÞXj � cr

#þ!

þ
X
z00;x~;d~

00
qðx~; d~00Þ

Y1
k¼1

pz0
k
ðz~;x~;AÞz00

k
hðz~00; d~00Þ � hðz~; d~Þ

8ðz~; d~Þ 2 SK;A 2 AKðz~; d~Þ: ð10Þ

Problem (9)–(10), however, is difficult to solve
because of its large number of variables and con-
straints. Consequently, we approximate the bias func-
tion h to reduce the number of variables that need to
be solved.
Our approximation is based on the idea of deter-

mining the approximated marginal cost of using
resource r in n time periods, denoted by Vrn for all
r = 1, . . ., R and n = 1, . . ., N. Those values will be
helpful when comparing the resource usage and the
contribution gained from different patient classes and
help devise heuristics for admission and scheduling.
To estimate Vrn for all r = 1, . . ., R and n = 1, . . ., N,
we first map the current state to the expected resource
usage, and then base our bias function approximation
on this vector. If the current hospital state is z~, the
number of units of resource r used in the current
time period (before emergency demand is accepted
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and elective patients are scheduled) is
P1

k¼1 urðzkÞ.
Patient states in future time periods are only
known in distribution, but the expected number of
units of resource r used in n time units isP

z2Z
P1

k¼1 PðZn ¼ zjZ0 ¼ zkÞurðzÞ, or
P1

k¼1 EðurðZnÞj
Z0 ¼ zkÞ.
Weighting the approximated marginal costs of

usage by the expected usage and valuing demand
from class i byWi, yields the affine function

hðz~; d~Þ �
XI
i¼1

Widi �
XR
r¼1

XN
n¼0

Vrn

X1
k¼1

EðurðZnÞjZ0 ¼ zkÞ

8ðz~; d~Þ 2 SK ð11Þ

with parameters Vrn 
 0 and Wi 2 R for all
r = 1, . . ., R, n = 0, . . ., N, and i = 1, . . ., I, which we
use to approximate the bias function hðz~; d~Þ.
Employing the above approximation to the LP for-

mulation can be considered as adding the additional
condition (11) to the minimization problem (9)–(10).
This leads to the following upper bound problem on
equation (9)–(10) and consequently on the maximum
expected average net contribution g�:

ðADPÞ min
g;Vrn;Wi;r¼1;...;R;i¼1;...;I;n¼0;...;N

g ð12Þ

g

XI
i¼1

fi
Xti
s¼0

ais �
XR
r¼1

prE

 "X1
k¼1

urðzkÞ

þ
XI
i¼1

urð0jiÞai0 þ
XJ
j¼1

urð0jÞXj � cr

#þ!

þ
XI
i¼1

WiðEðDiÞ � diÞ þ
XR
r¼1

XN
n¼0

Vrn

� X
k:zk 6¼�

EðurðZnÞjZ0 ¼ zkÞ �
X
k:zk 6¼�

EðurðZnþ1ÞjZ0 ¼ zkÞ

�
XJ
j¼1

E½Xj�EðurðZnþ1ÞjZ0 ¼ 0jÞ

�
XI
i¼1

Xminfnþ1;tig

s¼0

aisEðurðZnþ1�sÞjZ0 ¼ 0jiÞ
�

8ðz~; d~Þ 2 SK;A 2 AKðz~; d~Þ: ð13Þ

We denote the solution to ADP by gADP.
Since ADP has N 9 R + I + 1 variables and many

constraints, one could try to solve it via column
generation. This approach is commonly used in the
ADP literature, see Adelman (2003, 2004, 2007). The
subproblem can be written as a linear mixed integer
problem, but the number of variables needed is large
in realistic scenarios. Consequently, we suggest
another relaxation in the following.

4.1. A Relaxation of the Upper Bound Problem
Consider ADP enforcing equation (13) for all states
in S instead of SK only. Since SK � S, the condi-
tions need to be satisfied for more state–action
pairs and the resulting problem still gives an upper
bound.
If we call this looser upper bound problem ALG, the

following Theorem shows that there always is an opti-
mal solution to ALG with time-invariant values Vr.

THEOREM 3. There exists an optimal solution to ALG
with 0 � Vrn ¼ Vr � pr for all r = 1, . . ., R, n 2 N0.
Further, write a~ ¼ ða1; . . .; aIÞ, d~ ¼ ðd1; . . .; dIÞ, c~ ¼
ðc1; . . .; cRÞ, V~ ¼ ðV1; . . .; VRÞ, and W~ ¼ ðW1; . . .;
WIÞ. Then, we can simplify ALG to

min
g;Vr;Wi;r¼1;...;R;i¼1;...;I

g ð14Þ

wðc~; a~; d~;V~;W~; gÞ� 0 8ðc~; a~; d~Þ 2 X ð15Þ

0�Vr � pr 8r ¼ 1; . . .;R ð16Þ

with

X ¼fðc~; a~; d~Þ : ai; di; cr 2 N0; 0� ai � di;

dmin
i � di � dmax

i ; cr � cr8i ¼ 1; . . .; I; 8r ¼ 1; . . .;Rg

and

wðc~;a~;d~;V~;W~;gÞ :¼
XI
i¼1

fiai

�
XR
r¼1

prE
XJ
j¼1

urð0jÞXj� cr

2
4

3
5
þ0

@
1
Aþ

XI
i¼1

WiðEðDiÞ�diÞ

þ
XR
r¼1

Vr

�
cr� cr�

XJ
j¼1

E½Xj�
XN
n¼1

EðurðZnÞjZ0 ¼ 0jÞ

�
XI
i¼1

ai
XN
n¼0

EðurðZnÞjZ0 ¼ 0jiÞ
�
�g: ð17Þ

In the above formulation, ai :¼
Pti

s¼0 ais equals the
total number of accepted patients of type i for given z~
and A, and cr :¼ cr �

P1
k¼1 urðzkÞ �

PI
i¼1 urð0jiÞai0 is

the number of units of resource r that are free for
emergency patients in the current time period.
Then, using xðc~;a~;d~Þ as the dual variables of condition

(15) for all ðc~; a~; d~Þ 2 X and vr as the dual variables
of equation (16) for all r = 1, . . ., R, the dual of ALG is

max
xðc~;a~;d~Þ;vr

X
ðc~;a~;d~Þ2X

xðc~;a~;d~Þ

 XI
i¼1

fiai �
XR
r¼1

prE

 
½
XJ
j¼1

urð0jÞXj

� cr�þ
!!

�
XR
r¼1

vrpr ð18Þ
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s.t.

X
ðc~;a~;d~Þ2X

xðc~;a~;d~Þ

 
cr � cr �

XJ
j¼1

E½Xj�
XN
n¼1

EðurðZnÞjZ0 ¼ 0jÞ

�
XI
i¼1

ai
XN
n¼0

EðurðZnÞjZ0 ¼ 0jiÞ
!

þ vr 
 0

8r ¼ 1; . . .;R ð19Þ

X
ðc~;a~;d~Þ2X

xðc~;a~;d~Þ di � E½Di�ð Þ ¼ 0 8i ¼ 1; . . .; I ð20Þ

X
ðc~;a~;d~Þ2X

xðc~;a~;d~Þ ¼ 1 ð21Þ

xðc~;a~;d~Þ 
 0 8ðc~; a~; d~Þ 2 X ð22Þ

vr 
 0 8r ¼ 1; . . .;R: ð23Þ

Constraints (21) and (22) allow us to interpret
xðc~;a~;d~Þ as the frequency of being in a state with c~
resources reserved for emergency demand, facing
demand d~ of elective patients and accepting a~. The
objective then maximizes the average contribution
gained from elective patients minus the penalty costs
caused by newly arriving emergency patients
requiring more capacity than what was reserved for
them. The last term of the objective combined with
equation (19) ensures that additional penalty costs
are incurred if the average amount of resources used
by elective patients plus the average amount of
resources used by already admitted emergency
demand is larger than the amount that should be
used for those demands, cr � cr. This highlights the
characterization of the corresponding primal decision

variable Vr as the marginal cost of resource r.
Constraint (20) corresponds to the primal variables
Wi, i = 1, . . ., I and ensures that average demand
equals the expected value of demand.
Denote the optimal objective value of ALG by gALG.

