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Abstract. We consider the problem of minimizing daily expected resource usage and

overtime costs across multiple parallel resources such as anesthesiologists and operating

rooms, which are used to conduct a variety of surgical procedures at large multispe-

cialty hospitals. To address this problem, we develop a two-stage, mixed-integer stochastic

dynamic programming model with recourse. The first stage allocates these resources

across multiple surgeries with uncertain durations and prescribes the sequence of surg-

eries to these resources. The second stage determines actual start times to surgeries based

on realized durations of preceding surgeries and assigns overtime to resources to ensure

all surgeries are completed using the allocation and sequence determined in the first stage.

We develop a data-driven robust optimization method that solves large-scale real-sized

versions of this model close to optimality. We validate and implement this model as a

decision support system at the UCLA Ronald Reagan Medical Center. This system effec-

tively incorporates the flexibility in the resources and uncertainty in surgical durations,

and explicitly trades off resource usage and overtime costs. This has increased the average

daily utilization of the anesthesiologists by 3.5% and of the operating rooms by 3.8%. This

has led to an average daily cost savings of around 7% or estimated to be $2.2 million on an

annual basis. In addition, the insights based on this model have significantly influenced

decision making at the operating services department at this hospital.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2017.1634.

Keywords: healthcare operations • mixed integer stochastic dynamic programming • robust optimization

1. Introduction
Surgical procedures are complex tasks requiring the

use of several specialized and expensive resources. In a

hospital, the operating services department is respon-

sible for managing resources used in surgical pro-

cedures. Every day, this department assigns to each

surgery an operating room (OR), an anesthesiologist,

a nursing team, and the requisite surgical materials.

The department also determines the sequence inwhich

these surgeries will be performed and the scheduled

start times.While performing these actions, the depart-

ment ensures that the cost of the OR suite is minimized

by reducing resource usage and overtime costs.

The operating services departments at large hos-

pitals devote significant amount of time in making

these resource management decisions. The complexity

of these decisions is due to the following four primary

reasons. First, OR resources are expensive (Macario

2010), and in short supply (Orkin et al. 2013), and thus

surgeries are performed in highly resource-constrained

environments. Second, surgical procedures are often

very specialized. Therefore, equipment and facility

requirements govern whether a procedure can be per-

formed in a particular room. Anesthesiologist assign-

ments too are dictated by specialty. Studies have

demonstrated that not only do surgeons often prefer

to have an anesthesiologist of the required subspe-

cialty (Ghaly 2014), outcome indicators of surgical

procedures are significantly better when anesthesia

is delivered by an anesthesiologist with experience

in that particular subspecialty (McNicol 1997). Pardo

(2014) predicts that increasingly anesthesiologists will

be assigned by their subspecialties. Third, the dura-

tions of surgical procedures are very difficult to pre-

dict (Kayis et al. 2012). This is partly because there is

a large number of procedures, and newer procedures

are constantly being developed (AMA 2016). Conse-

quently, historical data on all these procedures is not

available. Furthermore, a surgeon’s estimates of dura-

tions are often unreliable. Studies have demonstrated

systematic underestimation as well as overestimation

of procedure times by surgeons while scheduling surg-

eries. Some surgeons overestimate the duration when

they do not have enough cases to fill their scheduled
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block time, while others may underestimate the time

when theywish to fill in more cases (Laskin et al. 2013).

Finally, the scale of large hospitals, in terms of the num-

ber of ORs, procedures conducted, the number and

types of equipment and anesthesiologists used, makes

the simultaneous scheduling of multiple resources a

computationally challenging task.

We were exposed to these complexities at the oper-

ating services department of the UCLA Ronald Rea-

gan Medical Center (RRMC), a large multispecialty

hospital, which consistently ranks amongst the best

five hospitals in the United States.
1

Management of

this department felt that the daily resource allocation

decision played a significant role in overall depart-

ment cost, and in the service quality delivered to

patients. They believed that these aspects can be signif-

icantly improved by developing an analytical model-

based approach that considered the key complexities

in this environment, and applied historical surgical

data to decide resource assignment and scheduling.

This paper describes the development, implementa-

tion, and evaluation of a model-based decision sup-

port system that uses a data-driven robust optimiza-

tion procedure to determine the daily scheduling of

anesthesiologists and rooms for elective surgeries at

the UCLA RRMC.

There is a large body of literature on elective surgery

scheduling. Min and Yih (2010) consider scheduling

elective surgeries under uncertainty in surgery dura-

tions and downstream capacity constraints. Gupta

(2007) discusses the broader issues of managing OR

suites for elective surgeries. In this context, we study

the problem of integrated scheduling of anesthesiolo-

gists and ORs to surgeries. The literature on schedul-

ing anesthesiologists to surgeries includes Marcon

and Dexter (2006), McIntosh et al. (2006), Dexter and

Wachtel (2014), Dexter et al. (2016). However, these

papers do not consider the joint scheduling with

ORs and uncertainty in surgical durations, both of

whichwere critical features in our application. Further-

more, the solution methods in these papers employ

experience-based heuristics rather than optimization-

based methods. The literature for scheduling ORs

under uncertain surgery durations has primarily been

focused on single resource type corresponding to the

OR. Research in this area include Denton and Gupta

(2003), Green and Savin (2008), Mancilla and Storer

(2012), Mak et al. (2014a). In addition, Denton et al.

(2010) solve the problem of assignment of surgeries

to multiple parallel ORs under fixed costs of ORs

and variable overtime costs. However, none of these

papers consider multiple resources, the simultaneous

sequencing and start times of surgeries or are tested

with data in a large-scale application context. While a

single resource type may be sufficient for specialized

surgery suites, multispecialty hospitals like the UCLA

RRMC require a holistic solution of surgery scheduling

that simultaneously optimizes on all specialized paral-

lel and multiple resources.

The literature on multiple resources can be classified

in two broad categories: serial and parallel multiple

resources. The research on serial multiple resources

focuses on analyzing the impact of decisions made on

an upstream resource such as the ORs on a down-

stream resource such as a postanesthesia care unit

(Marcon andDexter 2006, Augusto et al. 2010, Saadouli

et al. 2015). Additional work in this area that consid-

ers other upstream and downstream resources include

Cardoen et al. (2009a, b), and Gul et al. (2011). How-

ever, none of these papers consider parallel multiple

resources (such as anesthesiologists and ORs), which

are specialized and have to be scheduled simultane-

ously under uncertainty in surgical durations. These

were important aspects in the application and signif-

icantly complicated the optimization model. The lit-

erature related to parallel multiple resource types is

relatively scarce. Beliën and Demeulemeester (2008),

Meskens et al. (2013) consider integrated OR schedul-

ing with parallel multiple resources under determin-

istic surgery durations. Batun et al. (2011) consider

scheduling of surgeries given two parallel resource

types: ORs and surgeons under stochastic surgery

durations. However, they do not consider specializa-

tions of rooms and anesthesiologists, and consider a

problem significantly smaller in scale than in our appli-

cation. For the scale of problem at the UCLA RRMC,

sample average approximation (SAA) based stochastic

optimization procedures as used in Denton and Gupta

(2003), Min and Yih (2010) were intractable. This is

due to the large number of possible integer assign-

ments in the first stage, which increases the number

of samples required to achieve convergence in objec-

tive value and solution. These difficulties in employ-

ing this method has been described in a more general

context by Kleywegt et al. (2002). Furthermore, the

overall complexity of the large-scale problem in our

application precluded finding even feasible solutions

using leading commercially available solvers such as

ddsip (Märkert and Gollmer 2008) that employ the

state-of-the-art procedures for solving stochastic pro-

grams such as dual-decomposition methods (Carøe

and Schultz 1999). We describe this in our computa-

tional analysis. To circumvent these problems, we use

a robust optimization procedure (Bertsimas and Thiele

2006, Bertsimas et al. 2013). While a similar approach

has been used by Denton et al. (2010) and Mak et al.

(2014b), our work extends theirs by considering multi-

ple resource types. This extension requires significant

modification to existing solution methods.

Our paper makes the following contributions. First,

we consider two types of parallel resources, which

are of critical importance to specialties: ORs and



Rath et al.: Integrated Anesthesiologist and Room Scheduling for Surgeries
1462 Operations Research, 2017, vol. 65, no. 6, pp. 1460–1478, ©2017 INFORMS

anesthesiologists, and we simultaneously optimize

their assignment and sequencing. Second, we develop

an efficient solution method using robust optimization

to provide effective solutions to large-scale problems.

An important element when applying robust optimiza-

tion is the estimation of an uncertainty set. We develop

an estimation procedure to estimate the sets using

historical data. This data-driven robust optimization

approach was successful in solving the full-scale prob-

lem for the entire surgery suite at the RRMC within

25 minutes, with a performance gap within 5% from

the lower bound. Third, our methodology significantly

outperforms the best benchmark procedures in the lit-

erature. Fourth, we develop a model-based decision

support system, which has been validated and imple-

mented at the UCLA RRMC. To the best of our knowl-

edge, this is the first real implementation of robust

optimization in the healthcare industry. This system

effectively incorporates the flexibility in the resources

and uncertainty in surgical durations, and explicitly

trades off costs. This has considerably improved upon

current practice, and has resulted in average daily cost

savings of around 7% or estimated to be $2.2 million

on an annual basis. Further, the insights from our work

has had a notable impact on decision making at the

hospital.

The remainder of the paper is organized as follows.

