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1 Introduction

Substantial academic research and policy debate have focused on the housing market

effects of local land-use regulation.1 Local regulatory regimes often include growth

management ordinances or other explicit mechanisms designed to achieve fiscal, envi-

ronmental, or social goals. Without commenting on the worthiness of the these goals,

the use of such regulatory instruments introduces bureaucratic frictions that may

have unintended consequences for the efficient provision of housing. Indeed, substan-

tial bureaucratic timelines and related uncertainty in the granting of local regulatory

approvals may effectively depress the provision of affordable housing via costly delay

and disincentivizing of new investment. Whether consistent with or contrary to local

policy goals, the bureaucratic frictions imposed by municipal approval processes may

be highly salient to the supply of affordable housing, and of housing overall.

Concerns regarding inadequacy of affordable housing supply are broadly evident

in Los Angeles. As one of the least affordable major cities in the U.S., Los Angeles

has long failed to address issues of housing inadequacy. A full one-third of renter-

households in Los Angeles are severely cost burdened, defined as spending more than

one-half of their income on rent.2 Shortages of affordable housing factor negatively

into the shelter prospects of the roughly 47,000 homeless persons living in the city.3

Further, limited housing supply discourages households and firms from locating in

Los Angeles, reduces the economic competitiveness of the city (Gabriel and Painter,

2020), and contributes to a broader spatial misallocation of resources (Hsieh and

Moretti, 2019). By all estimates, the city will fall far short of the State of California

1See, for example, Quigley and Raphael (2005), Glaeser and Ward (2009), Turner et al. (2014),
Hilber and Vermeulen (2016), Jackson (2016), Albouy and Ehrlich (2018), Glaeser and Gyourko
(2018), Brueckner and Singh (2020), Gyourko et al. (2021), Gyourko and Krimmel (2021), Ben-
Moshe and Genesove (2022). Gyourko and Molloy (2015) provides a further review of the literature.

2American Community Survey, 2019 ACS Estimates.
3The Greater Los Angeles Homelessness Count, Los Angeles Homelessness Authority, June 2023.
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Regional Housing Needs Assessment (RHNA) goal of 457,000 new housing units for

the 2021-2029 period, which requires a roughly five-fold increase in production over

the 84,000 units produced from 2010-2019.4

In this paper, we undertake theoretical modelling and empirical analysis of du-

ration and uncertainty in development regulatory approvals and their effects on new

housing supply. We uniquely compile multiple administrative datasets that allow us

to track development time for the universe of multi-family projects permitted by the

City of Los Angeles between January 2010 and November 2022. We identify specific

elements of the approvals and entitlements process and provide new estimates of their

incremental effect on approval and construction timelines. We empirically model the

distribution of approval and construction times and use these models to simulate

housing production outcomes if approval times were reduced. To our knowledge, this

is the first paper to use detailed administrative data on actual approval times to esti-

mate robust and credible effects of approval time on housing production. Further, we

provide estimates of how both the expected value and the variance of approval time

affect project starts by incentivizing new development.

Our research findings provide new estimates of the effect of approval time on the

rate of housing production. Over the 2010-2022 sample timeframe, approval times

comprised roughly 37 percent (on average) of the nearly 4 years required to complete

a multi-family project in the City of Los Angeles. As a lower bound, this paper finds

that a 25 percent reduction in the mean and volatility of approval times during the

2010-2022 period would have increased the rate of housing production in Los Angeles

by 11.9 percent, simply by pulling forward in time the completion of already started

projects. If we further take into account the effect of approval times in incentivizing

new development, we estimate that this same 25 percent reduction in the mean and

4Los Angeles City Planning 2021-2029 Housing Element
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variance of approval times would have increased the rate of housing production by

a full 33.0 percent. We show that both the expected value and the uncertainty in

approval times matter for incentivizing new development. The analysis shows that

reductions in approval time can have a large and economically meaningful effect on

housing supply, and therefore reinforces the notion that municipal regulatory reform

is an important component of housing reform.

The plan of the paper is as follows. The next section provides a theoretical frame-

work that rigorously describes the economic mechanisms through which reductions

in approval time can increase the steady state rate of housing production. Section 3

then describes the data and institutional context of the empirical analysis. Section

4 specifies empirical models of the development approval process and reports on the

salience of specific factors to the estimated timelines. Given model estimates, section

5 simulates the effects of reductions in approval times on project completions. Section

6 then estimates the effect of both expected value and volatility in approval times on

new construction. In section 7, we provide concluding remarks.

2 Theoretical Framework

To help us understand the role of approval time in housing production, we develop

a housing supply model in which development time and the risk thereof is explicitly

modeled. In the model, risk-averse developers face volatility in development costs

due to uncertainty in development time.5 A reduction in the mean and volatility

of development time increases the expected present value of housing development,
5In the model, we abstract from any differences in approval time vs. construction time. In the

empirical section of this paper, we focus on approval time because that is where policy can have
the most immediate effect. The model, however, is applicable to any factor contributing to long
development times, whether during the approval or the construction phase. What matters is that
there are costs associated with time in both phases. It would be straightforward to extend the model
to allow for different costs during the approval phase and construction phases of a project.
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thus incentivizing more housing starts. In addition, the number of developers and

the amount of development resources are limited. Increasing the speed of project

completion therefore frees up more resources to be used on new development in the

steady state.

Development

Present value of housing development

We start by considering the incentives of a housing developer. A housing developer

has the opportunity to develop a single housing unit which they will sell for price

p at the time of completion. The development cost is ζ per unit of time spent in

development and the developer discounts cash flows at a rate r. It takes x units of

time to complete the unit. The present value of this opportunity is therefore:

PV = − ζ
r

+
(
p + ζ

r

)
e−rx (1)

Uncertainty in development time

When developers start development, they know the development cost ζ and the dis-

count rate r. They do not, however, know the amount of time it will take to complete

development. Let X be a random variable denoting the time to complete a housing

unit. X is distributed according to the p.d.f. f(x), the c.d.f. F (x), and the m.g.f.

m(t).6

PV is therefore a random variable that depends on X. The expected value and

6As a reminder, the moment generating function is defined as m(t) = E
[
etX

]
= 1 + E [X] t +

1
2 E

[
X2]

t2 + . . . and is obtained from a Taylor expansion around t ≈ 0.
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the variance of PV are:

E [PV ] = − ζ
r

+
(
p + ζ

r

)
m (−r) (2)

V [PV ] =
(
p + ζ

r

)2 [
m (−2r) − m (−r)2

]
(3)

Risk averse developers

Developers are risk averse. Their expected utility over a random present value PV

has the following mean-variance form:

E [u(PV )] = E [PV ] − γV [PV ] (4)

where γ is a parameter measuring risk aversion.

