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We consider the anesthesiologist staff planning problem for operating services departments in large multi-

specialty hospitals. In this problem, the planner makes monthly and daily decisions to minimize total costs.

Each month the staff planner decides the number of anesthesiologists on regular duty and an on-call consid-

eration list for each day of the following month. In addition, each day, the staff planner decides how many

on-call anesthesiologists to call for the following day. Total costs consist of explicit and implicit costs. Explicit

costs include the costs of calling an anesthesiologist and overtime costs. These costs are specified by the

organization. Implicit costs encompass costs of not calling an on-call anesthesiologist and under-utilizing an

anesthesiologist, and these have to be deduced from past decisions. We model the staff planning problem as a

two-stage integer stochastic dynamic program. We develop structural properties of this model and use them

in a sample average approximation algorithm constructed to solve this problem. We also develop a procedure

to estimate the implicit costs, which are included in this model. Using data from the operating services

department at the UCLA Ronald Reagan Medical Center, our model shows the potential to reduce overall

costs by 16%. We provide managerial insights related to the relative scale of these costs, hiring decisions by

service, sensitivity to cost parameters, and improvements in the prediction of the booked time durations.

1. Introduction

Healthcare expenditures in the United States are expected to rise to 20% of GDP by 2027 (Sisko

et al. 2019). Evidence suggests that a significant portion of this expenditure is wasted because

of operational inefficiencies at healthcare sites such as hospitals, which constitute around 32% of

healthcare expenditures in the U.S. (Smith et al. 2012). In hospitals, the total labor expenditure

can exceed 50% of operating costs and may be up to 90% of variable costs (Healthcare Insights

2014). Thus, efficient deployment of labor becomes one of the primary methods of cost control at

hospitals.

There are several challenges in managing labor at a hospital. First, there is uncertainty in the

demand for services. Second, the skill set of staff is often specialized and not easily substitutable.

Finally, because of the characteristics of health services, tactics such as production smoothing

cannot be employed effectively. Hospitals make efficient use of labor through staffing that can be

made flexible in volume by calling additional employees, use of floating resources, and overtime

(Kesavan et al. 2014). Such volume flexibility can help reduce costs at hospitals by reacting to
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changes as information about the future workload become available (Bard and Purnomo 2005).

Volume flexibility in hospitals has been used in staff planning for nurses and physicians (Brunner

et al. 2009).

Overtime is a key feature in achieving volume flexibility. However, excessive overtime of clinical

staff has been associated with lower patient safety (Rogers et al. 2004), higher employee burnout

(Stimpfel et al. 2012), and deteriorating employee health (Trinkoff et al. 2006). Thus, to reduce

reliance on overtime, staff planners often use additional employees who can be called on short

notice. The use of this contingency labor supply reduces the number of overtime hours. However,

depending on the staffing policy, this may give rise to additional administrative costs. These consist

of both explicit and implicit costs. Explicit costs represent the actual monetary payment made

and recorded for an activity. Such costs could include overtime compensation and extra payments

made to staff who report for work on short notice. In contrast, an implicit cost is not recorded but

instead implied. Implicit costs could include the opportunity cost to the organization associated

with staff idle time and the inconvenience to employees whose schedules change on short notice.

Traditionally, staff planning at hospitals has been a manual process. While evidence suggests that

the use of analytic, data-driven, model-based systems would be beneficial from a cost perspective

(Healthcare Insights 2014), implementing such systems for labor scheduling has been challenging.

There have been examples of automated staff planning systems that have not been successful at

large retail organizations like Starbucks (Kantor 2014, 2015). The principal challenge in implement-

ing model-based staff planning systems is minimizing overall costs by incorporating the explicit

and implicit human costs of the employees. Not incorporating all the human costs would likely

lead to failure in acceptance and implementation of these systems (Bernstein et al. 2014)

In this paper, we provide an approach to estimate the implicit costs in staff planning. Sub-

sequently, we use explicit and implicit costs in an optimization model for anesthesiologist staff

planning at the UCLA Ronald Reagan Medical Center (RRMC).

1.1. Problem Description

The UCLA RRMC is a large multi-specialty hospital that consistently ranks among the best

five hospitals in the United States.1 The operating services department of the UCLA RRMC is

responsible for staffing physician anesthesiologists to surgical services at the hospital. The focus

of our work is the staff planning of physician anesthesiologists at this department of the UCLA

RRMC.

The operating services department manages the surgery suite at the UCLA RRMC. Surgeons

across all services in this hospital perform around 27,000 surgeries annually across 2,700 unique

1 http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview
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surgery types. The anesthesia required for these surgeries is categorized into four services: Car-

diothoracic, General, Neuro, and Pediatric. The staff planning for anesthesiologists consists of two

stages: monthly and daily decisions. The details of these decisions are given below.

• Monthly decisions: By the 20th of each month, depending on the teaching and vacation

commitments of anesthesiologists, the availability of anesthesiologists for each day of the

upcoming month is known. Once anesthesiologists have provided their availability, they can

be scheduled across all these days. Based on this availability and the historical data of surgical

workload, the staffing plan for each service for each day of the following month is prepared.

This plan consists of dividing the anesthesiologists available each day of the following month

into two groups: those who would be available on regular duty, and those on a reserve list,

called the on-call consideration list. Anesthesiologists on the on-call consideration list are

informed the day before the surgery if their services are required the next day. In this case,

they are paid an additional $1,000 for the entire day. However, if they are not needed, they

are not paid this additional amount. Thus, being on the on-call consideration list and not

being called is not desirable for the employees. The planner manages the number of employees

on the on-call consideration list so that this does not occur frequently.