Section 2 provides a detailed problem description at

the UCLA RRMC. Section 3 presents the model formu-

lation, properties, and solution procedure. In Section 4,

we describe the procedure for parameter estimation

and model calibration. Section 5 provides the results

of the computational analysis. Section 6 describes the

implementation of this model at the UCLA RRMC,

presents the financial benefits, provides managerial

insights, and describes the organizational impact of

this work.

2. Problem Description
Operating services is one of the largest departments at

the UCLA RRMC with around $120 million in annual

revenues representing about 10% of this hospital’s rev-

enues. This department serves around 27,000 patients

annually by conducting around 2,700 types of elec-

tive and emergency surgical procedures across 12 spe-

cialties. Emergency surgeries are conducted in three

dedicated ORs with a separate team of anesthesiol-

ogists. Since emergency surgeries are separated from

elective surgeries and account for only about 15% of

revenues, management of this department asked us

to focus solely on elective surgeries. To perform these

surgeries, the operating services department uses 23

ORs, which are further divided across these 12 spe-

cialties that require specific equipment. The details on

the number of rooms that can perform each specialty

is provided in Table 1. General surgery procedures can

Table 1. Summary of Resource by Specialty

Surgery Number of ORs Number of

specialty available anesthesiologists available

Vascular 1 9

Neuro 3 10

Plastics 23 NA

ENT 23 NA

Urology 23 NA

Liver 1 8

Thoracic 2 5

Cardiac 3 14

Trauma 1 NA

Pediatric 2 12

Eye surgery 23 NA

General 23 NA

be performed in any of these 23 ORs dedicated for the

exclusive use of elective surgeries. Add-on surgeries

are not considered here as depending on availability,

they are assigned to the ORs dedicated to emergency

procedures. Surgeries are scheduled to start in ORs

only between 7 a.m. and 3 p.m. Further, there are fixed

costs for opening an OR each day. This consists of an

initial cleaning and equipment setup costs along with

daily nurse and technician staffing costs, whose assign-

ments do not depend on specialty. In addition, over-

time costs are incurred for nurses and technicians if the

rooms are required to be open beyond 3 p.m. Finally,

these ORs are scheduled and staffed simultaneously.

There were 92 anesthesiologists at the UCLA RRMC

divided across these 12 specialties. The number of

anesthesiologists by specialty is also shown in Table 1.

The assignment of anesthesiologists is according to the

specialty required for the surgery. Anesthesia for surg-

eries in some specialties can be administered by any

anesthesiologist. Such specialties are denoted by NA

in this table. There are three shifts of equal duration

for the anesthesiologists: day (7 a.m. till 3 p.m.), late

(11 a.m. till 7 p.m.), and night (7 p.m. till 3 a.m.). Each

anesthesiologist is preassigned to exactly one shift, and

thus the regular working hours for each anesthesiol-

ogist is eight hours. In addition, anesthesiologists can

only be assigned to surgeries that begin during their

shift. Overtime costs for anesthesiologists are incurred

if surgeries in progress exceed the duration of the

shift. A certain number of anesthesiologists who are

not scheduled to work on a given day are asked to

be on standby or on call, so that they can be called

to work if necessary. However, when anesthesiologists

are assigned from on call, there are significant costs for

using such an option. Anesthesiologists assigned from

on call do not incur overtime costs. The anesthesiolo-

gists on call are informed of their status the previous

day and assigned surgeries that day as required.

It is important to note that in the context of large

multispecialty hospitals such as the UCLA RRMC,
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surgeons are not part of the operating services depart-

ment. They are usually from the independently admin-

istered specialty departments at this hospital, and

on some occasions, can be from other hospitals. The

surgeons bring their patients and use the operat-

ing services department as a service provider. Thus

the operating services department does not have the

option of assigning surgeons to patients. For this rea-

son, we assume that each surgery-surgeon combina-

tion is already set and we consider them together. This

ensures that each surgery has a clear and unchange-

able link to the surgeon. This aspect is also consistent

with the literature in this area (Dexter and Traub 2002,

Marques et al. 2014).

Typically, a request to schedule a surgery is initiated

by the surgeon on behalf of the patient with general

admissions at the hospital. This request is assigned

a date based on the earliest availability in the block

reservations for the particular specialty. Once all the

elective surgery requests have been received the day

before the surgery, the operating services department

decides which OR to open, finalizes assignment of

these rooms, and anesthesiologist to surgeries, deter-

mines start times of surgeries, and effectively specifies

the sequence of all the surgeries. These decisions are

made in the previous day for all the surgeries that need

to be conducted in the following day. Consequently, the

planning horizon is a single day. The current planning

process to make these decisions uses an experience-

based practitioner’s heuristic. Such types of heuristics

have been reported in the literature (Dexter and Traub

2002, Cardoen et al. 2010). The practitioner’s heuristic

consists of the following steps:

Step 1. Assign surgeries to ORs in sequential fash-

ion in order of start times requested by the surgeons,

by surgery specialty, and duration estimates from sur-

geons, until the last surgery in the room can start before

the end of the shift for the OR.

Step 2. Assign one anesthesiologist to each room so

that the anesthesiologist can perform most of the surg-

eries in the room.

Step 3. A few anesthesiologists are assigned to surg-

eries across rooms to ensure all surgeries have been

assigned an anesthesiologist by specialty.

Step 4. If above plan cannot be implemented by anes-

thesiologists on regular duty, assign anesthesiologists

from on call.

While this practitioners heuristic is easy to understand

and implement, it does not consider two important

aspects. First, it does not explicitly consider uncertainty

in surgical durations. Second, it does not directly use

the feature that most anesthesiologists and ORs can

perform more than one specialty. Thus, it does not

exploit the flexibility in these resources. Define utiliza-

tion as the fraction of the available shift time that is

used by a particular resource. Inefficient assignment

Figure 1. Histogram of Average Daily Utilization of
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and scheduling of anesthesiologists and ORs to surg-

eries leads to low utilization and overtime of these

resources. As seen in Figure 1, average daily utiliza-

tion across the anesthesiologists is close to 0.75, with

around 25% of days having an average daily utiliza-

tion of less than 0.70. However, despite these lower

levels of utilization, the average number anesthesiolo-

gists on call is around six per day. Similarly, for ORs,

the average daily utilization is close to 78% (Figure 2)

but the average overtime per day is around 18 hours.

Taken together average on call and overtime costs for

anesthesiologists and rooms at this department are

about 33% of revenues. A more effective optimization-

based assignment and scheduling system that consid-

ers uncertainty in surgical durations and flexibility in

the resources could potentially reduce overtime and

on-call costs.

Assignment and scheduling decisions at this hos-

pital are complicated by the large number of ORs

and anesthesiologists, variety in surgical procedures,

variability in anesthesiologist work load, and unpre-

dictability in surgery durations. More details on these

aspects are provided in the e-companion. Manage-

ment of the operating services department felt that

the current planning process did not adequately con-

sider these complicating factors. Thus they believed

that the daily expected resource usage and overtime

Figure 2. Histogram of Average Daily Utilization of ORs
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costs across anesthesiologists andORs could be consid-

erably lowered by developing an optimization model,

which led to our involvement. This model is formu-

lated as a two-stage, mixed-integer stochastic dynamic

program with recourse. The first stage of this model

allocates these resources across multiple surgeries

with uncertain durations, and prescribes the sequence

of surgeries to these resources. Assuming that each

surgery should be scheduled as early as possible, this,

consequently, provides a scheduled start time for surg-

eries. The second stage determines the actual start

times to surgeries based on realized durations of pre-

ceding surgeries, and assigns overtime to resources

to ensure all surgeries are completed using the allo-

cation and sequence determined in the first stage.

The size and complexity of the problem precluded

solution using conventional methods. Therefore we

develop a data-driven robust optimization approach

that solves large-scale real-sized versions of this model

close to optimality. Next, we describe themodel formu-

lation, present its properties, and describe its solution

techniques.

3. Model
We start by presenting a model formulation of the

IARSP for surgeries. The planning horizon for this

model is a single day. This was consistent with the

requirements in the application context. Here, surg-

eries were finalized by the aggregate block schedul-

ing system and released to the operating services

department for detailed scheduling and staffing only

the day before the surgery. Further, the availability

of anesthesiologists on regular duty and on call was

already determined by a longer range planning system

at this department. Subsequently, the remaining deci-

sions were the daily assignment of anesthesiologists

and ORs to surgeries and determining the sequence of

surgeries at these resources. The model makes these

decisions in the previous day for the next day. The

planning horizon of one day is also consistent with

other research on ORmodels (Cardoen et al. 2009a and

2009b, Batun et al. 2011). To provide a precise defini-

tion of themodel, let h , i , j ∈ I index the set of surgeries,
a ∈A index the set of anesthesiologists, and r ∈ R index

the set of ORs. We define the following variables that

are optimized:

xia : 1 if anesthesiologist a is assigned to surgery i, 0
otherwise

ya : 1 if anesthesiologist a is assigned from on call,

0 otherwise

zir : 1 if room r is assigned to surgery i, 0 otherwise

vr : 1 if room r is assigned any surgery, 0 otherwise

ui j : 1 if surgery i precedes surgery j, 0 otherwise

αi ja : 1 if surgery i and j are assigned to

anesthesiologist a and i precedes j, 0 otherwise

βi jr : 1 if surgery i and j are assigned to room r and

i precedes j, 0 otherwise

si : Scheduled start time of surgery i (hours)
Si : Actual start time of surgery i (hours)

Overa : Overtime of anesthesiologist a (hours)

Overr : Overtime of room r (hours)