Since strong duality holds, column generation can be
used to solve for gALG. This procedure starts with a
small basis X0 � X that contains a feasible solution to
equation (18)–(23). Then, equation (18)–(23) is solved,
given the basis X0 and the dual variables are obtained.
In particular, let V~ be the dual variables of equation

(19), W~ be the dual variables of equation (20) and g the
dual variable of equation (21). These values are used to
check if the solution fulfills primal feasibility by solving
for the tightest constraint, maxða~;d~;c~Þ2X wða~; d~; c~;V~;W~; gÞ
as defined in equation (17). If the solution of this sub-
problem is greater than 0, a constraint is violated, the
values ða~; d~; c~Þ that obtain the maximum are added to
the basis X0. If the solution is less than or equal to 0,
column generation stops since a primal/dual feasible
and hence optimal solution was found.
Usually, an efficient solution via column generation

is impossible because of the complexity of the sub-
problem. Note, however, that wða~; d~; c~;V~;W~; gÞ
decomposes in r allowing us to determine the values
of cr for all r = 1, . . ., R independently of each other.
Therefore, the problem can be separated into R mini-
mization problems over cr and I minimization prob-
lems over the tuples ðai; diÞ. The problems in cr can be
viewed as newsvendor problems: For fixed r, cr repre-
sents a newsvendor quantity of a newsvendor that
faces a demand from emergency patientsPJ

j¼1 urð0jÞXj, pays Vr per unit and incurs penalty cost
of pr per unit for unsatisfied demand. Thus, the un-
derstock cost is pr � Vr and the overstock cost are Vr.
As a consequence, the optimal value of cr is the opti-
mal newsvendor quantity with critical fractile
ðpr � VrÞ=pr. The problems in ðai; diÞ are linear. So
only corner points of the feasible set can be optimal.
Denote the cumulative distribution function ofPJ
j¼1 urð0jÞXj by Fr. For given W~ and V~, the optimal

values of the subproblem are

cr ¼ min x 2 f0; . . .; crg : FrðxÞ

pr � Vr

pr

� �
8r ¼ 1; . . .;R

ð24Þ

A column generation algorithm to solve ALG is
given by the following steps:

0. Let X0 ¼ fða~;d~;c~Þ : ai ¼ 0;di 2f0;dmax
i g 8i¼ 1; . . .;I;

cr ¼ 0 8r¼ 1; . . .;Rg be the initial basis.
1. Solve equations (18)–(23) with X0 in place of

X . Let V~ be the dual variables of equation
(19), W~ be the dual variables of equation (20)
and g the dual variable of equation (21).

2. Determine ðða~; d~; c~ÞÞ as given in equation (24)
and equation (25).

ðai; diÞ ¼

ðdmax
i ; dmax

i Þ if fi �
PR

r¼1 Vr
PN

n¼0 EðurðZnÞjZ0 ¼ 0jiÞ[ maxf0;Wig; and

ð0; dmax
i Þ if maxffi �

PR
r¼1 Vr

PN
n¼0 EðurðZnÞjZ0 ¼ 0jiÞ;Wig\0

ðdmin
i ; dmin

i Þ if 0� fi �
PR

r¼1 Vr

PN
n¼0 EðurðZnÞjZ0 ¼ 0jiÞ\Wi

ð0; dmin
i Þ otherwise

8>>>><
>>>>:

8i ¼ 1; . . .; I: ð25Þ
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3. If wðc~; a~; d~;V~;W~; gÞ � 0 stop. Otherwise, go
back to step 1 and repeat the steps with
updated basis X0 ¼ X0 [ fðða~; d~; c~ÞÞg.

The following Theorem establishes the relationship
between g� and the bounds gADP, gALG and gDUP.

THEOREM 4. g� � gADP � gALG � gDUP.

4.2. An Illustrative Example
To better understand the difference between the
upper bounds on g�, and to demonstrate that gADP can
be a tight upper bound, we construct a stylized exam-
ple where the optimal solution can be obtained ana-
lytically.
Consider the case of two-resources, R = 2, and

three diagnosis, J = 3, that require only one day at the
hospital each so that p01� ¼ p02� ¼ p03� ¼ 1. Patients
with diagnosis 1 require one unit of resource 1 and
patients with diagnosis 2 require one unit of resource
of 2 on that day. Patients with diagnosis 3 require two
units of resource 2, giving u1ð01Þ ¼ 1;u2ð01Þ ¼ 0;
u1ð02Þ ¼ 0; u2ð02Þ ¼ 1; u1ð03Þ ¼ 0; u2ð03Þ ¼ 2. There
are two types of elective patients, I = 2, and
ðj1; f1; t1Þ ¼ ð1; 3; 0Þ, ðj2; f2; t2Þ ¼ ð3; 6; 0Þ. The hos-
pital has a capacity of c1 ¼ c2 ¼ 10 units of the
resource per day and faces a constant demand of 10
elective patients of both types per day, that is,
PðD1 ¼ 10Þ ¼ PðD2 ¼ 10Þ ¼ 1. Emergency demand
arrives for diagnosis 1 and 2 independently and is
equally likely to be any integer between 6 and 10 each,
no emergency demand for diagnosis 3 is observed.
So, EðX1Þ ¼ EðX2Þ ¼ 8, EðX3Þ ¼ 0. Penalty costs for
not serving emergencies are p1 ¼ p2 ¼ 12.
Because no patient ever stays for more than one

day and resource requirements between patients do
not overlap, the optimal solution is given by the static
one-period solution. The problem of determining the
optimal number of units to reserve for emergency
patients at resource 1, c�1, reduces to solving a news-
vendor problem. Because elective patients of type 2
do not require resource 1, the overage cost for this
newsvendor equals the opportunity loss of not serv-
ing an elective patient of type 1, f1 ¼ 3. If the hospital
reserves one bed less for emergencies, the hospital
faces a penalty cost of 12 but gained f1 ¼ 3 from
using this resource for an elective patient of type 1,
so the underage cost is 12 – 3 = 9. Thus, the critical
fractile is

underage cost

underage costþ overage cost
¼ 9

9þ 3
¼ 0:75:

Therefore, the optimal action is to reserve as much
capacity as needed to serve emergency demand of

each type 75% of the time. The cumulative probability
distribution of demand from emergency patients is
F1ð8Þ ¼ 0:6 and F1ð9Þ ¼ 0:8. From the newsvendor
model, we know that c�1 is the smallest x for which the
cumulative distribution is larger. Hence, c�1 ¼ 9. Simi-
larly, for resource 2, one can determine the critical frac-
tile as (2 9 12 � 6)/(18 + 6) = 0.75. Since resource 2 is
demanded in pairs of two by elective patients only, it
is easy to see that c�2 ¼ 10 is optimal for resource 2
achieving a higher expected contribution than using
c2 ¼ 9 or c2 ¼ 8. As a consequence, one elective
patient of type 1 and zero of type 2 should be admitted
in each time period, giving an average contribution of
3 and average penalty costs of 12 9 0.2 = 2.4, netting
to 0.6. The same value is obtained when the optimality
equations (8) are solved, so g� ¼ 0:6.
Solving (DUP) yields a1 ¼ 2 and a2 ¼ 1, so

gDUP ¼ 2 	 3 þ 1 	 6 ¼ 12.
The optimal solution of (ADP) is WADP

1 ¼ W2 ¼ 0,
VADP

1;0 ¼ V2;0 ¼ 3, gADP ¼ 0:6, which equals g�. Solv-
ing gALG, we obtain gALG ¼ 1:2. The difference
between gALG and gADP can be explained by the fact
that when ALG is solved, the constraints need to hold
for a state that is in S but not in SK. (A state with
c1 ¼ c2 ¼ 9, can only be obtained by accepting artifi-
cial patients as introduced in section 3.) In other
words, by accepting patients from types i = 1, . . ., I
only, the hospital can never be in a state with

9 ¼ cr ¼ cr �
X1
k¼1

urðzkÞ �
XI
i¼1

urð0jiÞai0

¼ 10� 0�
XI
i¼1

2	 ai0;

with ai0 2 N0.
To summarize, in this example we have

g� ¼ gADP ¼ 0:6\ gALG ¼ 1:2\ gDUP ¼ 12. A sim-
ple example with g� ¼ gADP ¼ gALG \ gDUP can be
constructed by setting u2ð03Þ ¼ 1.