Substituting equations (2) and (3) into equation (4) gives us an exact formula for

the expected present value of a development opportunity:

E [u(PV )] = − ζ
r

+
(
p + ζ

r

)
m (−r) − γ

(
p + ζ

r

)2 [
m (−2r) − m (−r)2

]
(5)

Taking a first order approximation of the mean term and a second order approxima-

tion of the variance term gives us:

E [u(PV )] ≈ − ζ
r

+
(
p + ζ

r

)
(1 − rE [X]) − γ

(
p + ζ

r

)2
r2V [X] (6)

which clearly shows how the expected utility of a development opportunity is decreas-

ing in the mean and variance of development time. Equation (6) also shows that the

impact of development time is greater when r is higher, which is intuitive because a

higher r means a higher time value of money.
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Housing starts

There is a unit mass of housing developers. Developers are either in a state of ac-

tive development or they are exploring opportunities. If a developer is exploring

opportunities, then in each moment in time they draw an opportunity cost u0 from

a distribution of opportunity costs characterized by the c.d.f. G(u0). If the op-

portunity cost is less than the expected utility of housing development—that is, if

u0 ≤ E[u(PV )]—then the developer will begin developing the unit. Let n be the

number of developers in active development, so 1 − n is the number of developers

exploring opportunities. The number of housing starts, s, is therefore:

s = (1 − n)G (E [u(PV )]) (7)

Since E [u(PV )] is decreasing in the mean and variance of development time, the

number of starts is also decreasing in the mean and variance of development time. We

call the effect of development time on G (E [u(PV )]) the “incentive effect”, because

it operates through the present value of housing development.

Market equilibrium and steady state

Starts, completions, and active developments

Let us now consider the evolution of this market over time. Let s(t) be the number

of starts in time t, let c(t) be the number of completions, and let n(t) be the number

of developers/units in active development. s(t), c(t), and n(t) are related by the
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following equations:

c(t) =
∫ ∞

0
s(t − x)f(x)dx (8)

n(t) =
∫ ∞

0
s(t − x) [1 − F (x)] dx (9)

Equation (8) says that the number of completions at time t is equal to the number of

starts from x periods ago, times the share of them that have a development time of x,

integrated over x. Equation (9) says that the number of units in active development

at time t is equal to the number of starts from x periods ago, times the share of them

that have a development time greater than x, integrated over x.

Steady state equations

In the steady state, the number of starts, completions, and units in active development

are the same in each moment of time, so s(t) = s, c(t) = c, and n(t) = n. The

relationships between these variables becomes:

c =
∫ ∞

0
sf(x)dx = s (10)

n = s
∫ ∞

0
[1 − F (x)] dx = sA (11)

where A =
∫ ∞

0 [1 − F (x)] dx is a constant that depends only the distribution of devel-

opment times. If development times are faster, then A will be smaller meaning there

will be fewer units in active development (and more developers exploring opportuni-

ties) for any given rate of project starts.7

Combining equations (7), (10), and (11), we obtain an equation for the steady state

7To see this, simply note that if F ′ first order stochastically dominates F (i.e. F ′(x) < F (x) for
all x), which implies that development times are slower under F ′ than F , then A′ > A.
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number of completions; in other words, the steady state rate of housing production:

c = G (E [PV ])
1 + AG (E [PV ]) (12)

This equation is increasing in the present value of development, E[PV ], and decreas-

ing in A (which is itself decreasing in development time.)

Incentive effect and pull-forward effect

Equation (12) highlights two channels through which reductions in development time

affect the steady state rate of housing production:

1. A reduction in the mean and volatility of development time increases the present

value of housing development, E[PV ], which in turn increases the steady state

rate of housing production, c. We call this the incentive effect because it oper-

ates through the channel of incentivizing developers to engage in development.

2. A reduction in development time reduces the amount of resources tied up in

active development, A, which in turn frees up these resources for new starts,

thus increasing the steady state rate of housing production, c. We call this the

pull-forward effect because it operates through the channel of pulling forward

the completion of housing units in time, which increases the overall rate of

production.

Housing demand, population growth, and equilibrium price

We close the model by discussing price formation. We assume there is a growing

population which necessitates a steady state increase in housing supply. However,

the rate of population growth in the market is moderated by the price p. (It can be
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assumed that those for whom the price is too high choose to live somewhere else.) Let

the number of net new housing demanders in each period be d(p), with d′(p) < 0 (i.e.

a downward sloping demand curve). The net rate of housing production is c−δ, where

δ is the rate of housing depreciation. In the steady state equilibrium, the number of

new demanders in each period must equal the net rate of housing production:

d(p) = c − δ (13)

Since d is downward sloping in p and c is upward sloping in p, this is a standard supply

and demand model of house price formation. However, in this model the mean and

variance of housing development time will shift the supply curve through the effect

on c. A reduction in the mean and variance of development time would therefore shift

the supply curve outwards and reduce equilibrium price and increase the equilibrium

rate of housing production.

3 Data and Institutional Background

Housing development in Los Angeles

To build new housing in Los Angeles, the developer must first obtain a permit from

the Los Angeles Department of Building and Safety (DBS). In addition, if the project

requires exceptions to zoning codes or meets other criteria that trigger discretionary

review, then the project must also obtain entitlements from the Los Angeles Depart-

ment of City Planning. Examples of discretionary review include Site Plan Review,

which is triggered for projects that add 50 or more dwelling units, and Environmen-

tal Impact Review, which is triggered by California CEQA rules. A developer can

submit their DBS permit application before all entitlements are approved, but the
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entitlements generally must be approved before the DBS permit can be issued. Con-

struction can begin once the DBS permit is issued. When construction is complete

and the project is fit for habitation and meets all other requirements, DBS issues a

Certificate of Occupancy (CofO).

Permits data from Department of Building and Safety

To study the role of approval times in housing development, we compiled a rich

dataset containing the universe of all multifamily housing projects permitted by DBS

between January 2010 and November 2022. The dataset contains detailed information

about each project, including the dates of permit application and issuance, the date

of CofO issuance, the application and approval dates of related entitlements, physical

characteristics of the project (height, square footage, number of units), and geographic

characteristics (address, City Council District).

The primary data source is a publicly available dataset provided by DBS and

available on Los Angeles’s open data portal.8 This dataset contains information on

all new building permits issued by DBS between January 2010 and November 2022,

including single-family, multi-family, commercial, and mixed-use buildings. From the

dataset, we extracted the universe of multi-family housing projects using a combina-

tion of the permit subtype and the project use description.9 The dataset contains

both complete and incomplete projects, where “complete” is defined as having been

issued a CofO as of November 28th, 2022. To focus only on projects that were either

completed or in active development, we excluded any projects with a closed or expired
8A live link to the public dataset can be found here: https://data.lacity.org/City-Inf

rastructure-Service-Requests/New-Building-Permits-2010-to-Present/46r2-n9vp. We
accessed and downloaded this data on November 28th, 2022.

9The permit subtype can be “1 or 2 Family Dwelling”, “Apartment”, or “Commercial”. We
excluded permits with the “1 or 2 Family Dwelling” subtype. We included all permits with the
“Apartment” subtype. We included “Commercial” permits only if its use description indicated some
residential usage.
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permit.

For each project, we determined the number of income-restricted units (i.e. “af-

fordable” units) using the permit work description. An affordable unit is defined as

a unit that the project owner has agreed to set aside for residents within an income

range, usually determined as a percentage of the area median income. The city pro-

vides incentives for developers to set aside units in the affordable range, typically via

density bonuses or other exceptions to the zoning code. We classified projects into

three groups: “market-rate”, “mixed-income”, and “100%-affordable”. A project was

classified as “100%-affordable” if all its units except one or two manager units were

affordable units. A project with no affordable units was classified as “market-rate”.

All other projects were classified as “mixed-income”.

The resulting dataset contained 2,677 projects representing 120,213 total dwelling

units, of which 102,897 were market-rate and 17,316 were affordable. 1,712 projects

were completed (issued a CofO) as of November 28th, 2022, and 965 projects were

unfinished as of November 28th, 2022. The full breakdown of counts by project type

are reported in Table 1.

[Table 1 around here.]