In addition, let x� (xia) ∀ i ∈ I , a ∈A, y� (ya) ∀ a ∈A, z�
(zir) ∀ i ∈ I , r ∈ R, u� (ui j) ∀ i , j ∈ I, s� (si) ∀ i ∈ I denote
the vectors associated with these variables. Next, we

define the following parameters or inputs:

κA
ia : 1 if anesthesiologist a can be assigned to surgery

i, 0 otherwise

κR
ir : 1 if surgery i can be done in room r, 0 otherwise

ga : 1 if anesthesiologist a is on regular duty, 0

otherwise

wa : 1 if anesthesiologist a is on call, 0 otherwise

cr : Fixed cost of opening OR r ($/day)

coa : Overtime cost of anesthesiologist a ($/hour)

cor : Overtime cost of room r ($/hour)

cq : Cost of assigning anesthesiologist from on call

($/day)

tstarta : Start time of shift associated with

anesthesiologist a (hour)

tenda : End time of shift associated with

anesthesiologist a (hour)

Tend

: End time of the day (hour)

M, M
seq

, M
anesth

, M
room

: large positive numbers

The durations di of surgery i is uncertain ∀ i ∈ I and

can be considered as a random variable. The vector of

surgery durations for the day is represented by d� (di),∀ i ∈ I. We incorporate the uncertainty in surgery dura-

tions through a robust optimization approach, where

we model di as an uncertain parameter that takes val-

ues in [ ¯di − ˆdi , ¯di +
ˆdi]. Here,

¯di is the nominal duration

for surgery i and ˆdi is one-sided maximum deviation

for surgery i. We define the scaled deviations of di
about its nominal value as fi � (di − ¯di)/ ˆdi . Note that the

scaled deviation fi can take a value in [−1, 1]. Following

the approach in Bertsimas and Sim (2004), Denton et al.

(2010), we subject the scaled deviations to a constraint∑
i∈I | fi | 6 τ so that, the total deviation across all surg-

eries is less than a known threshold τ. Here, τ bounds

the total maximum deviation of surgery duration from

the nominal value across all surgeries. This threshold

is called the budget of uncertainty and represents the

level of pessimism on the number of surgeries deviat-

ing from their nominal value. If τ� 0, it is equivalent to

solving the nominal value problem with di �
¯di , ∀ i ∈ I.

The IARSP consists of two stages. The first-stage

problem assigns anesthesiologists and rooms to surg-

eries, and prescribes a sequence of surgeries to be

performed in each room and by each anesthesiolo-

gist. The second-stage recourse function determines

actual start times to surgeries based on realized dura-

tions of preceding surgeries, and assigns overtimes to
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resources such that all the surgeries are completed in

the assignment and sequence prescribed by the first-

stage problem. Here, the two-stage approach assumes

that all information about actual surgery durations is

known early in the morning, which is, of course, not

the case. However, this simplification has no impact on

the solution since the only recourse action is to accu-

mulate overtime without changing the sequences. Fur-

ther, this simplification is consistent with the literature

on surgery scheduling employing two-stage stochastic

models with recourse (Denton et al. 2010, Batun et al.

2011, Mancilla and Storer 2012). The [IARSP] can be

written as

[IARSP]

V ∗(τ)�min

{∑
r∈R

cr vr +
∑
a∈A

cq ya +Ñ(x,y,z,u,s)
}

(1)

subject to∑
a∈A

xia �1 ∀ i ∈ I (2)∑
r∈R

zir �1 ∀ i ∈ I (3)

zir 6 vr ∀ i ∈ I , r ∈R (4)

xia 6 ga + ya ∀ i ∈ I , a ∈A (5)

ya 6wa ∀ a ∈A (6)

si > tstarta −M(1− xia) ∀ i ∈ I , a ∈A (7)

xia 6 κ
A
ia ∀ i ∈ I , a ∈A (8)

zir 6 κ
R
ir ∀ i ∈ I , r ∈R (9)

αi ja 6 ui j ∀ i , j ∈ I , a ∈A (10)

βi jr 6 ui j ∀ i , j ∈ I , r ∈R (11)

ui j + u ji 6 1 ∀ i , j ∈ I (12)

uih > ui j + u jh −1 ∀ i , j, h ∈ I (13)

αi ja +α jia 6 xia ∀ i , j ∈ I , a ∈A (14)

αi ja +α jia 6 x ja ∀ i , j ∈ I , a ∈A (15)

αi ja +α jia > xia + x ja −1 ∀ i , j ∈ I , a ∈A (16)

βi jr + β jir 6 zir ∀ i , j ∈ I , r ∈R (17)

βi jr + β jir 6 z jr ∀ i , j ∈ I , r ∈R (18)

βi jr + β jir > zir + z jr −1 ∀ i , j ∈ I , r ∈R (19)

αi ja > xia + x ja + βi jr −2 ∀ i , j ∈ I , r ∈R, a ∈A (20)

βi jr > zir + z jr +αi ja −2 ∀ i , j ∈ I , r ∈R, a ∈A (21)

xia , ya , zir , ui j , vr , αi ja , βi jr ∈ {0,1}
∀ i , j ∈ I , r ∈R, a ∈A (22)

si > 0 ∀ i ∈ I . (23)

Objective function (1) consists of three terms. The

first term is the fixed cost for opening ORs each day.

The second term is the cost of assigning anesthesi-

ologists from on call. The third term Ñ(x,y, z,u, s)
represents the worst-case second-stage cost and is

described in detail below. Constraints (2) and (3) assign

each surgery exactly one anesthesiologist and one OR,

respectively. Constraint (4) ensures that vr is set to

1 whenever any surgery is assigned to OR r. Con-
straint (5) ensures that an anesthesiologist can be

assigned to a surgery only if they are on regular duty or

on call. Constraint (6) enforces that an anesthesiologist

can be assigned from on call only if they are listed in

the on-call list. Constraint (7) ensures that an anesthe-

siologist can be assigned a surgery only if the sched-

uled start time of the surgery is after the shift start

time of the anesthesiologist. Constraints (8) and (9)

ensure that surgeries are assigned rooms and anes-

thesiologists by specialty. Constraint (10) enforces the

condition that if an anesthesiologist is used to conduct

surgery i before surgery j, then surgery i has to pre-

cede surgery j or ui j is set to 1. Constraint (11) imposes

the similar condition and sets ui j to 1 when surgery i
precedes surgery j in an OR. Constraint (12) ensures

that only one of ui j or u ji can be 1. Constraint (13) is

required to maintain consistency of schedule between

any three surgeries that follow each other, so that if i
precedes j and j precedes h, then i should precede h.
Constraints (14)–(15) restrict that only one of αi ja and

α jia can be 1 only if surgeries i and j are assigned to

anesthesiologist a. Constraint (16) enforces either αi ja
or α jia is set to 1 if surgeries i and j are assigned to anes-

thesiologist a. In addition, constraint (16) ensures that

the sequencing constraints for anesthesiologists αi ja is

active only for those surgeries that are assigned to the

same anesthesiologist. Constrains (17)–(19) are similar

logical constraints corresponding to the sequencing of

rooms. Constraints (20) and (21) maintain consistency

of sequencing variables between OPs and anesthesi-

ologists. Constraint (20) enforces that if anesthesiolo-

gist a and OR r is assigned to surgeries i and j and i
precedes j in OR r, then i has to precede j in assign-

ment to anesthesiologist a. Constraint (21) is a similar

constraint that makes sure that if surgery i precedes

surgery j with anesthesiologist a, then i has to precede

j in the assignment of OR r. Constraints (22) and (23)

represent variable domains.

The worst-case second-stage cost is given by

Ñ(x,y, z,u, s)� max

d∈D(τ)
Ò(x,y, z,u, s,d) (24)

Ä(τ)�
{
d ∈ �|I | : di �

¯di + fi
ˆdi , i ∈ I , f ∈Æ (τ)

}
(25)

Æ (τ)�
{
f ∈ �|I | :

∑
i∈I
| fi | 6 τ,−1 6 fi 6 1

}
(26)

Ò(x,y, z,u, s,d) is the total overtime cost across all

resources, for a given assignment, sequence, sched-

uled surgery start times, and surgery durations. This

is maximized over the vector of surgery durations d
to determine the worst-case cost, where d is restricted

to lie in the uncertainty set D(τ) given by (25). This
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equation restricts di , the duration of surgery i, to lie

within a maximum deviation of
ˆdi from the nominal

value of the duration
¯di . The total extent of such devi-

ations is specified by the set F (τ), which is defined

by (26) and is well suited to our problem context. In

particular, the effective allocation of multiple parallel

resources such as anesthesiologists and rooms, which

are used repeatedly across the surgeries in a given day

requires a specification of τ, an overall level or bud-

get of uncertainty across surgical durations. This is

enforced by (26), which specifies that the maximum

deviation across all surgeries is at most τ. A schedule

based on a large τ would be overly accommodating

toward the second-stage cost, while a schedule corre-

sponding to a small τ would not be accommodating

enough. In Section 4, we present a methodology to

determine
¯di ,

ˆdi , and τ based on historical data.