5. Heuristics and Lower Bounds

In this section, we introduce different heuristics for
patient admission, which are based on the upper
bound problems developed in the previous section.
These heuristics serve as lower bounds on the maxi-
mum net contribution g�.
The first heuristic is directly based on the dynamic

programming framework we introduced earlier. This
type of heuristic is known as price-directed heuristic
in the ADP literature (Adelman , 2003, 2004). The sec-
ond heuristic, which we call the newsvendor heuris-
tic, uses insights gained from the lower bound
problem ALG equations (14)–(16) and builds on ideas
already used in practice.
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5.1. Price-Directed Heuristics
In ADP, the usual way to obtain a policy is to use the
approximation in the optimality equation (8) and find
the action that achieves its maximum. Due to the
interpretation of the approximation parameters as
prices, these heuristics are typically called price-direc-
ted policies. If we use superscripts ADP to denote the
optimal solution of problem ADP, a price-directed
policy based on ADP would always choose a feasible
action A 2 Aðz~; d~Þ that maximizes

XI
i¼1

ai0ðfi �
XR
r¼1

XN
n¼1

VADP
rðn�1ÞEðurðZnÞjZ0 ¼ 0jiÞÞ

þ
XI
i¼1

Xti
s¼1

aisðfi �
XR
r¼1

XN
n¼0

VADP
rðnþs�1ÞEðurðZnÞjZ0 ¼ 0jiÞÞ

�
XR
r¼1

prE
X1
k¼1

urðzkÞ þ
XI
i¼1

ai0urð0jiÞ
" 

þ
XJ
j¼1

urð0jÞXj � cr

3
5
þ1
A: ð26Þ

If we use the values obtained by solving ALG
instead, this simplifies to

XI
i¼1

ai0ðfi �
XR
r¼1

VALG
r

XN
n¼1

EðurðZnÞjZ0 ¼ 0jiÞÞ

þ
XI
i¼1

Xti
s¼1

aisðfi �
XR
r¼1

VALG
r

XN
n¼0

EðurðZnÞjZ0 ¼ 0jiÞÞ

�
XR
r¼1

prE
X1
k¼1

urðzkÞ þ
XI
i¼1

ai0urð0jiÞ
" 

þ
XJ
j¼1

urð0jÞXj � cr

3
5
þ1
A: ð27Þ

The terms
PR

r¼1 V
ADP
rn

PN
n¼0 EðurðZnÞjZ0 ¼ 0jiÞ in

equation (26) and
PR

r¼1 V
ALG
r

PN
n¼0 EðurðZnÞjZ0 ¼ 0jiÞ

in equation (27) can be viewed as the total approxi-
mate expected opportunity cost from accepting a
patient of type i. We refer to the difference between
the contribution of a type i patient and their total
approximate expected opportunity cost as the
approximated net contribution of patient i. A negative
net contribution indicates that the contribution of this
patient type is lower than the approximated opportu-
nity costs of their resource usage. Since today’s cost of
capacity IS already accounted for in the penalty costs,
summation only starts at n = 1 when assessing the
opportunity costs for patients that are accepted today.
Since in ADP, the values of VADP

rn may vary in n,
equation (26) provides some guidance for scheduling

decisions. In most problems of realistic size, even the
computation of VADP

rn is difficult, however, and we
will often only have VALG

r .
It is easy to see that equation (27) would never sche-

dule patient types with negative net contribution for a
future time slot. They may, however, be accepted
immediately if current capacity is ample and
fi �

PR
r¼1 V

ALG
r

PN
n¼1 EðurðZnÞjZ0 ¼ 0jiÞ [ 0. In other

words, patient types with negative net contribution
may be accepted right now if the resources they need
today will most likely not be used and their contribu-
tion is greater than the opportunity cost of their total
resource usage in future time periods. Following
equation (27) does not provide any guidance for
scheduling beyond this accept now vs. accept later
distinction and does not consider the future utiliza-
tion of the hospital. When implementing this heuris-
tic, we will prioritize patient types in the order of
decreasing net contribution and first determine how
many to accept now and then accept as many as pos-
sible without overbooking for s ¼ 1; . . . ; ti (in expec-
tation). No capacity is reserved for emergencies in
future time periods. We will refer to this heuristic as
the “price-directed” heuristic (PD) in our computa-
tional analysis.

5.2. The Newsvendor Heuristic
Although the above heuristic is simple to implement,
it still requires the daily solution of a mixed integer
LP to solve equations (26) or (27). In a practical imple-
mentation, an intuitive heuristic that does not require
the repeated solution of an optimization problem may
be preferable.
In our discussion of the relaxed lower bound prob-

lem ALG, we developed the following two ideas:
First, if we extend the state space to S, the approxi-
mated marginal opportunity cost of resource r, Vrn is
independent of the time index n and equals VALG

r . If
we refer to the patient type with the ith highest net
contribution as patient type (i), patients of type (i)
seem to be more valuable than patients of type (i + 1).
Therefore, it is logical to prioritize patients based on
their net contribution. (Depending on the current state
of the system, this ranking might not represent the
actual ranking of their value to the hospital since the
approximated values VALG

r do not depend on the cur-
rent system state.)
Second, given the values VALG

r we can approximate
the hospital’s decision how much of resource r to
reserve for emergency demand by a cost-minimizing
newsvendor problem with demand coming from
emergency patients. This demand can either be
served by reserving units at a variable costs VALG

r or
by overtime leading to penalty costs of pr. Calculating
the critical fractile as given in equation (24) yields cr,
the number of units of resource r that need to be
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reserved for newly arriving emergency patients in
each time period.
A straightforward implementation of these ideas

prioritizes patients according to their net contribution
and schedules them as early as possible, given that cr
units of resources r = 1, . . ., R are still free and
reserved for newly incoming emergency demand.
This is formalized by the following heuristic, which
we refer to as the “newsvendor” heuristic (NV) in our
computational analysis:

Step 1. Let the current number of unused units of
resource r in n time periods be cnr and the currently
observed demand from electives d~. Let i = 1, s = 0
and go to Step 2.
Step 2. If fðiÞ �

PR
r¼1 V

ALG
r

PN
n¼0 EðurðZnÞjZ0 ¼ 0jðiÞ Þ

\ 0, stop. If fðiÞ �
PR

r¼1 V
ALG
r

PN
n¼0 EðurðZnÞjZ0 ¼ 0jðiÞ Þ


 0, then repeat the following two steps until a
stopping criterion is reached:

a. If dðiÞ ¼ 0 or s [ tðiÞ go to step 3. Otherwise,
accept as many elective patients of type (i) at
time s as you can without using any
“reserved” units of capacity, that is, if dðiÞ [ 0
and s � tðiÞ, let

aðiÞs¼max

(
0;min

(
dðiÞ; min

r¼1;...;R;n¼1;...;N

cnr �cr
Eð:urðZnÞjZ0¼0jðiÞ Þ

$ %))
:

b. Let cnr ¼ cnr � aðiÞsEðurðZnÞjZ0 ¼ 0jðiÞ Þ, dðiÞ ¼ dðiÞ
� aðiÞs and s = s + 1. Go to step 3.