Entitlements data from City Planning

In that one of our primary goals is to assess the speed of housing production, it is

important that we use a meaningful and consistent definition of project start date.

The date of DBS permit application is not always a good measure of start date because

the process of obtaining entitlements can start multiple years prior to the submission

of plans to DBS. This is especially true of projects that require long discretionary

reviews, such as projects requiring Environmental Impact Reviews (EIRs). Therefore,
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a conceptually appealing measure of start date requires that we observe both the

permit submission date and the entitlement application dates.

The DBS data described above do not contain information on entitlements. To

obtain information on entitlements, we took advantage of the Los Angeles Zoning

Information and Map Access System (ZIMAS) and the Department of City Plan-

ning’s Planning Document Information System (PDIS).10,11 We link DBS permits to

entitlement cases using a three-step procedure. First, we take the primary address

and associated PINs of each project in the DBS data and use ZIMAS to retrieve all

Planning Department cases associated with those parcels. Second, we use PDIS to

retrieve information about each of those linked cases. Third, we determine whether

each linked case was relevant to the development project. Using this procedure, we

linked 1,389 projects to at least one entitlement case. 1,288 projects were not linked

to any case. Of the projects that were linked to at least one case, the average number

of cases linked was 2.7.12 With the additional data on entitlements, we were able to

measure the start date of a project based on the date of the first seen entitlement or

permit application.

Electrical data from Department of Water and Power

In addition to the data on entitlements, we also sought data on new power service

installations from the Los Angeles Department of Water and Power (DWP). This was

motivated by our conversations with industry professionals who identified long wait

10ZIMAS: https://zimas.lacity.org. ZIMAS allows users to input an address, assessor parcel
number (APN), or parcel identification number (PIN) and retrieve zoning information about the
parcel, including relevant Planning Department case numbers.

11PDIS: https://planning.lacity.org/pdiscaseinfo/search. PDIS, a system maintained
by the Planning Department, allows users to retrieve case information by inputting a case number.
The information retrieved by PDIS on entitlement cases includes both the application date and the
approval date of the entitlement request.

12We discuss the rules used to determine relevancy and the quality of the linkage in the appendix.
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times for electrical service installation as a major bottleneck.

To obtain this data, we provided DWP with the primary site address for each

project in the permits data. DWP then returned, for each project, all new power

service work requests associated with that address from 2010 to present.13 We focus on

work requests for the design and installation of new overhead and underground circuits

and service voltage. There were 808 overhead work requests and 1,291 underground

work requests. In our empirical analysis, we considered the impact of a project

requiring any new overhead or underground installations on project timelines.14

Example project: Florence Towne Apartments

To provide readers with an example of a project in our data, we discuss the Florence

Towne Apartments. The Florence Towne Apartments is a 51-unit affordable housing

development located at 410 E. Florence Ave. in South L.A. It was entitled under

Planning Department cases DIR-2017-4059-TOC and ENV-2017-4060-CE. Both cases

were submitted on October 10th, 2017 and approved on February 6th, 2018. The new

building permit application was submitted to DBS on March 1st, 2018 and issued on

January 18th, 2019. The Certificate of Occupancy was issued on July 1st, 2022.

13We filtered out any work requests that were entered before the project start date or after the
project’s CofO date.

14For the projects that we did not receive DWP data for, it was likely because of an error in finding
matching addresses. Addresses are not standardized between the DBS and DWP databases, leading
to an imperfect matching process. In our empirical work, we assume that projects without DWP
data did not require any overhead or underground circuit installations, but the results are similar
if we drop any projects without DWP data. In total, we received data on 70,114 work requests for
2,324 projects.The vast majority of these work requests were for new meter installations. We ignore
new meter installations in our analysis because they are required on almost every project.
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Figure 1: Florence Towne Apartments: Project Timeline

Entitlements
Filed

10/10/2017

Permit
Issued

1/18/2019

CofO
Issued

7/1/2022

465 days 1,260 days

We define a project’s “approval” time as the number of days between the first seen

entitlement or permit application (i.e. the start date) and the date in which the DBS

permit is issued. We define a project’s “construction” time as the number of days

between the permit issuance and the CofO issuance.15 Based on these definitions, the

Florence Towne Apartments spent 465 days in the approval period and 1,260 days

in the construction period. Out of the 465 days in the approval period, 119 days

were spent in entitlement and 323 days were spent in permitting, with a few weeks

in between.

Summary statistics

Table 2 lists the variable names and definitions from our data. Table 3 shows summary

statistics for each of these variables across project types. Of special note are the

project timelines. Our data show that the average approval time across all projects

was 652 days (1.8 years) and the average construction time was 863 days (2.4 years).16

15Note that not all the time in “construction” is necessarily spent on physical construction.
There may be various approvals and compliance checks that the project must undergo even after
the issuance of a permit by DBS.

16Approval time is measured for all projects. Completion time is measured only for completed
projects.
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The average total development time was 1,413 days (3.9 years).17 Since larger projects

take longer to complete, the completion time of the average dwelling unit is even longer

than for an average project. The average dwelling unit took 1,784 days (4.9 years) to

complete.

[Table 2 around here.]

[Table 3 around here.]

In addition to long average timelines for project development, there is also a

significant amount of uncertainty. Figure 2 shows the distribution of development

times for completed projects in our data. The 25th percentile for total development

time was 946 days (2.6 years) and the 75th percentile was 1,739 days (4.8 years).

This means that 1 out of every 4 multifamily housing developments built in Los

Angeles between 2010 and 2022 took 4.8 or more years to complete, from first permit

or entitlement application to CofO. The variability in total development time is not

simply due to predictable factors. Using a simple OLS model of completion time

on observable characteristics, we found that the observed characteristics could only

explain 25.8% of the variation in total development time.18 There is thus a significant

amount of remaining uncertainty in development time that is not explicated by the

variables in our dataset.

[Figure 2 around here]

Figure 3 illustrates the impact of long development times on total housing pro-

duction. The top blue line in Figure 3 shows the cumulative number of dwelling units

17Construction time and total development time are measured only for completed projects. Ap-
proval time is measured for all projects.

18See Table 2 for a list of the variables used.
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started by project start date. The bottom orange line shows the cumulative number

of dwelling units completed by CofO date. Over the course of the data period, 120,213

dwelling units were started, but only 71,532 were completed, leaving a gap of 48,681

unfinished units. One of the central questions we address in this paper is the extent

to which this gap of 48,681 units could be reduced simply by “pulling up” the orange

line through accelerated timelines. We turn to this question next in Sections 4 and 5.

[Figure 3 around here]

4 Statistical Models of Development Time

To assess the role of approval times in housing development, we first develop statistical

models of approval and construction times. The models allow us to estimate the mean

and variance of approval times and construction times after controlling for project

characteristics. Crucially, the models allow us to estimate the distribution of project

completion times, which is a latent variable in our data since not all projects were

completed. This in turn allows us to simulate how changes in approval time affect

project completion rates within a fixed time period.

Approval Time. We statistically model approval time according to the following

equation:

ATi = Xiβ + ϵi (14)

ATi is the approval time, measured in days, for project i. Xi is a vector of project

characteristics. This includes structural characteristics, such as the number of units,

building height, and building square footage, but also what entitlements the project
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required and the type of project (market-rate, mixed-income, or 100%-affordable).

Table 2 shows the full list of features that we consider in the model. The error term,

ϵi, is modeled as a logistic distribution with mean 0 and an unknown scale parameter.