In determining Ò(x,y, z,u, s,d), it is important to

note that the only decision variables at this stage are the

actual start times of the surgeries and the overtime for

the anesthesiologists and rooms. We pick these vari-

ables to minimize total overtime costs while ensuring

that all the surgeries scheduled for the day are com-

pleted and there are no conflict in actual start times of

surgeries assigned to the same resource. To compute

Ò(x,y, z,u, s,d), we formulate the linear program as

follows:

Ò(x,y,z,u,s,d)�min

{∑
a∈A

coaOvera +
∑
r∈R

corOverr

}
(27)

subject to

S j > Si + di −M
seq
(1− ui j) ∀ i , j ∈ I (28)

Si > si ∀ i ∈ I (29)

Overa > Si + di − tenda −Manesth(1− xia + ya)
∀ i ∈ I , a ∈A (30)

Overr > Si + di −Tend−M
room
(1− zir)

∀ i ∈ I , r ∈R (31)

Si , Overa , Overr > 0 ∀ i ∈ I , a ∈A, r ∈R. (32)

The objective function consists of the sum of over-

time across all the resources. Constraint (28) ensures

that the start time of the succeeding surgery is only

after the end time of the preceding surgery. Con-

straint (29) ensures that the actual start time of the

surgery can be no earlier than the scheduled start time.

Constraints (30) and (31) define the overtime for anes-

thesiologists on regular duty and ORs, respectively,

which is the time difference between the end time of

the last surgery in that shift and the regular shift end

time for the resource. Constraint (32) restricts start time

and overtime variables to be nonnegative variables.

The [IARSP] is a robust optimization model with the

recourse represented by this linear program. We next

develop some structural properties that are useful in

constructing solution techniques for this model.

Proposition 1. The [IARSP] has relatively complete re-
course.

All proofs are provided in the e-companion. Propo-

sition 1 implies that for every feasible first-stage solu-

tion, there exists a feasible second-stage solution. This

proposition allows us to evaluate second-stage costs

for every feasible first-stage solution. This is impor-

tant for the solution method for the [IARSP] described

in Section 3.1.1. However, evaluating Ñ(x,y, z,u, s) for
any given first-stage solution requires one to solve the

problem given in Equations (24)–(32), which is not easy

due to the max-min operator in its objective. Let λi j ,

φi , µia , θi , r , i , j ∈ I , a ∈ A, r ∈ R be dual variables corre-

sponding to constraints (28)–(31), respectively. Further,

define πi �
∑

j∈I−{i} λi j +
∑

a∈A µia +
∑

r∈R θir , and ξi �

fiπi . The following proposition simplifies the compu-

tation ofÑ(x,y, z,u, s), and, consequently, the [IARSP].

Proposition 2. If parameter τ is chosen to be a positive inte-
ger, thenÑ(x,y, z,u, s) can be reformulated as the following
mixed-integer program (MIP):

Ñ(x,y,z,u,s)

�max

{∑
i∈I
( ¯diπi + ξi

ˆdi)+
∑
i∈I

siφi −M
seq

∑
i , j∈I
i, j

λi j(1− ui j)

−Manesth

∑
i∈I

a∈A

µia(1− xia + ya)−M
room

∑
i∈I
r∈R

θir(1− zir)

−
∑
i∈I
r∈R

θirT
end−

∑
i∈I

a∈A

µia tenda

}
subject to ∑

i∈I
µia 6 coa ∀ a ∈A (33)∑

i∈I
θir 6 cor ∀ r ∈R (34)∑

j∈I
j,i

λi j −
∑
j∈I
j,i

λ ji +
∑
a∈A

µia +
∑
r∈R

θir −φi > 0 ∀ i ∈ I (35)

∑
j∈I−{i}

λi j +
∑
a∈A

µia +
∑
r∈R

θir �πi ∀ i ∈ I (36)∑
i∈I

fi 6 τ (37)

ξi 6M f fi ∀ i ∈ I (38)

ξi 6 πi ∀ i ∈ I (39)

ξi , πi , λi j , θir , µia , φi > 0 ∀ i , j ∈ I , a ∈A, r ∈R (40)

fi ∈ {0,1} ∀ i ∈ I . (41)

As described in the e-companion, the proof of this

proposition follows from strong duality of the second-

stage recourse problem for a given first-stage solution.

Note that as a consequence of Proposition 2 in which

τ is set to an integer, fi , i ∈ I are also now binary vari-

ables. Thus, in the worst case, surgeries are set to either

their nominal value or maximum positive deviation.
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In effect, τ can now be interpreted as the upper bound

on the number of surgeries that reach their maximum

deviation. Thus, restricting τ to be a positive integer,

as in this proposition, allows for a more natural inter-

pretation of τ, which was important in the application

context. As discussed in Section 4, this interpretation

drives our data-driven method in setting a parametric

value for τ from historical data. Propositions 1 and

2 imply that Ñ(x,y, z,u, s) can be evaluated for any

given first-stage feasible solution by solving a MIP.

In particular, let (πl , ξl ,λl ,φl ,µl ,θl) be the solution

to Ñ(x,y, z,u, s) for some given (xl ,yl , zl ,ul , sl). Then,
the following propositions provide a lower bound and

characterize the structure ofÑ(x,y, z,u, s). Theywill be

used in the solution method provided in Section 3.1.1.

Proposition 3. A lower bound on Ñ(x,y, z,u, s) is pro-
vided by ∑

i∈I( ¯diπ
l
i + ξ

l
i

ˆdi)+
∑

i∈I siφ
l
i −M

seq

∑
i , j∈I , i, j λ

l
i j ·

(1 − ui j) − M
anesth

∑
i∈I , a∈A µ

l
ia(1 − xia + ya) − M

room
·∑

i∈I , r∈R θ
l
ir(1− zir) −

∑
i∈I , r∈R θ

l
irT

end −∑
i∈I , a∈A µ

l
ia tenda .

Proposition 4. Ñ(x,y, z,u, s) is a piecewise-linear convex
function in the first-stage decision variables x,y, z,u, s.

In light of Proposition 4, the [IARSP] now reduces to

a piecewise-linear convex MIP in which Ñ(x,y, z,u, s),
the convex part of the objective function can be evalu-

ated by using Proposition 2 and solving a MIP. How-

ever, given this nonlinearity and the large number of

integer variables in our application, the [IARSP] can-

not be solved using powerful solvers for nonlinear pro-

grams such as BARON (Sahinidis 2014) and DICOPT

(Viswanathan andGrossmann 1990). Consequently, we

develop the following model-based heuristic proce-

dure to solve this problem.

3.1. Solution Methods
We start by describing the model-based heuristic. We

then discuss SAA-based techniques that are commonly

used in literature, which we use to benchmark the

model-based and practitioner’s heuristics. The per-

formance of these methods along with practitioner’s

heuristc (described in Section 2) will be discussed in

Section 5.

3.1.1. Model-Based Heuristic. This heuristic is based

on Kelley’s algorithm (Kelley 1960) as described in

Thiele et al. (2009) to solve robust optimization prob-

lems with recourse. Here, we consider the [IARSP] and

in light of Proposition 4, approximateÑ(x,y, z,u, s) by
a piecewise-linear equation via successive linear cuts.

We then use this approximation in constructing the

master problem at the kth iteration of the heuristic,

MP(k), defined as

[MP(k)] min

vr , ya , ψ

{∑
r∈R

cr vr +
∑
a∈A

cq ya +ψ

}
(42)

subject to

(2)–(23)

ψ>
∑
i∈I
( ¯diπ

l
i + ξi

ˆdi)+
∑
i∈I

siφ
l
i −M

seq

∑
i , j∈I
i, j

λl
i j(1− ui j)

−Manesth

∑
i∈I

a∈A

µl
ia(1− xia + ya)

−M
room

∑
i∈I
r∈R

θl
ir(1− zir)−

∑
i∈I
r∈R

θl
irT

end−
∑
i∈I

a∈A

µl
ia tenda

l �0,1,2, . . . , k−1 (43)

ψ> 0. (44)

Observe that in this problem, we approximate the

value of Ñ(x,y, z,u, s) by a variable ψ > 0. To improve

this approximation, in each iteration of the heuristic,

we use (43) to enforce the condition that ψ is greater

than or equal to the lower bound of Ñ(x,y, z,u, s),
as established by Proposition 3. This results in con-

straints (43) in which ψ approximatesÑ(x,y, z,u, s) by
a piecewise-linear equation via successive linear cuts.

This problemwill be used in the model-based heuristic

formalized by the following algorithm.

Algorithm (Model-Based Heuristic)
Step 1. Initialize U ←∞, L← 0, k← 0, l← 0. Set

ε > 0 to be sufficiently small.

Step 2. Solve the [MP(k)] and let the solution be x̃k
ia ,

ỹk
a , z̃k

ir , ũk
i j , s̃k

i , ṽk
r , α̃

k
i ja ,

˜βk
i jr ,

˜ψk
. Set L ← ∑

r∈R cr ṽk
r +∑

a∈A cq ỹk
a +

˜ψk
.

Step 3. Compute Ñ(x̃k , ỹk , z̃k , ũk , s̃k) for given x̃k
ia ,

ṽk
r , z̃k

ir , ũk
i j , s̃k

i obtained in Step 2 by solving the

mixed-integer programming formulation given in

Proposition 2. Let the optimal solution be ξk
i , π

k
i ,

λk
i j , θ

k
ir , µ

k
ia , φ

k
i . U ← min{U,∑r∈R cr ṽk

r +
∑

a∈A cq ỹk
a +

Ñ(x̃k , ỹk , z̃k , ũk , s̃k)}.
Step 4. If U − L < ε, go to Step 6, else go to Step 5.
Step 5. k ← k + 1. Add constraint ψ >

∑
i∈I( ¯diπ

k
i +

ξi
ˆdi) +

∑
i∈I siφ

k
i − M

seq

∑
i , j∈I , i, j λ

k
i j(1 − ui j) − M

anesth
·∑

i∈I , a∈A µ
k
ia(1 − xia + ya) − M

room

∑
i∈I , r∈R θ

k
ir(1 − zir) −∑

i∈I , r∈R θ
k
irT

end − ∑
i∈I , a∈A µ

k
ia tenda to the MP(k). Go to

Step 2.
Step 6. x̃k

ia , ỹk
a , z̃k

ir , ũk
i j , ṽk

r , s̃k
i , α̃

k
i ja ,

˜βk
i jr is the heuristic

solution to [IARSP].