Step 3. If i < I, let i = i + 1 and go back to step 2. If
i = I stop.

Observe that in this heuristic, for a given demand
distribution, increasing capacity decreases the value
of capacity VALG

r , which increases the critical fractile
and hence increases the number of units to reserve for
emergencies according to equation (24). The idea of
reserving some capacity for emergency demand and
prioritizing patients is easy to execute and to commu-
nicate as this is a natural extension of the 20% heuris-
tic described in section 6 that is used in practice.

6. Numerical Results

In this section, we first a analyze a small example to
study the quality of the bounds and the heuristics in
various scenarios. This example is comparable in size
to other problems studied in the admission control
literature, for example, Nadal Nunes et al. (2009).
Although we can solve substantially larger problems,
we first discuss such a small example since this allows
the solution to all upper bound problems and a com-

parison with the exact solution. In the second part of
this section, we apply our methods to data from the
neurosurgery department of the Ronald Reagan
UCLA Medical Center. In both of these examples, we
solve the upper bound problems and analyze the per-
formance of different heuristics.
From our conversation with hospital management

and doctors at the UCLA Medical Center and other
hospitals, we learned that two policies seem to be
common in practice. In the first policy, hospital man-
agement advises that 20% of capacity should be
reserved for newly arriving emergencies, the remain-
ing capacity can be booked by other patients until it is
used up. The doctors considered this policy to be inef-
fective as they felt that this led to too many beds being
reserved for emergencies. Therefore, in the second
policy, no capacity is reserved for emergencies and all
capacity is used until no further elective patients can
be admitted. We will refer to the latter policy as the
“fill” heuristic and to the policy suggested by man-
agement as the “20%” heuristic in the following.
To benchmark our bounds and our heuristics, we

compare their performance to the “fill” as well as to
the “20%” heuristic, prioritizing patients according to
their contribution fi. In addition, we present the
results of a greedy strategy of maximizing one-stage
costs

XI
i¼1

aifi �
XR
r¼1

prE

 "X1
k¼1

urðzkÞ

þ
XI
i¼1

aiurð0jiÞ þ
XJ
j¼1

urð0jÞXj � cr

#þ!
:

to decide about the current period and schedule
remaining demand in future time periods if capacity
is available (in expectation). This greedy strategy is
similar to the price-directed heuristic suggested
earlier in the sense that it uses the same knowledge
of the system state in the current time period. How-
ever, it does not account for future time periods
since the prices of the resources, VALG

r , are set to 0.
We test this “greedy” heuristic to demonstrate the
value of prices VALG

r determined by the lower bound
problems in the decision making process.

6.1. A Small Example
Consider a small department of a hospital with R = 2
constraining resources representing OR time and
beds. There are c1 ¼ 15 time units of OR capacity per
day and c2 ¼ 8 beds per night. Penalty costs were
assessed at p1 ¼ 50 and p2 ¼ 40. There are three dif-
ferent diagnosis, J = 3. Transition graphs of the three
diagnosis are given in Figure 2. There are three differ-
ent types of elective patients. Elective patients of type
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1 bring a contribution of 130, have diagnosis 1 and
must be admitted today or rejected, so ðj1; f1; t1Þ ¼
ð1; 130; 0Þ. Elective patients of types 2 and 3 bring a
contribution of 100 and 80, respectively, have diagno-
sis 2 and need to be admitted today or tomorrow, or
be rejected, so ðj2; f2; t2Þ ¼ ð2; 100; 1Þ and ðj3; f3; t3Þ
¼ ð2; 80; 1Þ. Emergency patients have diagnosis 3. We
assume that PðDi ¼ 2Þ ¼ PðDi ¼ 0Þ ¼ 0:4, and
PðDi ¼ 1Þ ¼ 0:2 for elective types 1 and 2; type 3 has
a certain demand of 1. For emergency patients,
PðX3 ¼ 0Þ ¼ 0:2, PðX3 ¼ 1Þ ¼ PðX3 ¼ 2Þ ¼ 0:4. We
refer to this setup as the stochastic evolution and sto-
chastic demand example. The example is small
enough to solve to optimality with g� ¼ 175:03. Solv-
ing the upper bound problems gives 183.33, a value
4.7% higher than g�, for all problems, ADP, and ALG.
The deterministic upper bound problem DUP yields
270.00, which is 54.3% higher than the true value.
To evaluate the admission heuristics, we simulated

the admission process over 50,000 days and report the
average net contribution gained. The common prac-
tice of filling the hospital up until no more patients
can be accepted without using overtime yields aver-
age contribution minus penalty costs of 142, 18.9%
below the optimal value g�. The 20% heuristic per-
forms better giving 163, or 6.8% less than the optimal
policy.
Both price directed heuristics equations (26) and

(27) yield an average value of 156, 10.7% below the

optimal value g�, but higher than a pure greedy maxi-
mization, which only gives an average net contribu-
tion of 131. The newsvendor heuristic shows an
excellent performance of 173, or 1.3% below g�.
To see how the bounds and heuristics perform

across multiple scenarios, we created 19 additional
scenarios based on this basic scenario with medium
capacity for the OR and beds (Medium-Medium)
facing a stochastic evolution of patient’s health and
stochastic demand that we just introduced. First, we
increased capacities by 2 each to obtain a high capac-
ity scenario (High-High), we decreased them by 2
for the low capacity scenario (Low-Low). Combining
the medium OR capacity with the low bed capacity
gives the fourth scenario (Medium-Low), low OR
capacity and medium bed capacity gives the fifth
(Low-Medium). Using demands of 1 for all types 1,
2, and 3 and for emergencies, we create scenarios
with deterministic demand. Further, we create tran-
sition graphs with the same overall resource usage
but transition probabilities of 0 and 1 only to obtain
scenarios with a deterministic evolution. In Tables 2
and 3 we write S in column “Ev” to mark scenarios
with stochastic evolution, D for deterministic evolu-
tion. Similarly, we use S and D to determine stochas-
tic and deterministic demand in column “De.”
Solving all combinations gives a total of 2 9 2 9 5
scenarios.
Across all scenarios, we see in Table 2 that the

bounds obtained by solving ADP, and ALG are
within 10% of g� and all three tend to be close. In real-
istic scenarios, g�, and for big problems even gADP are
difficult, if not impossible, to compute. It is hence
important to note that the value of gALG often equals
gADP and gALG is always substantially lower than
gDUP, the only other reliable bound we would have in
real settings. Even in deterministic settings, the value
of gDUP may be higher than the other bounds since
partial acceptance is allowed in DUP, whereas in real-
ity (and in the other lower bound problems) only inte-
ger values of patients may be accepted.
Looking at the performance of the heuristics in

Table 3, three things are interesting:
First, the newsvendor heuristic outperforms all

other heuristics in scenarios with medium to low
demand as long as demand or patient evolution is sto-
chastic. In particular, it outperforms the price-direc-
ted control policies in many scenarios. In purely
deterministic settings, its performance is poor since it
heavily relies on the probability density function of
capacity used by emergency patients. In high capacity
scenarios, the fact that the newsvendor heuristic can
only shut off certain demand types by assigning them
a negative net contribution may be counterproduc-
tive. In contrast, price-directed controls may forbid to
schedule some demand types in future time periods