Construction Time. Construction time is modeled according to the following

equation:

CT ∗
i = Xiγ + νi (15)

CT ∗
i is the latent construction time, in days, for project i. As above, Xi is a vector of

project characteristics. The error term, νi, is again modeled as a logistic distribution

with mean 0 and an unknown scale parameter.

For simplicity, we assume the independence of ϵi, νi, and Xi. This may not

hold in practice. There may be unobserved factors in ϵi and νi that are correlated

with observed factors in Xi. Moreover, it is likely that ϵi and νi are correlated,

because more complex projects may have both unexpectedly long approval times and

unexpectedly long construction times. We therefore cannot interpret (14) and (15)

as structural equations. However, our simulation results in Sections 5 and 6 do not

require a structural interpretation of equations (14) and (15) since they rely only on

the reduced form distributions of ATi and CT ∗
i .

In estimating our model for construction time, it is important to note that CT ∗
i

is not observed for the unfinished projects. For these projects, we only know that

CT ∗
i is larger than the number of days between November 28th, 2022 and the permit

issuance date. The model for construction time is therefore in the class of accelerated

failure time model for which standard estimation techniques have been developed.19

19See Kalbfleisch and Prentice (2002).
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Regression Results. Table 4 reports our coefficient estimates for models (14) and

(15). Although we are not primarily interested in the causal effects of Xi on ATi

and CT ∗
i , it is both interesting and informative to examine their relationships in the

reduced form. Council District fixed effects were included in the model but the results

are omitted for space. We comment on some selected results of interest below.

[Table 4 around here.]

Physical Characteristics. Out of the three physical measurements available in our

data—number of units, height, and square footage—height was the most statistically

significant variable in the model. The results show that every 10 feet of height (about

one story) is associated with 4 additional days in approval time and 12.1 additional

days in construction time.

Project Types. The results show that there is significant variation in approval and

construction times by project type, even after controlling for project characteris-

tics and required entitlements. 100%-affordable projects had shorter approval and

construction times than market-rate projects, whereas mixed-income projects had

longer approval times than market-rate projects. The faster development times for

100%-affordable projects may be due to city policies that prioritize affordable housing

development, whereas the slower developmentment times for mixed-income projects

may be due the increased complexity of such projects.

CEQA. There are three entitlement case types related to CEQA (the California

Environemntal Quality Act): Categorical Exemption (CE), Mitigated Negative Dec-

laration (MND), and Environmental Impact Report (EIR). According to the State of

California:
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“CEQA requires state and local government agencies to inform decision-

makers and the public about the potentially significant environmental ef-

fects of a proposed project, ways to minimize those effects, and to indicate

alternatives to the project. If a project subject to CEQA will not result in

potentially significant adverse effects to the environment, the Commission

may adopt a document known as a Negative Declaration or a Mitigated

Negative Declaration. If the project may cause adverse environmental

effects, the Commission will prepare a more detailed informational doc-

ument called an Environmental Impact Report (EIR). An EIR contains

information on potential effects, measures to mitigate those effects, and an

analysis of alternatives to the project. A key feature of the CEQA review

process is the opportunity for the public to provide input on Negative

Declarations, Mitigated Negative Declarations, and EIRs.”20,21

Our results show how entitlements related to CEQA affect development time. Un-

surprisingly, projects requiring an EIR had significantly longer approval times, by

504 days on average. By contrast, projects using a MND did not have significantly

longer approval or construction times than projects not subject to CEQA. Projects

that were categorically exempt from CEQA had longer construction times but no

significant difference in approval times.

Although EIRs add significant delays to a project’s approval time, we note that

not many projects required an EIR. Only 28 projects in the data required an EIR,

affecting a total of 8,311 dwelling units.

20https://www.slc.ca.gov/ceqa/. Accessed January 2nd, 2023.
21In our data, we observed very few Negative Declarations and mostly Mitigated Negative Dec-

larations. In the few instances where a Negative Declaration was observed, it was lumped together
with Mitigated Negative Declaration.
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Power installation. In our conversations with developers and city officials, the length

of time for DWP to complete a circuit installation was often cited as a bottleneck.

Our model results are consistent with that sentiment. The results show that requiring

a new overhead circuit installation adds 117 days to the construction time, whereas

requiring a new underground circuit installation adds 69 days to the approval time

and 176 days to the construction time.

Other Entitlements and By-Right. The results show the effect of various other types

of entitlements on approval and construction times. For example, the results show

that projects requiring approval by the City Planning Commission had 193 days longer

approval times and 125 days longer construction time. Projects requiring Site Plan

Review had 106 days longer approval time, but no statistically significant difference

in construction times.

Even after controlling for a number of different entitlement types, the results show

that projects requiring no entitlements (i.e. “by-right” projects) had lower approval

times by an average of 197 days.22 In other words, requiring any entitlements added,

on average, 197 days to the approval time, even after controlling for the types of

entitlements we observe in the data.

Scale Parameters. In addition to the coefficient estimates, Table 4 also shows our

estimated scale parameters for ϵi and νi. The estimated scale parameter for ϵi (the

residual of approval time) is 208.6, which implies a standard deviation of 378 days.23

The estimated scale parameter of νi (the residual of construction time) is 331.7, which

implies a standard deviation of 602 days.

22By-right projects still require approval from DBS, so their approval times are not zero.
23The standard deviation of a logistic distribution is sπ/

√
3, where s is the scale parameter.
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Salience of Factors. Although some factors have a large effect on approval or

construction time, such as EIR on approval time and CPIOC on construction time,

these factors may not apply to many projects. To measure the overall salience of

a factor on development time, we computed its combined effect on approval time

and construction time and multiplied that by the total number of dwelling units in

projects impacted by that factor. The salience of each factor is reported in Figure 4.

Salience is measured in unit-years. A salience of x means that if the marginal effect

of that factor were eliminated, an additional x units would have been completed one

year sooner. Figure 4 shows that if all projects requiring entitlement were instead

made by-right, then 48,085 unit-years in development time would have been saved.

If all projects requiring new underground circuit installations instead did not require

it, then 46,957 unit-years of development time would have been saved. By-right and

underground power installation are the two most salient factors, followed by City

Planning Commission and Site Plan Review.

[Figure 4 around here.]

5 The Impact of Approval Time on Project Com-

pletions

To assess the impact of approval times on project completions, we consider the fol-

lowing thought experiment. Suppose the expected approval time or the uncertainty

in approval times was reduced by X%. Taking as given the set of projects started

between January 2010 and November 2022, how many additional units would have

been completed by November 28th, 2022 if approval times had been reduced in this

way? Note that in this counterfactual, the newly completed units must come from
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projects that in the baseline did not complete by November 28th, 2022. Thus, to

conduct this exercise, we need to simulate the distribution of latent completion times

for the unfinished projects. We describe the simulation procedure below.

First, let β̂ be the estimated coefficients for the approval time model given by

equation (14), let ϵ̂i be the estimated residual, and let ŝA be the estimated scale

parameter. By definition, ATi = Xiβ̂ + ϵ̂i. Similarly, let γ̂ be the estimated coef-

ficients for the construction time model given by equation (15) and let ŝC be the

estimated scale parameter. Because CT ∗
i is not observed, we cannot directly estimate

the construction-time residual, νi, for each project; instead, we must simulate it by

drawing from its estimated distribution.