The above algorithm is well suited for the [IARSP]

as from Proposition 4, its objective is piecewise-linear

convex and cutting plane methods such as those used

in Step 5 of this algorithm are finitely convergent for

piecewise-linear functions (Ruszczyński 2006). Also,

in this algorithm, in early iterations, the solution in

Step 2 is obtained by employing the user callbacks fea-

ture of the solver used to solve MP(k). Here, instead

of solving this problem to optimality in the initial

iterations, we request the solver to return a feasible

solution, which is then used to apply cuts in Step 5

and approximate the convex function Ñ(x,y, z,u, s) at
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each corresponding feasible solution.We do so because

MP(k) is a problem with a large number of integer

variables, and solving it to optimality can be compu-

tationally expensive with poor returns at early itera-

tions when Ñ(x,y, z,u, s) has not been approximated

well enough by constraints (43). Results on the com-

putational performance and the time required for this

heuristic is provided in Section 5.

3.1.2. Benchmark Heuristic. Here, we use SAA-based

methods similar to those provided in Denton et al.

(2007) to benchmark the model-based heuristic. In

SAA, instead of using the worst-case formulation, we

solve with expected second-stage costs. The expecta-

tion is based on scenarios drawn from an estimated dis-

tribution of surgeries. The resultant two-stage stochas-

tic optimization problem is solved by the L-shaped
method (Birge and Louveaux 1988). We describe the

model formulation of the SAA version and provide

details on the estimation of the distribution in the e-

companion. However, since the sample average-based

method was unable to solve large-scale problems such

as those found in the application, we use this method

on smaller problems constructed from real data. We

provide the results of the comparison between the

SAA-based method and the robust optimization-based

method in Section 5.

4. Parameter Estimation and
Model Calibration

In this section, we use historical data of surgery dura-

tions to choose the uncertainty setsÄ(τ) andÆ (τ). The
performance of robust optimization depends closely

on the definition of these uncertainty sets. If the opti-

mal values of di , i ∈ I in the inner maximization prob-

lem (maxd∈D(τ)Ò(x,y, z,u, s,d)) are significantly larger

than the corresponding
¯di , the resulting first-stage

problem will be overly pessimistic toward the real-

ization of surgery durations. This may lead to higher

first-stage costs. Conversely, if the optimal values of di ,

i ∈ I are too close to the corresponding
¯di , the uncer-

tainty sets would not cover many cases of future real-

izations in which the surgery durations deviate signif-

icantly from the nominal value. This could result in

higher second-stage costs. Thus we need to look at the

combined first- and second-stage costs while design-

ing the uncertainty sets. Designing the uncertainty sets

involves setting the following parameters: the nominal

surgery duration
¯di , i ∈ I, the maximum deviation

ˆdi ,

i ∈ I, and the robust optimization parameter τ.
There have been several approaches suggested for

designing uncertainty sets. Ben-Tal et al. (2009) provide

the theoretical background for deciding good uncer-

tainty sets. Denton et al. (2010) use the 10th and 90th

percentile width of historical surgery durations as the

width [ ¯di − ˆdi , ¯di +
ˆdi] in an OR assignment applica-

tion. Subsequently, they perform sensitivity analysis

and calibrate their model to an equivalent SAA-based

solution to decide the robust optimization parameter τ.
Bertsimas et al. (2013) propose using statistical hypoth-

esis tests to construct uncertainty sets. Denton et al.

(2010) and Bertsimas et al. (2013)model the uncertainty

sets based on historically observed values of a single
uncertain parameter. In our application with a wide

variety of surgery specialties with considerable vari-

ability in surgery durations across specialties, a per-

centile width not conditional on surgery characteristics

would be unnecessarily wide, leading to an overly pes-

simistic uncertainty set. Thereforewe incorporate these

characteristics and propose a joint estimation and cal-

ibration procedure to design the uncertainty set. Our

procedure provides tight uncertainty sets that take into

account observable surgery characteristics while mak-

ing no assumptions on the probability distribution of

surgery durations. We further calibrate the uncertainty

set by evaluating the performance of the robust solu-

tion to empirical realizations.

There were two data sets available to us. The first

data set ∆E � { ˜d(m) , ˜b(m)}M
m�1

consists of M � 25,700 sam-

ples of
˜d(m) corresponding to the historical realization

of durations of surgery m and
˜b(m), which represents

the observed characteristics of surgery m. Table 2 pro-

vides details on the surgery characteristics included

in
˜b(m), ∀m, and the variable names used for the

subsequent regression. The second data set ∆C
was

partitioned into disjunctive training and testing sets,

∆C-Train � { ˜d(n) , ˜b(n)}N
1

n�1
and ∆C-Testing � { ˜d(n) , ˜b(n)}N

2

n�1
. For

these data sets, N
1
� 120 days and N

2
� 60 days. Both

these data sets consist of
˜d(n) representing the vector

of realized durations and
˜b(n) denoting the vector of

surgery characteristics of all surgeries performed on

day n.
We use ∆E

and ∆C-Train

to estimate Ä(τ) and Æ (τ).
Most of the research in estimating uncertainty sets is

for single-stage problems when feasibility is not guar-

anteed. Since we have two stages and second-stage fea-

sibility is guaranteed by Proposition 1, we develop the

following procedure that comprises of an estimation

and a calibration step.

Step 1. Estimation
First, for a given parameter ρ ∈ (0, 1), we define con-

ditional quantile functions gL(b;ρ) and gU(b;ρ) such
that

P[ ˜d 6 gL( ˜b;ρ)]�
1− ρ

2

, and P[ ˜d > gU( ˜b;ρ)]�
1− ρ

2

.

Thus, given observed surgery characteristics
˜b, the

future realization
˜d will lie in the set [gL( ˜b;ρ), gU( ˜b;ρ)]

with probability ρ. The true quantile functions are

not known to us, therefore we obtain estimates of the

quantile functions ĝL( ˜b;ρ) and ĝU( ˜b;ρ) through a con-

ditional quantile regression method (Koenker 2005)
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Table 2. Surgery Characteristics Provided in Data Sets

Surgery characteristics Description Variable name

Realized surgery duration In hours ACTUALHRS

Surgeon’s estimate of surgery duration In hours BOOKEDHRS

Patient class Inpatient, outpatient, or same-day admit PATCLASS

Booked current procedural terminology

(CPT) code

Medical code maintained by American Medical Association defines the

services to be performed during surgery. A surgery may have

multiple CPT codes. The surgeon provides a list of services that

maybe performed as a part of the surgery. The realized CPT codes

may and often do vary from the booked CPT code. Surgeries in our

data set covered 2,700 unique CPT codes.

CPT

ASA score A system for assessing fitness of patients before surgery, higher number

signifies a less fit patient. Takes integer values between 1 and 6.

ASA

Patient age In years AGE

Surgery service Cardiac surgery, neuro surgery, etc., full list as in Table EC.1 SERVICE

Surgeon’s name Names of 493 surgeons, unique surgeons (providers) who have

performed surgeries in the period over which data was available

PROV

Number of CPT codes Number of CPT codes associated with procedure NUMCPT

applied on the data set ∆E
. The use of conditional

quantile regression for estimating uncertainty sets has

been recently proposed by Tulabandhula and Rudin

(2014). Quantile regression estimates the quantiles of

the response variable (i.e., the surgery durations),

given certain values of the predictor variables. Quan-

tile regression has several advantages over the com-

monly used ordinary least squares (OLS) regression.

First, this approach suits our application better since

our objective is to find upper and lower bounds on

surgery durations, such that future realization would

lie within this bound with a given probability. Con-

ditional quantiles provide these bounds without mak-

ing any assumption on the probability distribution of

surgery durations. Second, quantile regression is more

robust to outliers; and third, it does not assume the dis-

persion of the response variable to be independent of

the predictor variables.

We perform quantile regression using the quantreg
package available in R (Koenker 2013). The response

variable is the realized surgery duration. The possible

set of predictors are the surgeon’s estimate of surgery

duration, the fitness level of the patient prior to the

surgerymeasured by the American Society of Anesthe-

siologist (ASA) score,
2

the age of the patient, whether

the patient is an inpatient or outpatient, the specialty of

the surgery, the surgeons name, the services provided

indicated by the type of the Current Procedure Ter-

minology (CPT)
3

codes used, and the number of CPT

codes used by the surgeons. For the CPT codes and sur-

geon’s names, we cluster the variables via a k-means

clustering similar to He et al. (2012). This clustering

was done to account for the large number of factors

in these variables and to avoid overspecification of the

model. The details of the clustering procedure followed

is provided in the e-companion.