Figure 2 The Markov Chains of the Three Diagnosis Considered in
the Small Example
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but still accept them for the current time period if
there is excess capacity.
Second, the 20% heuristic performs well in high

capacity scenarios. However, this is usually not the
case in practice, and we can easily construct examples
where this rule would do arbitrarily bad without
impacting the other heuristics. (e.g., consider the case
when we add capacity of 100 for each resource that is
almost surely going to be consumed by incoming

emergency demand. The 20% heuristic would only
reserve 20% of all capacity for emergency demand,
which would clearly be insufficient and costs could
increase arbitrarily.)
Third, when we compare the performance of the

greedy heuristic with the price-directed heuristics, the
value of using the parameters obtained by ALG or
ADP becomes apparent. Accounting for the cost of
capacity by VADP

r or VALG
r leads to higher average net

Table 2 Upper Bounds in Different Scenarios

High-High Medium-Medium Low-Low Medium-Low Low-Medium

Ev De Value Value
g � 1 Value Value

g � 1 Value Value
g � 1 Value Value

g � 1 Value Value
g � 1

S S gDUP 310.00 43.6% 270.00 54.3% 190.00 58.6% 190.00 27.8% 245.00 77.2%
S S gALG 230.00 6.6% 183.33 4.7% 124.00 3.5% 164.00 10.3% 143.33 3.7%
S S gADP 230.00 6.6% 183.33 4.7% 124.00 3.5% 155.45 4.6% 143.33 3.7%
S S g� 215.85 175.03 119.83 148.65 138.24
S D gDUP 310.00 52.6% 270.00 69.6% 190.00 89.7% 190.00 39.3% 245.00 103.9%
S D gALG 210.00 3.4% 163.33 2.6% 104.00 3.8% 144.00 5.5% 123.33 2.6%
S D gADP 210.00 3.4% 163.33 2.6% 104.00 3.8% 144.00 5.5% 123.33 2.6%
S D g� 203.14 159.19 100.17 136.43 120.15
D S gDUP 310.00 3.5% 270.00 6.5% 190.00 5.6% 190.00 1.1% 245.00 6.9%
D S gALG 310.00 3.5% 270.00 6.5% 188.33 4.7% 190.00 1.1% 245.00 6.9%
D S gADP 310.00 3.5% 270.00 6.5% 188.28 4.6% 190.00 1.1% 245.00 6.9%
D S g� 299.41 253.52 179.93 187.95 229.11
D D gDUP 310.00 0.0% 270.00 5.9% 190.00 2.7% 190.00 0.0% 245.00 9.7%
D D gALG 310.00 0.0% 270.00 5.9% 188.33 1.8% 190.00 0.0% 245.00 9.7%
D D gADP 310.00 0.0% 266.67 4.6% 185.00 0.0% 190.00 0.0% 223.33 0.0%
D D g� 310.00 255.00 185.00 190.00 223.33

Table 3 Performance of the Heuristics in Different Scenarios

High-High Medium-Medium Low-Low Medium-Low Low-Medium

Ev De Value 1 � Value
g� Value 1 � Value

g� Value 1 � Value
g� Value 1 � Value

g� Value 1 � Value
g�

S S Fill 198 8.3% 142 18.9% 81 32.3% 81 32.3% 121 18.8%
S S 20% 214 0.7% 163 6.8% 97 18.7% 97 18.7% 123 16.9%
S S NV 213 1.5% 173 1.3% 115 3.7% 115 3.7% 140 5.8%
S S PD-ALG 209 3.2% 156 10.7% 103 13.7% 103 13.7% 134 9.8%
S S PD-ADP 207 4.1% 156 10.7% 103 13.7% 103 13.7% 83 44.4%
S S Greedy 193 10.6% 131 25.0% 57 52.6% 57 52.6% 87 41.3%
S D Fill 180 11.3% 122 23.3% 60 39.9% 60 39.9% 102 25.3%
S D 20% 197 2.9% 147 7.5% 87 13.3% 87 13.3% 120 11.7%
S D NV 197 3.1% 155 2.4% 98 2.4% 98 2.4% 129 5.1%
S D PD-ALG 197 2.9% 149 6.5% 92 8.6% 92 8.6% 129 5.3%
S D PD-ADP 199 2.1% 149 6.5% 91 9.2% 91 9.2% 129 5.2%
S D Greedy 186 8.5% 130 18.5% 61 39.5% 61 39.5% 93 31.5%
D S Fill 291 2.9% 206 18.6% 160 11.1% 160 11.1% 178 5.0%
D S 20% 288 3.8% 225 11.3% 157 12.8% 157 12.8% 157 16.3%
D S NV 221 26.0% 249 1.9% 167 6.9% 168 6.9% 183 2.5%
D S PD-ALG 292 2.4% 240 5.3% 165 8.0% 165 8.0% 178 5.4%
D S PD-ADP 292 2.4% 240 5.3% 148 17.6% 148 17.6% 178 5.4%
D S Greedy 292 2.4% 235 7.5% 148 17.6% 148 17.6% 165 11.9%
D D Fill 310 0.0% 220 13.7% 167 9.9% 167 9.9% 183 3.5%
D D 20% 310 0.0% 223 12.4% 180 2.7% 180 2.7% 180 5.3%
D D NV 180 41.9% 100 60.8% 165 10.8% 165 10.8% 180 5.3%
D D PD-ALG 310 0.0% 245 3.9% 185 0.0% 185 0.0% 180 5.3%
D D PD-ADP 310 0.0% 253 0.7% 163 11.7% 163 11.7% 190 0.0%
D D Greedy 310 0.0% 220 13.7% 160 13.5% 160 13.5% 140 26.3%

Note. In each scenario, the best values are highlighted in bold.
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contributions than greedy one-step optimization. It is
instructive to note that the price-directed policy based
on ADP, equation (26), does not perform significantly
better than the one based on ALG, equation (27). This
is important since one may not be able to solve ADP
in problems of realistic size as we will see in the next
section.

6.2. Real Data Example
To assess how our bounds and heuristics perform in
problems of realistic size, we obtained admission data
from the neurosurgery department of the Ronald Rea-
gan UCLA Medical Center. As analyzed in Duda
et al. (2013), this hospital has multiple constraining
resources. Depending on the patient mix, the OR time,
regular beds, and ICU beds could be a bottleneck in
this department, so R = 3. There are c1 ¼ 76 fifteen
minute blocks, or time units, of OR time obtained
from three operating rooms with 5 hours and one
with 4 hours. Further, there are c2 ¼ 24 ICU beds and
c3 ¼ 48 regular beds available for neurosurgery per
day. We had 6 months of data on contribution, admis-
sion diagnosis, admission type (elective vs. emer-
gency), and capacity usage of all constraining
resources. We scaled the data on contribution for elec-
tive patients to disguise the data and estimated penal-
ties based on interviews while ensuring that an
elective patient would never be admitted if all
resources they are expected to require need to be pro-
vided in overtime.
If sufficient data are available, each combination of

admission diagnosis, admission type (elective, emer-
gency, trauma, urgent), insurance, severity, and
expected resource usage on the day of admission can
be used as predictors for resource usage to naturally
obtain diagnosis groups. In our data set, however,
severity was only recorded at the end of the stay and
many combinations of the other parameters were
observed only once. Further, resource usage in our
data set was heterogeneous, zero-inflated, and highly
skewed. To find diagnosis groups, we therefore first
binned usage data with bins chosen to match the
quartiles of the corresponding distribution (cf. Mac-
Callum et al. 2002) and then used an ordered probit
regression model (c.f. Wooldridge 2001, section 15.10)
with admission diagnosis, admission type, insurance,
and first day resource usage as explaining variables to
estimate the dependent variable corresponding to the
probabilities for patients belonging to each usage bin.
Weighing the conditional expected usages of each
group with the probabilities yields the expected usage
for each patient for each resource. Comparing those
values to the intercepts of the model, which can also
be interpreted as cutoff points, we obtained the usage
groups for each resource. The Cartesian product of
those groups across resources gave us the final