Let T 0
i be the start date of project i, which we take to be exogenous, and let T̄

be November 28th, 2022, the censoring date. Finally, let ci be an indicator equal to

1 if project i was completed by November 28th, 2022 and 0 otherwise. By definition,

ci =


1 if T 0

i + ATi + CT ∗
i ≤ T̄

0 otherwise

We now describe a procedure for simulating νi, the latent residual in the construc-

tion time model. When ci = 1, CT ∗
i is observed and we can estimate νi using the

equation νi = CT ∗
i − Xiγ.

When ci = 0, CT ∗
i is not observed. Instead, it is only known that C∗

T > T̄ −

T 0
i − ATi. Thus, when ci = 0, we only know that νi ≥ T̄ − T 0

i − ATi − Xiγ. We

can therefore estimate a distribution for the latent residual, ν̂i, using the following
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formula:

ν̂i =


CT ∗

i − Xiγ̂ if ci = 1

R | R > T̄ − T 0
i − ATi − Xiγ̂ if ci = 0

where R is a random variable distributed according to the logistic distribution with

mean 0 and scale ŝC .

The intuition for ν̂i is quite straightforward. For projects completed by November

28th, 2022, ν̂i is simply the difference between the observed construction time and

the model’s predicted construction time. For projects that were unfinished as of

November 28th, 2022, ν̂i is drawn from the estimated distribution of νi, conditional

on being large enough so that the latent completion time is past the censoring date,

as is consistent with the data.

We now describe how to calculate the number of units added in the counterfactual.

Suppose approval times are changed in such a way that every project receives a new

approval time, AT ′
i . We assume that in the counterfactual, latent construction times

remain unchanged. Let ĉi be an indicator for whether project i would have been

completed by November 28, 2022 in the counterfactual:

ĉ′
i =


1 if T 0

i + AT ′
i + Xiγ̂ + ν̂i ≤ T̄

0 otherwise

We can therefore calculate the number of units added in the counterfactual by adding

up the number of units in projects that were not completed in the baseline but
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completed in the counterfactual:

# Units Gained =
∑

i

wi(1 − ci)ĉi (16)

where wi is the number of dwelling units in project i.

Simulating a 25% reduction in expected approval times. We now turn to a

simulation in which the mean approval time is reduced by 25%, but the amount of

uncertainty stays the same. The counterfactual approval times are defined by:

AT ′
i = 0.75Xiβ̂ + ϵ̂i

Under this counterfactual, we find that a 25% reduction in expected approval time

increases the number of units produced by 7,375, a 10.3% gain over the baseline of

71,532.

Simulating a 25% reduction in the uncertainty of approval times. To sim-

ulate a reduction in the uncertainty in approval times, we define the counterfactual

approval times by:

AT ′
i = Xiβ̂ + 0.75ϵ̂i

In this counterfactual, the expected approval times conditional on project character-

istics remain the same, but the standard deviation is reduced by 25%. This has the

effect of compressing the distribution of approval times, making some projects take

longer to approve but also reducing the size of the long tail. We find that reducing

the uncertainty in approval times by 25% leads to an increase in the number of units
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produced by 1,545, a 2.2% gain over the baseline.

Simulating a reduction of 25% in total approval times. Lastly, we simulate

the effect of reducing total approval time by 25%. This reduces both the mean and

the uncertainty of approval times. In other words, we let:

AT ′
i = 0.75ATi

Under this counterfactual, we find that a 25% reduction in total approval time in-

creases the number of units produced by 8,478, a 11.9% gain over the baseline.

Discussion. The exercises above show how reductions in approval time translate

to increased housing production through a single channel: the pulling forward in

time of project completions. We therefore call this effect the “pull-forward” effect.

Figure 5 illustrates the pull-forward effect visually. The 8,478 new units are gained

by “pulling” forward the completions in time.

[Figure 5 around here.]

The estimate of the pull-forward effect relies on few assumptions other than the

distribution of the construction time residuals.24 The estimated pull-forward effects

can therefore be considered both robust and conservative estimates of what is possi-

ble through the reduction in approval times. The estimates are robust because the

pull-forward effect relies only on a distributional assumption and is robust to different

choices of said distribution. The estimates are conservative because they allow reduc-

tions in approval time to operate through only one channel. In reality, a reduction in

24In unreported results, we verified that the estimated pull-forward effects are robust to different
choices of the distribution of νi.
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approval time would also incentivize new development, a channel we turn to in the

next section.

Pull-forward effect response spectrum. The above exercises can be repeated for

a range of approval time reductions, producing a spectrum of effects. This spectrum

is shown in Figure 6 and gives a sense of the bounds of possibility through just pull-

forward effect. If all approval times were reduced by 50% (clearly an ambitious goal in

real life), then our model suggests that housing production would increase by 25.9%

due to the pull-forward effect. If approval times were reduced by a more modest 10%,

housing production would have increased by 5.3% due to the pull-forward effect. The

spectrum gives policymakers a sense of what reductions in approval time would be

needed to achieve different rates of increased housing production. Overall, the results

suggest that the pull-forward effect by itself is economically significant in magnitude

and thus it is worthwhile for policymakers to target approval time reductions.

[Figure 6 around here.]

6 The Impact of Approval Time on Project Starts

We now turn to estimating the effect of approval times on project starts. Risk-

averse developers experience high holding costs and opportunity costs due to delayed

development. We therefore expect that reductions in both the expected value and

the volatility of approval times would be associated with increased project starts.

To investigate this effect, we exploit variation in the mean and variance of ap-

proval times over time and across the 15 Los Angeles City Council Districts. We run

panel regressions of the number of projects started in Council District j in a window
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surrounding time period t on the backward looking mean and volatility of approval

times for projects in that district.

To operationalize this idea, let Njt be the number of projects started in council

district j between the dates of t − h and t + h. Let µjt be the mean of log approval

times for projects permitted in Council District j between the dates of t − 2h and

t. Let σjt be the standard deviation of log approval times for projects permitted in

Council District j between the dates of t − 2h and t.

Njt is modeled as a Poisson distribution in which:

E[ln Njt] = θ0 + θ1µjt + θ2σjt (17)

That is, the expected log number of project starts between t−h and t+h in Council

District j depends linearly on the mean and standard deviation of log approval time

for projects permitted in Council District j between times t−2h and t. The behavioral

model we have in mind is that developers look at recently permitted projects to form

expectations about how long their own project will take to approve, and this impacts

their decision-making as to whether or not to start a project.

In our preferred specification, we calculate Njt, µjt, and σjt on a monthly basis,

using the first of each month as the base time period. To ensure large enough sample

sizes to calculate mean and volatility, we use a bandwidth of h = 2 years. Because the

variables used in the regression are aggregates calculated from underlying microdata,

we estimate standard errors using 500 bootstrapped samples formed by resampling

the underlying microdata 500 times.

Table 5 shows the results of regression (17). We show five specifications. Column

1 shows the baseline result when no variables other than µjt and σjt are included.

Column 2 adds Council District and year fixed effects to control for unobserved hetero-
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geneity between Council Districts and across time periods. Column 3 adds a variable

called “Council Member Real Estate Score”, which is equal to the current Council

Member’s share of campaign contributions from donors associated with the real es-

tate industry in the last election cycle.25 The real estate score is meant to control

for contemporaneous political and economic factors that could influence a developer’s

decision to start a multi-family housing project in a particular Council District. Col-

umn 4, instead of controlling for the real estate score, controls for Council Member

fixed effects. Column 5 additionally controls for contemporaneous economic factors

measured annually for each Council District: the median household income in the

Council District, the unemployment rate, and the percent of adults in the Council

District with a bachelor’s degree or higher.26

[Table 5 around here.]