The selection of variables was done comparing

the Akaike information Crietria (AIC) and the mean

square prediction error (MSPE). The results of these

tests are provided in the e-companion.We also checked

for collinearity using variance inflation factors (VIF)

following the criteria discussed in Hair et al. (2006,

pp. 191–193). Highly collinear variables (i.e., with

VIF > 10) were removed. For example, we found that

the specialty of surgery had a VIF of 40.1 as it was

collinear with CPT codes, as these codes were specific

to a specialty. On performing these tests, we found

that the ASA score, the surgeon’s estimate of dura-

tion, patient class (inpatient, outpatient or same-day

admit), clustered variables corresponding to surgeons,

and CPT codes were significant. The ASA score is a

strong indicator of increasing complexity of the sur-

gical procedure since it is an indicator of the level of

fitness of the patient before coming into the surgery.

A patient with an ASA score of 1, implying the patient

is a healthy person would be expected to demonstrate

less complications during surgery, while a patient

with an ASA score of 3 (with severe systemic dis-

ease) would be expected to have more complications

during surgery. We found that the coefficient of ASA

score was −0.023 at the 0.1 quantile and 0.122 at the

0.9 quantile. Thus, every increase in ASA score con-

tributes to approximately 7.3 minutes (≈0.122 hours)

of additional surgery time at the 0.9 quantile level,

while the effect of increment in ASA score is negli-

gible for very short surgeries. This is intuitive as the

negative effects of patient fitness would be significant

for longer surgeries and would not be as impactful

for shorter surgeries. As expected, the surgeon’s esti-

mate of surgery duration would be strongly correlated

with the actual duration, and would explain variance

not captured by other variables, since there are several

factors that the surgeon is aware of that are not cap-

tured by other available data. However, as explained

previously, there is some error in surgeon’s estimates
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as well. We found that surgeon’s estimate was, on aver-

age, 12 minutes higher than actual surgery durations.

Also, the coefficient of surgeons’ estimates in the quan-

tile regression model was smaller for shorter surgeries

than for longer surgeries. This is because surgeons tend

to be more accurate in their estimates for longer surg-

eries than for shorter surgeries. One possible explana-

tion is that it was observed that surgeons tend to round

to the nearest quarter of an hour while providing their

estimates. This leads to an error, which is more pro-

nounced for shorter surgeries than for longer surgeries.

We also found that clusters of surgeons are significant

because, as described in the e-companion, these in effect

represented the experience level of surgeons. Finally,

as anticipated, the type of surgery itself with its asso-

ciated CPT code affected surgical durations. However,

the number of CPT codes was not significant as they

could be associated with relatively simpler subproce-

dures common to all surgeries. Similarly, the age of the

patient was not significant as it was captured in the sur-

geons estimate of duration.

Once we have obtained the estimated conditional

quantile functions, for each surgery i ∈ I, we set
¯di +

ˆdi �

ĝU( ˜bi ;ρ), ¯di − ˆdi � ĝL( ˜bi ;ρ). This gives

¯di �
ĝU( ˜bi ;ρ)+ ĝL( ˜bi ;ρ)

2

and
ˆdi �

ĝU( ˜bi ;ρ)− ĝL( ˜bi ;ρ)
2

.

Define τ′ ∈ [0, 1] so that τ � bτ′ |I |c. Here, τ′ represents
the fraction of total surgeries in a given day |I |, which

have reached their maximumduration.We then substi-

tute the above equations in (25) and (26) for observed

surgery characteristics vector bi and given parameters

ρ ∈ [0, 1] and τ′ ∈ (0, 1). Then, the uncertainty sets are

given by

Ä(τ)�Ä(ρ, τ′)�
{
d ∈ �|I | : di �

ĝU( ˜bi ;ρ)+ ĝL( ˜bi ;ρ)
2

+ fi

[
ĝU( ˜bi ;ρ) − ĝL( ˜bi ;ρ)

2

]
, i ∈ I , f ∈Æ (τ′)

}
(45)

Æ (τ)�Æ (τ′)�
{
f ∈ �|I | :

∑
i∈I
| fi | 6 bτ′ |I |c , −1 6 fi 6 1

}
.

(46)

Step 2. Calibration
If we had full information on the surgery durations

(i.e., if they were observable ex ante), and a deter-

ministic solution could be executed, the resulting cost

obtained when there is full information would be a

lower bound to any heuristic solution. In stochastic

programming, this is referred to as the wait-and-see
solution. The full information cost on day n is given as

W FI(n)
�min

{∑
r∈R

cr vr +
∑
a∈A

cq ya

+
∑
a∈A

coaOvera +
∑
r∈R

corOverr

}
(47)

subject to (2)–(23)

(28)–(32).

We solve W FI(n)
for each day in ∆C-Train

with d� ˜d(n).
The first-stage variables for day n obtained by solv-

ing [IARSP] for day n using the model-based heuristic

are (x∗(n) ,y∗(n) , z∗(n) ,u∗(n) , s∗(n)). The cost of the model-

based heuristic under a realized duration vector
˜d(n) is

defined as

W (x∗(n) ,y∗(n) ,z∗(n) ,u∗(n) ,s∗(n);ρ, τ′, ˜d(n))
�

∑
r∈R

cr vr +
∑
a∈A

cq ya +Ò(x∗(n) ,y∗(n) ,z∗(n) ,u∗(n) ,s∗(n) , ˜d(n)).

This represents the cost that would be realized at

the end of day n if the model-based heuristic was

implemented with uncertainty set Ä(ρ, τ′). The aver-

age performance of themodel-based heuristic across N
samples relative to the full information case is defined

as follows:

¯W (ρ, τ′)

�
1

N
1

N
1∑

n�1

[W (x∗(n) ,y∗(n) ,z∗(n) ,u∗(n) ,s∗(n);ρ, τ′, ˜d(n))−W FI(n)]
W FI(n) .

(48)

We calculate
¯W (ρ, τ′) for several values of ρ ∈ (0, 1) and

τ′ ∈ [0, 1] and choose the pair that minimizes
¯W (ρ, τ′).

This is summarized in Table 3.

From Table 3, we can see ρ � 0.95 and τ′ � 0.2 is

optimal. This implies that at a 95% confidence level, we

can set 20% of all surgeries to its maximum durations

on any given day when we define the uncertainty sets

Ä(τ) and Æ (τ) and solve the [IARSP]. At this value,

the model-based heuristic solution was 24%more than

the full information solution.

We used these values of ρ and τ′ to evaluate the

performance of the model-based heuristic relative to

the full information case as defined in (48) for the test-

ing data set ∆C-Testing

. Here, we found that the model-

based heuristic was 28%more than the full information

solution. Thus the out-of-sample performance, using

∆C-Testing

was close to the in-sample performance using

∆C-Train

. This provides validation to use these values of

ρ and τ′ in the computational analysis described next.

Table 3. Performance of Model-Based Heuristic (
¯W (ρ, τ′))

across Budget of Uncertainty Parameter (τ � bτ′ |I |c) and
Conditional Quantile Parameter (ρ)

τ′

ρ 0.1 0.2 0.3 0.4

0.80 1.52 1.43 1.48 1.57

0.85 1.43 1.35 1.45 1.59

0.90 1.41 1.27 1.44 1.59

0.95 1.38 1.24 1.40 1.55

0.98 1.38 1.29 1.42 1.57
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5. Computational Analysis
In this section, we conduct a computational analysis

to evaluate our approach. To perform this analysis,

we used data provided by the UCLA RRMC on all

surgeries conducted in their OR suite over a 14-month

period. This analysis was essential to provide confi-

dence in our method. Our computational analysis is

divided into two sections. In Section 5.1, we evaluate

the performance of the practitioner’s heuristic and the

procedures described in Section 3.1. In Section 5.2 we

compare the performance of the model-based heuris-

tic with the actual resource assignment and scheduling

decisions made at this hospital and estimate the cost

savings.

5.1. Performance Evaluation
The size and scope of the scheduling activities dur-

ing this time period demonstrated considerable varia-

tion as shown in Table 4. To ensure that our compu-

tational analysis captured this range of variation, we

constructed five problems of varying sizes as shown in

Table 5. For each of these five sets of problem instances,

we considered different values for cq , cor and coa . The

actual value of cq , coa , and cor at UCLA RRMC were

$1,000 per day, $150 per hour, and $450 per hour,

respectively. In addition to these actual values, we con-

sidered values where we scaled one of these costs by

a factor of 2 or 1/2 while keeping the other two at

the current value. This led to 7 possible combinations

of costs for each of the 5 problem instances and a

total of 7× 5 � 35 possible problems. We tried to solve

the IARSP for these data sets using the leading com-

mercial solver for stochastic programs such as ddsip
(Märkert and Gollmer 2008). However, other than the

smaller problem instances A and B, these solvers could
not even generate feasible solutions after more than 24

hours of computation, and the runs were aborted. This

provides validation for developing the model-based

heuristic to solve the [IARSP].

The heuristic procedures were coded in Python pro-

gramming language (van Rossum 2001). The computa-

tional analyseswere run on aworkstationwith 3.8 GHz

AMD A10 processor, 8 GB of RAM, and Linux Mint

as the operating system. For the MIP subroutine calls,

we usedGurobi 5.63 (Gurobi Optimization 2015) called

Table 4. Data Sets for Performance Analysis

Number of surgeries Number of anesthesiologists Number of ORs

conducted per day working per day functioning per day

Weekdays Weekends Weekdays Weekends Weekdays Weekends

Minimum 30 1 28 1 4 1

Maximum 62 15 38 14 23 11

Average 42 6 32 5 22 6

95 percentile 53 11 36 8 23 9

Table 5. Problems Used for Performance Analysis

Number of Number of Number of

Instance surgeries, |I | rooms, |R | anesthesiologists, |A|

A 10 3 5

B 15 5 8

C 25 7 10

D 40 10 25

E 65 23 40

from Python via the Gurobi Python Interface. In all the

computations using the model-based heuristic, we set

the gap ε � 5%. Thus all the solutions of the model-

based heuristic were within a 5% gap from the lower

bound and were solved within 25 minutes.