groups. Using this procedure, we grouped the 775
patients, out of which 330 were electives, into J = 34
diagnosis groups with I = 15 elective patient types.
Even with the rather basic grouping, the variance of
resource usage within the groups is 45% lower than
the total variance for OR time, 68% lower for the regu-
lar beds, and 8% lower for the ICU beds; the variance
of contributions is 21% lower within groups than
overall.
We found in the data that emergency patients

require a substantial amount of the hospital’s capac-
ity. The empirical distribution of OR time usage on
the admission day of emergency patients only is
depicted in Figure 3. Observe that in certain infre-
quent instances, even if no elective patients were ever
admitted, some overbooking is unavoidable in the OR
since up to 87 units of OR time might be required by
newly incoming emergency patients. In addition,
emergency patients may need up to 7 ICU beds and
up to 4 regular beds on the day of their admission.
When constructing the Markov chains, we made

the simplifying but realistic assumption that surger-
ies were performed within the first two days of the
hospital stay and ICU beds were used immediately
after surgery since no data on the exact dates of
resource usage were available. To estimate demand,
we used the empirical distribution of emergency
patients. Since only accepted elective patients can be
found in hospital’s records, the exact demand from
elective patients is unknown. Therefore, we gener-
ated different scenarios with differently scaled
demand from elective patients to obtain an expected
demand of 3 (which equals the daily average num-
ber of patients actually accepted) to 10 elective
patients per time period. Since no information about
the time frame of scheduling ti, was given, we
assumed that elective patients always need to be
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accepted within 7 days or rejected, so ti ¼ 7 for all
i = 1, . . ., I. This gave us a total of 2281 possible
health states in Z0. The longest stay of an emer-
gency patient was 98 days, the longest stay of an
elective was 61, so we have N = max{98,61 + 7} =
98. Even in the lowest demand scenario with
dmax
i ¼ 3 for all i = 1, . . ., 15, we have K ¼PI
i¼1 d

max
i ðti þNÞ þ

PJ
j¼1 x

max
j N [ 15 	 3 	 ð7 þ 98Þ ¼

4725. Thus, the exact model equations (9)–(10) has
more than 22814725 	 4 variables and even more
constraints. It is therefore too large to be solved
directly. We solved ALG with AMPL using CPLEX
12.4 on a laptop computer with an Intel Core Duo
CPU with 1.87 Ghz. This took less than one minute
in all problem instances. We could not solve ADP
within 60 minutes and hence only report ALG and
the price directed heuristic based on the correspond-
ing values.
Figure 4 shows the simple upper bound gDUP as

well as gALG for all demand scenarios. (Because of our
scaling, we do not measure in $.) Further, this figure
depicts the performance of the heuristics. By “none”
we refer to a setting where no elective patients would
be admitted. This is an important benchmark in set-
tings where some overbooking cannot be avoided due
to highly variable emergency demand.
It is evident that both the price directed heuristic

and the newsvendor heuristic perform very well and
their performance is close to the upper bound. If we
compute solution gaps, defined as 1 � Value=gALG,
the average solution gap of the price-directed heuris-
tic was 5.33%, ranging from 3.72% to 10.50%, while
the average solution gap for the newsvendor heuristic

was 8.80%, ranging from 4.48% to 14.39%. In contrast,
the average gaps for the fill, greedy, and 20% heuristic
were 61.28% (between 9.09% and 119.66%), 61.77%
(between 11.46% and 121.81%), and 65.61% (between
17.33% and 109.97%), respectively. It is intuitive that
higher average net contribution can be achieved in
higher demand scenarios. Note, however, that the
performance of the greedy and practice based heuris-
tics actually decline for higher demand scenarios due
to excessive overbooking.
On further examination of the data, it was evident

that for the optimized patient mix in neurosurgery,
the OR time was the constraining resource. The fact
that most of the uncertainty about OR requirements is
resolved on the day of admission explains why the
price directed and the newsvendor heuristic perform
exceptionally well in this example and the gap
between the upper bound gALG and their performance
is small.
Therefore, we further studied the impact of varying

the number of beds on the performance of the heuris-
tics, leaving OR capacity constant. To do this, we used
the demand scaling with an expected number of 5
elective patients per day and varied c2 and c3 such
that the expected total capacity requested over
capacity available for the beds ranged from 0.6 to 1.8,
in increments of 0.2. The results are depicted in
Figure 5.
In all scenarios, both the price-directed heuristic PD

and the newsvendor heuristic NV outperform the
other heuristics by far. It is intuitive that the perfor-
mance of all heuristics and the bounds decline as
capacity gets smaller, that is, the ratio gets bigger. For

Figure 4 Bounds and Performance for Different Demand Scenarios
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high ratios, the performance often yields negative val-
ues since we set the contribution from emergencies to
0 and substantial overtime is unavoidable in these
cases. Again, the greedy- and practice-based heuristics
yield very poor performance if demand vastly exceeds
capacity. (The performance of greedy is almost identi-
cal to the performance of the filling heuristic; their
curves are difficult to distinguish because they lie on
top of each other in Figure 5.) In the scenarios with a
ratio of more than one, not accepting any elective
patients would leave the hospital better off than fol-
lowing any of those acceptance rules.
We suspect that the gap between the ALG bound

and the performance of the price directed and the
newsvendor heuristic widens when the capacity of
the beds decline for two reasons. First, ALG replaces
usage in future periods by the expected value. This
was not as crucial in the real scenario, where over-
usage of beds hardly ever occurred due to ample
capacity. As capacity gets smaller, the variability in
length of stay is more important and the bound gets
weaker (although it is still much stronger than the
simple deterministic upper bound). Second, the per-
formance of the heuristics decline. The price-directed
heuristic directly accounts for overbooking in the cur-
rent period. The cost of overbooking in future periods
is only captured indirectly by exclusively accepting
patients with positive net contribution. Hence, we
expect its performance to decline in settings where
uncertainty about overusage is resolved at a later
point in time, such as in the requirements of bed
capacity.
Across all scenarios, however, it is clear that the

price-directed and the newsvendor heuristic signifi-

cantly outperform other acceptance and scheduling
rules.

7. Conclusion

We suggested a novel model for elective patient
admission and scheduling under a stochastic evolu-
tion of patients health and care requirement with
multiple resource constraints. In order to maximize
expected contribution minus penalty cost, we formu-
lated the model as a MDP. Given the complexity of
this model, we used techniques from ADP to derive
an upper bound. We further simplified the upper
bound problem to obtain an optimization problem
that is easily solvable and yields approximated mar-
ginal values of one unit of capacity of the constraining
resources. The approximated marginal values are
used in heuristics for the patient admission and
scheduling problem.
We find that the suggested upper bounds are signif-

icantly tighter than a naive deterministic upper bound
that is obtained by replacing all stochastic elements
by their expected values. Further, we show that our
heuristics can improve current practice without add-
ing capacity, by improved selection and better sched-
uling. The newsvendor heuristic is an extension of the
“20%” heuristic, which is known among practitioners,
but outperforms the latter in realistic settings. Thus,
the newsvendor heuristic achieves a good balance
between easy communication, intuition, and good
performance.
An important takeaway for practitioners from our

work is that simple rules used in practice often do not
adequately account for the randomness of new arriv-