The results show that there is a statistically significant and robust negative as-

sociation between project starts and the backward-looking mean and volatility of

approval time. Using specification 5, our preferred specification, we estimate that a

25% reduction in the mean of approval times increases project starts by 11.4%, and

a 25% reduction in the volatility of approval times increases project starts by 8.5%.27

If both the mean and the standard deviation of approval times are reduced by 25%,

the model suggests that project starts would increase by 20.9%. We call this the in-

centive effect because it operates through developers’ decisions to start new projects
25A donor associated with the real estate industry is a donor whose name or occupation contains

any of the words “architect”, “developer”, “building”, or “construction”. Raw data for campaign
contributions comes from the Los Angeles City Ethics Commission website, ethics.lacity.org
(accessed March 14th, 2024).

26These variables were constructed from the ACS 5-year estimates at the Census Tract level, then
aggregated to the level of a Council District using geographic crosswalks.

27Our estimated effect of a 25% reduction in mean approval time is on the same order of mag-
nitude as those presented in Casey et al. (2022). Casey et al. used a financial model to estimate
that reducing approval times in Los Angeles by 25% would result in 9.8% additional housing units
becoming financially feasible for development.
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in response to lower expected approval times and reduced uncertainty in approval

times.

Combined incentive and pull-forward effects. To combine the incentive effect

with the pull-forward effect, we apply the incentive effect to the number of units

started at any given point in time, assuming the distribution of project start times

remains the same as in the data. With this assumption, the combined incentive and

pull-forward effect can be calculated as z = (1 + x)(1 + y) − 1, where x is the percent

gain in project starts due to the incentive effect and y is the percent gain in project

completions due to the pull-forward effect. z is the percent gain in the number of

units that would have been completed between January 2010 and November 2022.

Our estimated incentive effect of a 25% reduction in approval time (both mean

and volatility) was 20.9% and our estimated pull-forward effect was 11.9%. We esti-

mate a combined effect of 33.0%. In other words, we estimate that if the mean and

volatility of approval times were both reduced by 25%, then 33.0% additional units

would have been completed between January 2010 and November 2022, relative to

the baseline number of 71,532, or 23,634 additional units. Figure 7 illustrates the

combined incentive and pull-forward effects by plotting their effects on starts and

completions over the data period.

[Figure 7 around here.]

Figure 8 shows the response spectrum for the combined pull-forward and incentive

effects. If approval times were reduced by an ambitious 50%, housing production

would have increased by 73.6% taking into account both the effect on project starts

and the effect on project completions. If approval times were reduced by a more

modest 10%, we estimate that housing production would have increased by 13.3%.
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Discussion. Our estimates show that reductions in approval time can have a large

effect on housing production. As a lower bound, we estimate that a 25% reduction

in approval time would increase the rate of housing production by 11.9%, simply

by pulling forward in time the completion of already started projects. When we

additionally take into account the incentive effect, we estimate that a 25% reduction

in approval time would increase the total rate of housing production by 33.0%.

We are agnostic as to whether or not a 25% reduction in approval time is a

realistic objective for the City of Los Angeles. We leave that question to city officials

and agency heads to figure out. We do note, however, that our estimated combined

effect of 33.0% is a partial equilibrium estimate.

Among limitations of our counterfactual exercise, note that we do not consider

the behavioral response of opponents to housing development. For example, even

if the city was able to reform its processes so that approval times were reduced by

25%, opponents to development may find other means to extend, delay, or even

cancel projects during the construction phase. Also, the counterfactual exercise does

not consider second order general equilibrium effects operating through prices and

resource allocations in the broader economy. Finally, the simulations use data on

projects permitted between January 2010 and November 2022. These projects were

developed under specific macroeconomic conditions that may not be reflected going

forward.

7 Conclusion

Our analysis is among the first to theoretically model and empirically evaluate the

role of local land-use regulatory approval times and uncertainty in determination

of housing production. Using a unique dataset on the development timelines for all
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multifamily housing projects permitted in Los Angeles from 2010 to 2022, we estimate

that if mean duration and volatility in approval times were reduced by 25%, the rate

of housing production would increase by 11.9%, due simply to the pulling forward

in time of projects that were already started. When we additionally account for the

effect of incentivizing new development, we find that same 25% reduction in approval

time would increase the rate of housing production by a full 33.0%.

Our paper provides robust and credible quantitative evidence that approval policy

is a significant driver of the rate of housing production. The effect of approval policy

was shown to be quite large, even when using a conservative estimate of just the

pull-forward channel. Our paper adds novel evidence that local approval processes

are a significant driver of housing supply and reinforces the notion that municipal

regulatory reform is an important component of housing reform.
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Table 1: Summary of the Data - Project and Unit Counts

All Projects Market-Rate Mixed-
Income

100%-
Affordable

# Projects
Total 2,677 1,681 701 295
Completed 1,712 1,192 351 169
Not Completed 965 489 350 126

# Dwelling
Units

Total 120,213 70,272 36,269 13,672
Completed 71,532 47,904 15,929 7,699
Not Completed 48,681 22,368 20,340 5,973

# Market-Rate
Units

Total 102,897 70,272 32,422 203
Completed 62,493 47,904 14,449 140
Not Completed 40,404 22,368 17,973 63

# Affordable
Units

Total 17,316 0 3,847 13,469
Completed 9,039 0 1,480 7,559
Not Completed 8,277 0 2,367 5,910

Notes: Multi-family housing development projects issued a new building permit by DBS between
January 2010 and November 2022. “Mixed-Income” refers to projects that include both market-
rate and income-restricted units. “Complete” indicates that the project was issued a Certificate of
Occupancy by November 28th 2022.
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Table 2: Variable Names and Definitions

Variable Name Definition
AT Approval time in days
CT Construction time in days
UNITS100 Number of units in project divided by 100
HEIGHT10 Project height in feet divided by 10
SQFT10K Square footage of project divied by 10,000
MIXEDINCOME Project is a mixed-income project
AFFORDABLE Project is a 100%-affordable project
BY_RIGHT Project did not require any entitlements
CPC Project required review by City Planning Commission
CE Project had a Categorical Exemption to CEQA requirements
MND Project adopted a Negative Declaration or Mitigated Nega-

tive Declaration for CEQA
EIR Project required Environmental Impact Report for CEQA
SPR Project required Site Plan Review
SPP Project required Specific Plan Permit Compliance
ZAA Project required Area/Height/Yard/Bldg line adjustments
ZV Project required a Zone Variance
CPIOC Project required Community Plan Implementation Overlay

Clearance
OVR Project required Overlay Review
DB Project requested Density Bonus
POWER_OH Project required new overhead circuit installation
POWER_UG Project required new underground circuit installation
CDX Whether the project is in Council District X
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Table 3: Selected Summary Statistics for Variables

All Projects Market-Rate Mixed-
Income

100%-
Affordable

Approval Time (days)
25th pctile 308 274 449 250
Median 524 469 735 491
Mean 652 588 838 577
75th pctile 872 769 1,100 818

Construction Time (days)
25th pctile 574 534 659 622
Median 791 804 864 692
Mean 863 862 917 757
75th pctile 1,068 1,068 1,124 839