Tables 6 and 7 summarize the results obtained for

the computational analysis. In Table 6, the perfor-

mance of the model-based heuristic and the practi-

tioner’s heuristic procedure is compared with the cost

of the SAA-based solution for small-scale problems.

This table shows that these procedures are all very

close to the SAA method and this does not change

with changes in the cost parameters. In Table 7, we

consider the more realistic medium- and large-scale

problems. Since SAA is unable to solve these prob-

lems, we provide the performance of the model-based

heuristic with respect to the practitioner’s heuristic.

From Table 7, we note that for these problems, the

model-based heuristic provides significant cost reduc-

tions over the practitioner’s heuristic. In particular, the

percentage cost reduction for these problems ranged

from 2.26% to 7.56% averaging around 4.95%.

We can also observe from Table 7 that the gains

of the model-based heuristic over the practitioner’s

heuristic improves as the size of the problem increases.

This is because for small-sized problems, there are lim-

ited options and it is more likely the practitioner’s

heuristic achieves a solution that is close to optimal.

Further, since in small-sized problems |I | is low, the

number of surgeries that reach its worst-case duration

(i.e., τ � τ′ |I |) is also low. In these circumstances, the

solution of the model-based heuristic and the practi-

tioner’s heuristic are similar and close to the nomi-

nal value solution, where surgical durations are set to

its nominal duration estimates. However, as the prob-

lem size increases, the number of surgeries reaching
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Table 6. Performance Evaluation of Heuristic Procedures for Small-Scale Problems

% change in cost of model-based % change in cost of practitioner’s

Instance cq coa cor heuristic from SAA solution heuristic solution from SAA solution

A 1,000 150 450 0 2.97

1,000 150 900 0 4.61

1,000 150 225 0 1.15

1,000 300 450 0 2.34

1,000 75 450 0 0.75

2,000 150 450 0 2.97

500 150 450 0 2.97

B 1,000 150 450 −1.15 3.64

1,000 150 900 −1.74 5.67

1,000 150 225 0 1.35

1,000 300 450 −0.74 2.76

1,000 75 450 0 0.73

2,000 150 450 −1.15 3.64

500 150 450 −1.15 3.64

its worst-case duration increases. Under these circum-

stances, the practitioner’s heuristic is outperformed by

the model-based heuristic, as the optimization inher-

ent to the model-based heuristic is more effective in

utilizing resources that can be shared across multiple

specialties and procedures. Finally, note that increas-

ing the on-call costs leads to the practitioner’s heuristic

doing much worse as this heuristic opts for increas-

ing the number of on-call anesthesiologists rather than

trading off on-call costs against overtime costs.

Table 7. Performance Evaluation of Heuristic Procedures for

Medium- and Large-Scale Problems

% change in cost of

model-based heuristic

from practitioner’s

Instance cq coa cor heuristic solution

C 1,000 150 450 −4.55

1,000 150 900 −6.45

1,000 150 225 −2.56

1,000 300 450 −3.46

1,000 75 450 −2.26

2,000 150 450 −5.55

500 150 450 −4.57

D 1,000 150 450 −6.64

1,000 150 900 −4.45

1,000 150 225 −3.37

1,000 300 450 −5.52

1,000 75 450 −2.65

2,000 150 450 −7.55

500 150 450 −4.75

E 1,000 150 450 −7.03

1,000 150 900 −5.74

1,000 150 225 −4.47

1,000 300 450 −6.69

1,000 75 450 −3.45

2,000 150 450 −7.56

500 150 450 −4.75

5.2. Model Validation
The objective of model validation was to demonstrate

that the model-based heuristic provides tangible cost

savings over current practice. This was an essential step

in convincing management of the operating services

department to implement our method. We performed

model validation in two stages. In the first stage, the

cost savings were computed using historical data. In

the second stage, we conducted live validation, where

we compared in real time our decisions with those

made at this hospital. Note that while conducting these

validations, the heuristic had precisely the same infor-

mation the planners at the UCLA RRMC had at the

point of planning.

In the historical validation, we took 80 sample days,

such that we covered the range of problem sizes en-

countered. These 80 samples were divided into 5 sets

as described in Table 8. We next calculated the aver-

age costs obtained by the model-based heuristic and

the costs resulting from the actual assignment and

sequencing that was done by the RRMC planners.

This reduction in costs across the five problems is also

reported in Table 8, and this shows that the benefits of

using the model-based heuristic were significant and

increasing in problem size.

The real-time live validation was conducted over a

four-week period. The number of surgeries per day

Table 8. Results from Historical Validation

% reduction of cost of

Surgeries model-based heuristic

per day % of days from cost of actual plan

<10 28 0

10–30 4 2.4

30–40 18 3.3

40–50 41 7.2

50–65 9 8.9
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Table 9. Results from Live Validation

% reduction of cost of

Surgeries model-based heuristic

per day % of days from cost of actual plan

<10 30 0

10–30 0 0

30–40 11 2.1

40–50 48 6.4

50–65 11 9.1

over this period was similar to the range of problem

sizes observed historically as shown in Table 8. The

results for the live validation are given in Table 9. This

table shows that our heuristic reduced costs from cur-

rent practice, on average, from 6.4% to 9.1% on 16 out

of the 28 days corresponding to weekdays, which were

not holidays. This implied an estimated annual cost

savings between $2 million and $2.86 million. It is also

important to note that the practitioner’s heuristic and

the model-based heuristic provided the same solution

in the weekends, where the number of surgeries con-

ducted are low, and both thesemethods provided solu-

tions corresponding to the nominal value solution.

The model-based heuristic outperforms the current

practice in historical and live validation for the fol-

lowing reasons. First, the nominal values obtained via

quantile regression procedure provided better predic-

tors for the realized surgical duration than the sur-

geon’s estimates. Second, on average, around 50%

of the surgeries exceeded the nominal value. This

required an increase in realized work load from the

nominal work load. We found that this increase can

be effectively achieved by setting τ′ � 20%. This led to

the model-based heuristic operating with fewer ORs

and fewer anesthesiologists than actually used at the

hospital, since these resource assignments were based

on trading off the fixed costs for these resources with

the chance of incurring overtime. Third, on average, in

60% of the surgeries, the surgeon’s estimate of surgery

duration exceeded the realized duration. The plan-

ners chose additional resources and avoided overtime

based on these quoted times. Thus the associated plans

Table 10. Summary of Results Before and After Implementation of Decision Support System

Attributes Before After % reduction

Average number of anesthesiologists on call per day 6.0 5.6 6.7
Average overtime per day for anesthesiologists (hours) 18.2 17.5 3.7
Average daily utilization of anesthesiologists (%) 75 77.6 −3.5
Average number of ORs used per day 20.4 18.6 8.6
Average overtime per day for ORs (hours) 18.5 18 2.7
Average utilization of ORs per day (%) 78 81 −3.8
Average daily OR costs ($) 57,350 52,417 8.6
Average daily overtime costs ($) 22,375 21,754 2.8
Average daily on-call costs ($) 7,145 6,527 8.5
Average total daily costs ($) 86,870 80,729 7.1

tended to incur more resource usage costs (comprising

of the fixed cost of opening an OR and anesthesiologist

on-call cost) rather than overtime costs in comparison

to the model-based heuristic. However, since this deci-

sion to use more resources was made without explicit

consideration of overtime costs and errors in the dura-

tion estimate provided by the surgeons, this often led

to greater total costs. In sum, themodel-based heuristic

outperforms current practice due to better prediction

and a more effective scheduling policy. The proportion

of the gains due to each of these aspects are analyzed

and summarized in the e-companion.

Generally, in a stochastic decision problem, it is not

valid to judge the quality of a decision based on an

outcome, as due to randomness, a good outcome does

not necessarily imply a good decision. However, in this

work, since the evaluation and validation of the model-

based heuristic have been extensive, we were confident

that they would perform well in the real application.

In the final analysis, the real measure of performance

of this heuristic is the quality of the decision based

on its solution, a question we consider next in the

application.

6. Application
6.1. Implementation
We have implemented the model-based heuristic as

a decision support system at the operating services

department of the UCLA RRMC. Details of this system

are provided in the e-companion. The results before

and after the implementation across key operational

metrics and costs are summarized in Table 10. This

table shows after implementation, the average num-

ber of anesthesiologists on call decreased by 6.7%, and

average overtime hours for the anesthesiologists on

regular duty reduced by 3.7%. This contributed to an

increase of average daily utilization across the anes-

thesiologists by 3.5%. Similarly, the average number of

ORs used decreased by 8.6%, and the average over-

time hours at the OPs was reduced by 2.7%. This led

to an increased average daily utilization across the

OPs by 3.8%. The improvements in these operational
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metrics reduced average daily OR costs by 8.6%, aver-

age daily overtime costs by 2.7%, and average daily on-

call costs by 8.5%. This translates to an overall average

daily cost savings of 7% or estimated to be $2.2 million

on an annual basis.

The model-based heuristic improved upon decision

making at operating services due to two main rea-

sons. First, it was more effective at utilizing the flexi-

bility in the resources. Most anesthesiologists and ORs

can perform more than one specialty, typically a pri-

mary and a secondary specialty. The model identified

these OR/anesthesiologist combinations and allocated

surgeries across these different specialties to them.