-500,000

-400,000

-300,000

-200,000

-100,000

0

100,000

200,000

300,000

400,000

500,000

0.6 0.8 1 1.2 1.4 1.6 1.8

Av
er
ag
e
N
et

Co
nt
rib

u
on

Demand/Capacity Ra o

DUP

ALG

PD

NV

Fill

Greedy

20 % Rule

None

Figure 5 Bounds and Performance for Different Bed Capacities

Barz and Rajaram: Elective Patient Admission and Scheduling
Production and Operations Management 24(12), pp. 1907–1930, © 2015 Production and Operations Management Society 1925



als, the random recovery of admitted patients, and
the opportunity costs of future resource usage. Since
our heuristic accounts for both the randomness of the
arrival process and approximates the marginal cost of
the resources, it is not surprising that it outperforms
these simple heuristics, especially when uncertainty is
high and capacity is tight. This increased value comes
with increased data requirements. To execute the
newsvendor heuristic, data are needed to estimate the
demand distributions for emergency and elective
patients and the expected resource usage per day for
each patient type. Given the move to electronic medi-
cal data in the health-care industry, these data should
be more accessible over time.
The main contribution of our study is to allow for

multiple resource constraints and a stochastic evolu-
tion of care requirements unlike previous literature
on this problem, which has mainly assumed deter-
ministic resource requirements. While this is an
important step forward, we still assume that we know
the patient’s resource requirements for the current
day with certainty, which might not always be the
case in practice. Future research is needed to extend
our results to this case. Future work could also extend
our heuristics to the case of demand cancelations and
time-varying arrival distributions (and resource
capacities).
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Appendix A. Proofs of Theorems

PROOF OF THEOREM 1. The fact that the model can be
reduced to a model with a finite state space follows
directly from the definition of K and equations (3)–
(4) ensure that newly admitted patients or emergen-
cies will never be assigned to indices greater than K.

So consider the reduced state space

fððz1; z2; . . .Þ; ðd1; . . .; dIÞÞ : zk 2 Z0

8 k ¼ 1; . . .; 1;

di 2 N0; d
min
i � di � dmax

i

8 i ¼ 1; . . .; Ig
and actions

AKðz~; d~Þ ¼ fA ¼ ðaisÞi¼1; ...; I;s¼0; ...; ti
:

ais 2 N0;
Xti
s¼0

ais � di 8 i ¼ 1; . . .; Ig
in the following.

We now show that the optimal average costs are
the same for all initial states by showing that the
weak accessibility condition holds, see Bertsekas
(2007, p. 199). The weak accessibility condition states
that the state space can be partitioned into two sub-
sets ST and SC such that (1) all states in ST are tran-
sient under every stationary policy and (2) for every
two states s0; s 2 SC, there exists an integer m and a
decision rule / such that there is a positive probabil-
ity of reaching state s0 in m time periods when start-
ing in state s,

Pðsm ¼ s0js0 ¼ s;/Þ[ 0:

In the following, we will denote by g ¼ N þ maxi ti
the maximum time between a patient request and
their discharge.
Let SC be the set of states ðz~; d~Þ for which there

exists a sequence of g actions such that the probabil-
ity of reaching ðz~; d~Þ starting from any state ð0~; d~Þ
(an empty hospital) is greater than 0. All other states
of the state space are ST ¼ S n SC. Since, by defini-
tion, all patients who are scheduled for admission
or admitted at time 0 will have left the hospital by
time g, no other states can be visited repeatedly. So
all states in ST are transient.
Now, let A1; . . .; Ag be actions taken in states

s ¼ s1; s2; . . .; sg leading to sgþ 1 ¼ s0 2 SC with a
probability greater than 0. By the definition of SC

such a sequence exists. If all states s1; s2; . . .; sg are
different, define /ðsnÞ ¼ An, for all n = 1, . . ., g,
choose an arbitrary feasible action for all other
states. Weak accessibility follows with m = g. If one
or more states are visited multiple times, pick one
repeatedly occurring state at random and delete all
states in between the two occurrences. Repeat this
until all states in the resulting sequence
s ¼ s

001; s
002; . . .; s

00M are different from each other.
Let A

00n be the action that was chosen in state s
00n.

Then, define /ðs00nÞ ¼ A
00n, for all n = 1, . . ., M and

choose an arbitrary feasible action for all other
states. Weak accessibility follows with m = M.

PROOF OF THEOREM 2. The result directly follows
from our proof of Theorem 1.
PROOF OF THEOREM 3. For technical reasons, we intro-
duce R artificial elective patient types, which repre-
sent the decision to not use one unit of resource r on
the following day. These artificial types do not bring
any contribution and are numbered i = I + 1,. . .,
I + R with ðji; fi; tiÞ ¼ ðJ þ r; 0; 0Þ. They arrive in
state 0Jþr with urð0Jþ r0 Þ ¼ 0 for all r; r0 ¼ 1; . . .; R
and will be in state 1Jþr with urð1JþrÞ ¼ 1 and
ur0 ð1JþrÞ ¼ 0 for all r; r0 ¼ 1; . . .; R with r 6¼ r0 the

Barz and Rajaram: Elective Patient Admission and Scheduling
1926 Production and Operations Management 24(12), pp. 1907–1930, © 2015 Production and Operations Management Society



following day, so that PðZnþ1 ¼ 1JþrjZn ¼ 0JþrÞ ¼
PðZnþ1 ¼ �jZn ¼ 1JþrÞ ¼ 1. Note that the introduc-
tion of such artificial patients has no impact on an
optimal policy since such a policy would always
reject them. To see that an optimal policy would
never accept any patients from the artificial patient
type, note that for any given sequence of actions
A1; A2; . . . with anIþ r0 [ 0 for some n, r0 ¼ 1; . . .; R
and average net contribution J, one can easily con-
struct a sequence with an average net contribution
J0 
 J by choosing A

01; A
02; . . . with a

0n
Iþr0 ¼ 0 and

a
0n
is ¼ anis for all i = 1, . . ., I, s ¼ 0; . . .; ti and n 2 N.
We assume that the artificial patient types I + r

with r = 1, . . ., R have a deterministic demand of
dmin
Iþr ¼ dmax

Iþr ¼ cr. The model discussion and all pre-
viously proven results carry over to this setting with
elective patient types i = 1, . . ., I + R by extending
the terms accordingly (e.g., K will now be
K ¼

PIþR
i¼1 dmax

i ðti þNÞ þ
PJ

j¼1 x
max
j N).

To prove that there is an optimal solution with time-
invariant values Vr, we first show that Vrn � Vrn�1.
Then we identify a subset of conditions that are the
sole candidates to be the tightest constraints. Subse-
quently, we show how an optimal solution with time-
invariant values Vr can be constructed from any given
optimal solution. Finally, we show how the simplified
formulation of ALG can be obtained.
First, note that we assumed that patients stay at

most N time periods at the hospital. Hence, for each
resource r = 1, . . ., R, there must be a hospital state
z~ for which there exists a k with EðurðzkÞÞ [ 0 and
EðurðZnÞjZ0 ¼ zkÞ ¼ 0 for all n ≥ 1. As a conse-
quence, it is possible to choose

P
k:zk 6¼� urðzkÞ arbi-

trarily large even if
P

k:zk 6¼� EðurðZnÞjZ0 ¼ zkÞ ¼ 0
for n ≥ 1. For example, the hospital could be filled
up with artificial patients, who all require some
resources today but none tomorrow.
Further, define Nr as the maximum number of time

periods into the future that resource rmay be required
by any patient currently admitted or scheduled.

Nr ¼maxfn 2 f0; . . .;Ng : 9z; z0 2 Z : urðz0Þ[ 0

and PðZn ¼ z0jZ0 ¼ zÞ[ 0g

and rearrange equations (12)–(13) to read

min
g;Vrn;Wi;r¼1;...;R;i¼1;...;I;n2N0

g ðA1Þ

g

XI
i¼1

fi
Xti
s¼0

ais �
XR
r¼1

prE

 "X1
k¼1

urðzkÞ

þ
XI
i¼1

urð0jiÞai0 þ
XJ
j¼1

urð0jÞXj � cr

#þ!