# Units, mean 44.9 41.8 51.7 46.3
Height (ft), mean 53.2 51.9 57.1 50.7
Square Footage, mean 49,811 49,820 53,326 41,405
By Right, mean 0.481 0.609 0.211 0.397
CPC, mean 0.066 0.036 0.098 0.156
CE, mean 0.272 0.199 0.459 0.241
MND, mean 0.168 0.124 0.264 0.193
EIR, mean 0.010 0.008 0.014 0.017
SPR, mean 0.112 0.079 0.163 0.186
SPP, mean 0.103 0.108 0.096 0.095
ZAA, mean 0.043 0.049 0.029 0.041
ZV, mean 0.037 0.046 0.014 0.034
CPIOC, mean 0.027 0.012 0.026 0.108
OVR, mean 0.020 0.024 0.013 0.010
DB, mean 0.163 0.036 0.422 0.271
POWER_OH, mean 0.271 0.231 0.358 0.292
POWER_UG, mean 0.365 0.286 0.536 0.407

Notes: Approval time is measured as the number of days from the date of the first seen
entitlement or permit application to the date of permit issuance. Construction time is
measured as the number of days from the date of permit issuance to the date of CofO
issuance. Construction time is only measured for completed projects. Approval time is
measured for all projects. All other variables are measured for all projects.
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Table 4: Approval and Construction Time Model Coefficients

AT CT
UNITS100 −29.333 −84.513∗

(24.496) (49.798)
HEIGHT10 3.978∗ 12.137∗∗∗

(2.248) (4.391)
SQFT10K 1.301 7.981∗

(1.950) (4.240)
AFFORDABLE −106.183∗∗∗ −197.394∗∗∗

(24.370) (43.349)
MIXEDINCOME 101.500∗∗∗ 42.589

(19.790) (35.920)
BY_RIGHT −197.187∗∗∗ 12.072

(27.850) (48.479)
CPC 192.589∗∗∗ 124.885∗∗

(36.169) (61.694)
CE −17.300 116.733∗∗∗

(25.421) (44.197)
MND 11.461 −72.193

(29.350) (48.040)
EIR 504.227∗∗∗ −75.983

(85.306) (141.370)
SPR 105.619∗∗∗ 35.944

(30.562) (53.060)
SPP 125.525∗∗∗ −9.338

(26.856) (46.681)
ZAA 222.313∗∗∗ 81.616

(43.121) (69.488)
ZV 84.277∗ 157.718∗∗

(46.821) (75.233)
CPIOC −77.401 530.381∗∗∗

(48.929) (138.028)
OVR −5.876 393.497∗∗∗

(54.528) (102.124)
DB 63.089∗∗ −34.955

(26.313) (44.245)
POWER_OH 22.749 116.687∗∗∗

(16.509) (29.617)
POWER_UG 69.005∗∗∗ 175.623∗∗∗

(16.317) (28.692)
Constant 676.691∗∗∗ 966.533∗∗∗

(41.982) (73.038)
Council District FE Y Y
Scale Parameter 208.595 331.675
Observations 2,677 2,677

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Regression of Project Starts on Mean and Volatility of Approval Time

Dependent variable:
log(Project Starts)

(1) (2) (3) (4) (5)
Mean of ln(Approval Time) −0.167 −0.474∗∗∗ −0.396∗∗ −0.441∗∗ −0.431∗∗

(0.141) (0.184) (0.192) (0.191) (0.179)

S.D. of ln(Approval Time) −0.178 −0.445∗∗∗ −0.447∗∗∗ −0.475∗∗∗ −0.327∗∗∗

(0.189) (0.0879) (0.0876) (0.0928) (0.0833)

Council Member Real Estate Score 0.138∗∗ 0.0748
(0.0699) (0.0662)

ln(Median Household Income) −1.19∗∗

(0.559)

Umemployment Rate −0.11∗∗∗

(0.0334)

% Bachelors or Higher 0.0759∗∗∗

(0.0188)

Council District FE X X X X
Year FE X X X X
Council Member FE X
Observations 1,260 1,260 1,260 1,260 1,260

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2: Histogram of Development Time for Completed Projects (Days)
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Note: Development time is measured as the number of days from the date of the first seen entitlement
or permit application to the date the Certificate of Occupancy was issued.
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Figure 3: Units Started vs. Units Completed
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Note: Start date is measured as the date of the first observed entitlement or permit application.
Completion date is the issuance date of the Certificate of Occupancy. Not all projects started in the
dataset were completed as of November 28th, 2022.
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Figure 4: Salience of Development-Related Factors
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Note: Salience is measured in unit-years. It represents the number of dwelling units that would have
been developed one year sooner if the marginal effect of the factor had been eliminated.
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Figure 5: Pull-Forward Effect of a 25% Reduction in Approval Time
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Note: Start date is measured as the date of the first observed entitlement or permit application.
Completion date is the issuance date of the Certificate of Occupancy. Not all projects started in the
dataset were completed as of November 28th, 2022.
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Figure 6: Pull-Forward Effects Due to Reductions in Approval Time
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Note: This chart shows the number of additional units that would have been produced between
January 2010 and November 2022, taking as given the projects that were started, if approval times
had been reduced by X percent. The counterfactual only takes into account the effect of approval
time reductions on project completions, i.e. the “pull-forward” effect.
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Figure 7: Pull-Forward and Incentive Effects of a 25% Reduction in Approval Time
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Note: Start date is measured as the date of the first observed entitlement or permit application.
Completion date is the issuance date of the Certificate of Occupancy. Not all projects started in the
dataset were completed as of November 28th, 2022.
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Figure 8: Combined Incentive and Pull-Forward Effects Due to Reductions in Ap-
proval Time
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Note: This chart shows the number of additional units that would have been produced between
January 2010 and November 2022, if approval times had been reduced by X percent. The counter-
factual takes into account both the effect on project completions (the “pull-forward” effect) and the
effect on project starts (the “incentive” effect).
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A Mathematical Appendix

If the time it takes to develop a housing unit is x, then the present value of the

development is:

PV = −
∫ x

0
ζe−rtdt + pe−rx

= − ζ
r

[
1 − e−rx

]
+ pe−rx

= − ζ
r

+
(
p + ζ

r

)
e−rx

The expected value of PV is:

E[PV ] = − ζ
r

+
(
p + ζ

r

)
E

[
e−rx

]
= − ζ

r
+

(
p + ζ

r

)
m(−r)

= − ζ
r

+
(
p + ζ

r

) [
1 − E[X]r + o(r2)

]

The variance of PV is:

V [PV ] =
(
p + ζ

r

)2
V

[
e−rx

]
=

(
p + ζ

r

)2
(

E
[(

e−rx
)2

]
− E

[
e−rx

]2
)

=
(
p + ζ

r

)2 (
E

[
e−2rx

]
− m(−r)2

)
=

(
p + ζ

r

)2 (
E

[
e−2rx

]
− m(−r)2

)
=

(
p + ζ

r

)2 (
m(−2r) − m(−r)2

)

Note also that:

m(−2r) = 1 − 2E[X]r + 2E[X2]r2 + o(r3)

47



and:

m(−r)2 =
(
1 − E[X]r + 1

2E[X2]r2 + o(r3)
)2

= 1 − 2E[X]r + E[X2]r2 + E[X]2r2 + o(r3)

and thus:

m(−2r) − m(−r)2 = E[X2]r2 − E[X]2r2 + o(r3)

= r2V [X] + o(r3)

B Data Appendix

Our goal was to develop a comprehensive dataset with detailed information on the

timing, cost, and approvals for a large representative sample of housing development

projects in the City of Los Angeles. After investigating publicly available sources and

consulting with developers and city officials, we were unable to identify a sufficiently

representative sample with reliable cost information inclusive of both affordable and

market-rate projects.