This led to better usage of resources than the previ-

ous approach, in which surgeries from a single spe-

cialty were assigned to an OR and anesthesiologist as

much as possible. A surgery of a different specialty was

assigned to an OR only when there was a high volume

of surgeries in a particular day, and this was often done

without explicit consideration of the allotted anesthesi-

ologists’ specialty. Thus, this often required a separate

anesthesiologist to perform these surgeries, who were

often assigned from on call and this was costlier. Sec-

ond, the model-based heuristic explicitly considered

uncertainty in surgical durations while determining

the daily schedule of an OR. By using the estimation

module, it determined which surgeries could be longer

and more uncertain, and which surgeries could be

shorter and more certain. It then combined long uncer-

tain surgeries with short certain surgeries to effectively

utilize gaps in the schedule in each OR. This, in turn,

reduced the number of ORs each daywith the resulting

cost reduction being more than any potential increases

in overtime costs, thus reducing total costs. In con-

trast, the previous approach used surgeons’ predic-

tions of surgery durations. To compensate for the errors

in these predictions, planners often underutilized ORs

by leaving sufficient gaps between surgeries. This was

done as they did not want to create delays from sched-

uled start times of succeeding surgeries and incur over-

time costs. However, this often led to a larger number

of ORs being used each day, and, consequently, higher

total costs.

Finally, we considered the impact of the schedules

generated by our approach on the surgeons. While sur-

geons are not part of the operating services depart-

ment, they are a critical element in the system. First,

we computed the average idle time between surgeries

and found that it reduced by eight minutes after our

work. The surgeons did not find this reduction signifi-

cant enough to be disruptive, and, in fact, some of them

preferred this as it made their schedule more efficient.

Second, we calculated the average number of surgeons

per OR per day. Prior to our work, on average, there

were 1.54 surgeons per OR per day. After implement-

ing the decision support system, there were 1.57 sur-

geons per OR per day. This marginal increase suggests

that most of the benefits of our approach come from

making the correct assignment of ORs and anesthesiol-

ogist to surgeries, and not from increasing the number

of surgeons per OR per day. Both these aspects were

important to verify that the surgeons were not incon-

venienced by the model-based approach.

6.2. Managerial Insights
We used the model-based heuristic to generate several

managerial insights. First, we considered the impact

of reducing variability in surgical durations. In prac-

tice, this could be achieved by better procedures such

as checklists, improved information technology, fol-

lowing the correct sequence in tasks and standardized

operating protocols derived from best practices. These

measures have been advocated by surgeons (Bates and

Gawande 2003, Haynes et al. 2009, Gawande 2010). In

addition, variance can be reduced by improving the

prediction of surgical durations. This would require

dividing the surgical process into a series of steps (such

as time to incision, skin to skin, and closure to exit),

and predicting each segment individually as different

patient characteristics affect each segment differently

(Hosseini et al. 2014). The accuracy of this prediction

can be improved by collecting more data on patient

characteristics and surgeon experience (Kougias et al.

2012). To consider the impact of variance reduction,

we started with the current level of standard devia-

tion in surgical durations, and systematically reduced

the standard deviation of the distribution of surgical

durations across all surgeries by a fixed value. We used

these modified distributions to simulate realizations

of surgical durations. We then used these data sets to

solve the IARSP using the model-based heuristic and

calculated the resulting total resource usage and over-

time costs. These results are summarized by Figure 3.

This figure shows that the benefits of further reduction

in variability decreases, and that there are significant

diminishing returns on reduction of variability. This

suggests that rather than invest in capital-intensive

medical equipment to achieve radical reductions in

variability in surgical durations, the major cost bene-

fits can be gained by focusing on incremental reduction

in variability. This can be potentially achieved by bet-

ter procedures and more detailed data collection for

improved predictive analytics.

Second, we consider the impact of allowing surgeries

to start in ORs after 3 p.m. but before the end of the

late shift of the anesthesiologists at 7 p.m. This would

require additional fixed technician and nurse staffing

costs. Such extensions can be considered if surgical

demand on any day is significantly larger than aver-

age daily surgical demand. To perform this analysis,

we considered four levels of demand corresponding to

increases from daily average demand in surgeries that

could occur during the days of any given week. For
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Figure 3. Effect of Reducing Variability of Surgical

Durations on Total Resource Usage and Overtime Costs
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these scenarios, we incrementally increased the num-

ber of ORs available after 3 p.m. by one unit. We then

calculated the resulting change in total resource usage

and overtime costs from the case when we do not start

surgeries after 3 p.m., but only use the day shift with

additional rooms to accommodate such increases in

demand. These results summarized in Figure 4 suggest

that it is beneficial to allow such extensions and the

number of ORs used depends on the level of demand.

This analysis helps management understand how best

to react to different levels of daily surgical demand and

estimate the corresponding changes in total costs.

Finally, we examined the benefit of increasing cross-

functionality of the ORs. To do so, we considered the

Figure 4. Effect of Extending Shift Timings of ORs on Total

Resource Usage and Overtime Costs
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Figure 5. Effect of Increasing Number of ORs by Specialty

on Total Resource Usage and Overtime Costs
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various specialties and calculated the potential reduc-

tion in costs if the number of ORs available for each

specialty described in Table 1 is increased. In practice,

such increases can be achieved by investing in special

equipment to convert general surgery ORs to have the

cross-functionality to accommodate a particular spe-

cialty. These results described in Figure 5 show that

as we increase the number of ORs that could be used

for a particular specialty, this can lead to a significant

reduction in total resource usage and overtime costs,

and these benefits are often more pronounced in cer-

tain specialties. This analysis forms a basis to identify

such specialties, and determine the priority in which

these ORs should be made cross-functional to enable

these additional rooms for the specialties. Further, an

additional advantage of making ORs cross-functional

was that a higher number of daily surgeries could be

more effectively accommodated without conducting

new surgeries after 3 p.m. In particular, we found this

approach led to at least an additional 5% reduction

from the lowest costs attainable for all the demand sce-

narios considered in Figure 4. This provides further

justification for management to make the ORs more

cross-functional.

6.3. Qualitative Impact
The organizational impact of our work has been sig-

nificant. Prior to our work, simple rules were used to

make important decisions on allocation of anesthesiol-

ogists and rooms to surgeries and determining surgery

start times. These rules developed based on experi-

ence and anecdotal evidence worked well during hol-

idays and weekends when the number of surgeries

conducted were low. However, as shown in Section 5

and observed during the implementation, our model
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significantly outperformed current practice during

other days where the number of surgeries performed

was high, and this resulted in considerable cost sav-

ings. Thus our work demonstrated the value of model-

based approach and operations research methods in

dealingwith complexity. This has encouragedmanage-

ment to investigate other problems in this department

using a structured and rigorous approach by employ-

ing operations research-based methodologies.

The managerial insights generated from our model

have also contributed to the organizational impact.

While the effect of variance reduction on improved

clinical outcomes has been extensively documented

(Neuhauser et al. 2011), our analysis showed that this

could also reduce costs. This provided management

with the further impetus to implement six sigma pro-

grams (Cima et al. 2011) to reduce variability at this

department. In addition, our analysis provides man-

agement with clear guidance on when to start new

surgeries after the day shift and in how many rooms.

This provides them with a practical approach to mit-

igate the impact of varying levels of daily surgical

demand on costs, and is currently under considera-

tion for implementation in the short term. Finally, we

showed the benefits ofmaking some operational rooms

cross-functional and how to prioritize implementation

among the specialties. Furthermore, we demonstrate

that this could potentially be a very effective way to

accommodate changes in daily surgical demand.While

management at the operating services department was

intrigued by this analysis, they felt that there could be

significant investments required, and this could also

lead to disruptions in the schedule while some ORs

were being reconfigured. Therefore they are consider-

ing this initiative as part of the next broader hospital

renovation project.

6.4. Limitations
This work has the following limitations. First, the esti-

mation of uncertainty sets can be improved with addi-

tional data on the duration of each step in a surgery.

However, this data were not available in our applica-

tion. Second, we do not explicitly consider requests

from surgeons for particular start times on a given day

and for specific anesthesiologists. While these aspects

can be easily incorporated in our model, management

felt that accommodating these requests explicitly can

make the overall schedule inefficient and could cre-

ate additional costs. Therefore they preferred to make

changes to the output in the decision support system

only in the most exceptional circumstances. Third, we

assume that the overtime payment sufficiently com-

pensates staff for extended shifts. However, in prac-

tice, such extensions are unpredictable and staff may

not prefer such type of overtime. Thus, there is an

implicit inconvenience cost associated with the over-

time cost that is not considered in our work. Similarly,

we do not consider the inconvenience costs associated

with an anesthesiologist being on call, but not being

asked to come in to work. While these aspects can

be included in our model by suitably appending the

overtime and on-call costs with the appropriate incon-

venience costs, quantifying these costs would be chal-

lenging. In this regard, recent research in structural

estimation (Olivares et al. 2008) could potentially be

used to calculate these inconvenience costs and fur-

ther enhance the outputs of the model. Finally, some

anesthesiologists can be used across multiple special-

ties and this feature was incorporated in our model.

However, we do not consider their preferences across

specialties, as such data was unavailable to us. Future

work could focus on all these aspects to improve the

model and its ability to attend to the interests of the

surgical teams.

In conclusion, the methodology described in this

paper has had a major economic and organizational

impact at the operating services department at the

UCLA RRMC. This organization expects to maintain

the described gains and to increase them continuously

several years into the future.
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