þ
XI
i¼1

WiðEðDiÞ � diÞ þ
XR
r¼1

�
Vr0

X1
k¼1

urðzkÞ

þ
XN
n¼1

ðVrn � Vrn�1Þ
X1
k¼1

EðurðZnÞjZ0 ¼ zkÞ

�
XN
n¼1

Vrn

XJ
j¼1

E½Xj�EðurðZnþ1ÞjZ0 ¼ 0jÞ

�
XN
n¼1

Vrn

XI
i¼1

Xminfnþ1;tig

s¼0

aisEðurðZnþ1�sÞjZ0 ¼ 0jiÞ
�

8ðz~; d~Þ 2 S;A 2 Aðz~; d~Þ: ðA2Þ

For any solution with Vr0 [ pr, one could always
find a violated constraint by choosing

P1
k¼1 urðzkÞ

large and
P1

k¼1 EðurðZnÞjZ0 ¼ zkÞ ¼ 0. It follows
directly that Vr0 � pr must hold for all resources r
in any feasible solution.
Since the number of patients in the hospital is

unbounded,
P1

k¼1 EðurðZnÞjZ0 ¼ zkÞ can be arbitrarily
large for all r = 1, . . ., R, and n ¼ 1; . . .; Nr. Hence, if
ðVrn � Vrn�1Þ [ 0, one could always find a violated
constraint above. As a consequence, it must hold that

Vrn � Vrn�1 � 0 8r ¼ 1; . . .;R; n ¼ 1; . . .;Nr:

ðA3Þ

Now, take an optimal solution V�
rn, W

�
i , and g� with

0�V�
rn �V�

rn�1 � pr 8r ¼ 1; . . .;R; n ¼ 1; . . .;Nr:

Since the solution is optimal, it must be feasible.
Because artificial patient types require exactly one

unit of a resource, there is a state ðz~; d~Þ 2 S with
urðzkÞ ¼ �r for any given �r 2 N0 andP1

k¼1 EðurðZnÞjZ0 ¼ zkÞ ¼ 0 for all r = 1 . . ., R. When
solving equations (A1)–(A2), it follows from equation
(A3) that the tightest constraints are given by

g� 

XI
i¼1

fi
Xti
s¼0

ais �
XR
r¼1

prE

 "
�r þ

XI
i¼1

urð0jiÞai0

þ
XJ
j¼1

urð0jÞXj � cr

#þ!
þ
XI
i¼1

W�
i ðEðDiÞ � diÞ

þ
XR
r¼1

�
V�

r0�r �
XN
n¼1

V�
rn

XJ
j¼1

E½Xj�EðurðZnþ1ÞjZ0 ¼ 0jÞ

�
XN
n¼1

V�
rn

XI
i¼1

Xti
s¼0

aisEðurðZnþ1�sÞjZ0 ¼ 0jiÞ
�
: ðA4Þ

for any combination of demand d~, �r 2 N0,
r = 1, . . ., R, and actions ais 2 N0 with

Pti
s¼0 ais � di.

Setting g�� ¼ g�, W��
i ¼ W�

i , and choosing time-
invariant values V��

rn ¼ V�
r0 only reduces the value

of the right hand side of the tightest constraints. If
they are ensured, all other conditions are met as
well, so the solution is feasible. And since g�� ¼ g�,
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the solution must be optimal, too. As a consequence,
we can conclude that there always is an optimal
solution with time-invariant values 0�V�

r � pr.
To obtain equations (14)–(16), use time invariant

values 0�Vr � pr in equation (A4), and let
cr ¼ cr � �r �

PI
i¼1 urð0jiÞai0 and ai ¼

Pti
s¼0 ais for

all r = 1, . . ., R and i = 1, . . ., I.

PROOF OF THEOREM 4. We prove the Theorem by
proving three inequalities (1) g� � gADP, (2)
gADP � gALG (3) gALG � gDUP one by one.

The first inequality, g� � gADP, is a standard result in
ADP and obvious if the affine approximation of the bias
function (11) is understood as an additional constraint
in the original linear optimization problem (9)–(10).
The second inequality gADP � gALG follows

directly from the fact that SK � S. Since more con-
ditions must be fulfilled the minimization problem
yields a larger value.
To see the third inequality gALG � gDUP, consider the

dual problem (18)–(23), plug equation (19) into equa-
tion (18) and rearrange terms in equation (20) to obtain

max
xðc~;a~;d~Þ

X
ðc~;a~;d~Þ2X

xðc~;a~;d~Þ

(XI
i¼1

fiai�
XR
r¼1

prE
� XJ

j¼1

urð0jÞXj� cr

2
4

3
5
þ�

�
XR
r¼1

pr
h
cr� crþ

XJ
j¼1

E½Xj�

XN
n¼1

EðurðZnÞjZ0 ¼ 0jÞþ
XI
i¼1

ai

XN
n¼0

EðurðZnÞjZ0 ¼ 0jiÞ
iþ)

s:t:
X

ðc~;a~;d~Þ2X

xðc~;a~;d~Þdi ¼E½Di� 8i¼ 1; . . .; I

X
ðc~;a~;d~Þ2X

xðc~;a~;d~Þ ¼ 1

xðc~;a~;d~Þ 
0 8ðc~;a~;d~Þ 2X :

Jensen’s inequality yields that

E½
XJ
j¼1

urð0jÞXj � cr�
þ 
 ½

XJ
j¼1

urð0jÞEðXjÞ � cr�
þ:

Hence,

X
ðc~;a~;d~Þ2X

xðc~;a~;d~Þ

(XI
i¼1

fiai �
XR
r¼1

prE
�
½
XJ
j¼1

urð0jÞXj � cr�þ
�

�
XR
r¼1

pr
h
cr � cr þ

XJ
j¼1

E½Xj�
XN
n¼1

EðurðZnÞjZ0 ¼ 0jÞþ
XI
i¼1

ai
XN
n¼0

EðurðZnÞjZ0 ¼ 0jiÞ
iþ)

�
X

ðc~;a~;d~Þ2X

xðc~;a~;d~Þ

(XI
i¼1

fiai�
XR
r¼1

pr

 
½
XJ
j¼1

urð0jÞEðXjÞ� cr�þ

þ
h
cr� crþ

XJ
j¼1

E½Xj�
XN
n¼1

EðurðZnÞjZ0 ¼ 0jÞ

þ
XI
i¼1

ai
XN
n¼0

EðurðZnÞjZ0 ¼ 0jiÞ
iþ!)

�
X

ðc~;a~;d~Þ2X

xðc~;a~;d~Þ

(XI
i¼1

fiai�
XR
r¼1

pr

 
½
XJ
j¼1

E½Xj�
XN
n¼0

EðurðZnÞjZ0 ¼ 0jÞ� cr

þ
XI
i¼1

ai
XN
n¼0

EðurðZnÞjZ0 ¼ 0jiÞ
iþ!)

¼
XI
i¼1

fiai�
XR
r¼1

pr
XN
n¼0

XI
i¼1

E½urðZnÞjZ0 ¼ 0ji �ai

 "

þ
XJ
j¼1

E½urðZnÞjZ0 ¼ 0j�E½Xi�Þ� cr�þ;

where the last inequality follows from
½a�þ þ ½b�þ 
 ½a þ b�þ, and the equality is obtained
by letting ai ¼

P
ðc~;a~;d~Þ2X xðc~;a~;d~Þai.

Further, note that for all ðc~; a~; d~Þ 2 X , we have
0 � ai � di. As a consequence, we can write the con-
dition in terms of ai as

0� ai ¼
X
c;a;d

xc;a;dai �
X
c;a;d

xc;a;ddi ¼ E½Di�

8i ¼ 1; . . .; I:

So every feasible solution of equations (18)–(23) over
X can be transformed into a solution of (6)–(7) that
has a larger than or equal objective value. Hence,
we have gALG � gDUP.
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