Fortunately, we were able to develop a dataset with rich information on develop-

ment times. We started with a list of all multi-family projects issued a new building

permit by the L.A. Department of Building and Safety (DBS) between January 2010

and November 2022.28 This data is publicly available on the city’s open data portal.29

We exclude closed and expired permits, so the final dataset includes only the projects

that are still actively in development or have been completed. We measure project

28A project was determined to be multi-family if its permit subtype was not “1 or 2 family
dwelling” and if the use description was residential (apartments, senior housing, etc.)

29https://data.lacity.org/City-Infrastructure-Service-Requests/New-Building-Per
mits-2010-to-Present/46r2-n9vp.
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completion by the issuance of a Certificate of Occupancy (CofO). For each project,

we determined the number of income-restricted units (i.e. affordable units) and the

number of market-rate units by reading the permit work description and associated

entitlement requests. A project with all affordable units except a few manager units

were categorized as “100%-Affordable” projects. Projects with no affordable units

were categorized as “Market-Rate” projects. All other projects were categorized as

“Mixed-Income” projects.

The resulting dataset contained 2,677 projects representing 120,213 total units, of

which 102,897 are market-rate and 17,316 are affordable. 1,712 projects were com-

pleted (issued a CofO) as of November 28th, 2022, and 965 projects were unfinished

as of November 28th, 2022. The full breakdown of counts by project type are reported

in Table 1 of the main paper.

Linking DBS permit data to entitlements

In that one of our primary goals was to assess the speed of housing production, it

was important that we used a meaningful and consistent definition of project start

date. The date of DBS permit submittal is not always a good measure of the start

date because the entitlement process (the process of getting formal approval from

city planners to commence development of a project) can start many years prior to

submission of plans to the DBS. This is especially true of projects that seek to build

outside the specifications of existing zoning code.

The DBS dataset does not include information on entitlements. In order to link

the DBS data to related project entitlements, we took advantage of the L.A. Zone

Information and Map Access System (ZIMAS) and Planning Document Information
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System (PDIS).30,31 ZIMAS allows users to input an address, assessor parcel number

(APN), or parcel identification number (PIN) and retrieve zoning information about

the parcel, including all relevant planning department cases. PDIS is a system main-

tained by the L.A. Planning Department that allows users to retrieve information

about specific planning department cases based on case number.

To facilitate data collection, we built a tool that performs the following functions:

• First, the tool takes the primary address and the associated PINs of a project

from the DBS data. It retrieves and stores all the data returned by ZIMAS for

that address and the associated PINs. All planning department case numbers

returned by ZIMAS are then linked to the project.

• For each planning case associated with the project, the tool retrieves and stores

the data about that case from PDIS. The crucial fields that we make use of

are the case filing date, the case completion date, and free text fields describing

the project and the requested entitlement. The case number itself also encodes

valuable information, such as the level of decision-making required (Adminis-

trative Review, Director of Planning, City Planning Commission, etc.) and the

requested entitlements (Denstity Bonus, Site Plan Review, etc.)

Filtering relevant cases. Using this tool, we were able to link each project to a list

of planning cases relevant to the parcels under development. However, not every such

case is relevant to the project development timeline. Some cases, for example, are

community plan updates that affect a large number of parcels but were not specifically

requested by the developer of the project. Other planning cases may have been filed

subsequent to completion of the project. Still others may have been filed many years

30ZIMAS: https://zimas.lacity.org.
31PDIS: https://planning.lacity.org/pdiscaseinfo/search.
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before the project started and are unrelated to project development. To deal with

such cases, we mark a case as not relevant to the project if any of the following hold:

• The case was filed or completed after the project’s CofO date. This only applies

to completed projects where a CofO was issued.

• The case applicant name was “City of Los Angeles“ or if the case is linked to 5

or more separate projects.

• The case was filed more than 5 years before the DBS permit submittal date

or completed more than 2 years before the DBS permit submittal date. In

addition, we only kept cases filed before the DBS permit submittal date if the

case’s requested entitlement field contained keywords indicating it was a housing

development project.

Using these rules, we linked 1,389 projects to at least one related entitlement case.

1,288 projects were not linked to any case. Of the projects that were linked to at

least one case, the average number of cases linked was 2.7.

Discussion. Two types of errors may emerge from our linking procedure. First,

cases not relevant to a project may be erroneously marked as relevant. Second, some

cases relevant to the project may erroneously be marked as not relevant.

To assess the prevalence of the first type of error, we randomly sampled 30 projects

linked to at least one planning case. This resulted in a sample of 30 projects linked to

75 cases. We then investigated each case by hand and assessed our level of confidence

that it is indeed relevant to the project. We have a very high degree of confidence in 57

of the 75 linked cases. In these 57 cases, the project description in the entitlement case

matches the work description in the DBS permit inclusive of the number of dwelling

units proposed. In 16 of the 75 cases we had a medium degree of confidence. In these
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cases, most of the project features match, such as the number of building stories,

but there may be some small discrepancies such as the proposed number of units. A

discrepancy does not necessarily mean that the planning case and the permit don’t

refer to the same project. Discrepancies can arise because project plans may change

from the time the entitlement was first requested and the new building permit was

submitted. In most cases the discrepancies are quite minor. We had low confidence

in only 2 of the 75 cases, both linked to the same project. The error may have been

due to an erroneous address in the system.

To assess the prevalence of the second type of error, we randomly sampled another

30 projects with or without any linked planning cases. We then investigated each

project by hand to see if any relevant cases were missed. There was one project that

our procedure failed to link to any case because the relevant entitlements were filed 6

years before the permit submittal date. For every other project which our procedure

failed to link to a case, we did not find any obviously relevant cases.

It is still possible that some cases our procedure marked as not relevant actually

are pertinent to the study. For example, developers can push for general or specific

plan amendments that affect a large number of parcels at once as a prerequisite to

development of a specific project. Yet our procedure would not link the case to any one

particular project. To the extent that we are missing such linkages, our procedure can

be thought of as a conservative estimate of entitlement and development timelines,

because we are measuring fewer entitlements for each project than were actually

necessary.

Supplemental data from Department of Water and Power

In addition to data on entitlements, we also sought data on new power service in-

stallations from the Los Angeles Department of Water and Power (DWP). This was
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motivated by conversations with industry professionals, where long delays for electri-

fication were identified as a major bottleneck.

To obtain this data, we provided DWP with the primary site address for each of

our 2,677 projects. DWP then returned, for each address, all new power service work

requests associated with that address from 2010 to present. We filtered out any work

requests that were entered before the project start date and we filtered out any work

requests that were completed after the project’s CofO date.

In total, we received data on 70,114 work requests for 2,324 of our projects. For

the projects that we did not receive data for, it is likely because of an error in finding

matching addresses. Addresses are not standardized between the DBS and DWP

databases, leading to an imperfect matching process. (This also suggests that im-

provements to the city’s data systems could help accelerate housing development.)

The vast majority of the work requests are new meter installations. We ignore

new meter installations in our analysis because they are required on almost every

project. Instead, we focus on work requests for the design and installation of new

overhead and underground circuits and service voltage. There were 808 overhead work

requests and 1,291 underground work requests. In our empirical models, we consider

the impact of a project requiring any new overhead or underground installations on

project timelines.

53


	Introduction
	Theoretical Framework
	Data and Institutional Background
	Statistical Models of Development Time
	The Impact of Approval Time on Project Completions
	The Impact of Approval Time on Project Starts
	Conclusion
	Mathematical Appendix
	Data Appendix