• Daily decisions: The day before the surgery, the total number of elective procedures that will

be performed the next day and their booked hours are finalized. Based on this information,

a certain number of anesthesiologists of each service from the on-call consideration list are

informed that they would be working the next day. The number of anesthesiologists actually

called, and the number of anesthesiologists on regular duty determines the total available

work hours. When the actual surgical hours are realized, the costs of overtime or idle time are

realized.

The staff planner has to balance four costs when making the monthly and daily decisions involved

in the staffing plan. These include:

1. The explicit cost of calling anesthesiologists from the on-call consideration list. This is the

additional payment made to the anesthesiologists for coming on short notice. At the UCLA

RRMC, this was $1,000 per day.

2. The implicit cost of having anesthesiologists on the on-call consideration list but not calling

them. This is the inconvenience cost of keeping an anesthesiologist on hold for a day and not

compensating him or her. Anesthesiologists on the on-call consideration list have to alter their

schedule outside work such that they have to stay within an acceptable distance from the

hospital. Therefore, there is an inconvenience in being placed on the on-call list (Olmstead et al.

2014). At UCLA RRMC, the physicians are only compensated if they are called. Therefore,

the inconvenience cost of being on the on-call list is implicit.
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However, physicians expect that sometimes they might be placed on-call and not get called.

Therefore, we assume that being on-call but not getting called has a cost only after a threshold.

3. On the day of the surgery, each anesthesiologist on regular duty works an eight-hour shift.

If a surgery in progress is incomplete at the end of the shift, there are no hand-offs, and

the anesthesiologist continues to accrue overtime. At the UCLA RRMC, such overtime is

compensated at $180 per hour.

4. If the total number of work hours of available anesthesiologists is greater than the total realized

hours of surgery, there will be idle time. The operating services department seeks to keep idle

time low and, thus, there is an implicit cost of idle time.

In Table 1, we present the summary statistics of the number of anesthesiologists on regular duty,

those on the on-call consideration list, and those who actually get called. This table shows that,

on average, 17.48 anesthesiologists work on regular duty; 6.89 are on the on-call list, out of which

2.77 are called. Furthermore, there is considerable variation in staffing levels across services. This is

primarily because of the demand characteristics of the services. General anesthesia services require

a greater proportion of on-call anesthesiologists than other services. This is because the coefficient

of variation of daily demand for general anesthesia services is larger than that of other services.

Insert Table 1 here

In 2014, the UCLA RRMC instituted an electronic health system.2 The management at the

operating services department was keen on using the data from this system to develop an analytical

model-based approach to staff planning that incorporated all the relevant costs. An implementation

of such an analytical model to address staff planning could face similar challenges, as described in

Kantor (2014), Kantor (2015), and Bernstein et al. (2014), if implicit human costs of staffing are

not incorporated. Therefore, we take a two-part approach to staff planning at this hospital. In the

first part, we model the staff planning as a two-stage integer stochastic dynamic program. The first

stage captures the monthly decisions, while the second stage includes the daily decisions involved

in staff planning. We then develop an algorithm to solve this model to provide the monthly and

daily anesthesiologist staffing plan across each service for given cost parameters. In the second part,

we develop a procedure to estimate the implicit costs. These include the inconvenience costs of

scheduling anesthesiologists on the on-call consideration list but not calling them and the implicit

cost of idle time. Subsequently, we use these estimated costs to demonstrate the total cost savings

from using the optimization model.

2 http://careconnect.uclahealth.org/about-careconnect
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1.2. Literature Review

The staff planning problem considered in this paper is related to three streams of literature. The

first is in staff planning for services, particularly for operating rooms. The second stream is based

on two-stage stochastic dynamic programming models. The third is associated with the estimation

of operational parameters.

Several papers model the stages of staff planning at service organizations as a dynamic opti-

mization problem. Wild and Schneewei (1993) provide a model for staff planning for the long term,

medium-term and short term when volume flexibility is available in the form of contingent work-

ers. Pinker and Larson (2003) provide a model for flexible workforce management in environments

with uncertainty in the demand for labor. In the context of staff planning at hospitals, Dexter

et al. (2005) provide a framework for tactical decision-making when allocating operating room time

approximately one year in advance. The decisions that are a part of this time frame include hiring

additional staff and building new operating rooms. He et al. (2012) analyze decision-making for

nurse staffing as more information becomes available about the workload on the day of the surgery.

Through numerical analysis, they identify that deferring staffing decisions until the time procedure

type information is available could help hospitals save up to 49% of staffing costs. While hospitals

would like to defer staffing decisions as late as possible, this often leaves staff without final sched-

ules until shortly before the day of the surgery. This uncertainty in schedules is not desirable from

a staff perspective. Thus, the UCLA RRMC, like several other service organizations, mitigates this

problem by using a base level of staff who know they will be required on a given day and a reserve

(on-call) list. Anesthesiologists on the on-call list will know if they need to come in only the previ-

ous day. McIntosh et al. (2006) state that this refinement of service-specific staffing, months before

the day of the surgery, has a high degree of influence on staff satisfaction at hospitals. Xie and

Zenios (2015) analyze the nursing staff planning problem within a time frame of a few months and

propose a dynamic staffing policy, with adjustments to staffing levels as information on different

types of surgeries arrives sequentially. They find that a threshold policy (analogous to a base stock

policy) is optimal.

The staff planning problem at the UCLA RRMC is a two-stage integer stochastic dynamic pro-

gram. When we remove the integrality requirement, this problem reduces to a two-stage stochastic

dynamic program. Such problems have been extensively studied (Birge 1985). When applied in

the retail context, this is known as a two-stage newsvendor problem. Gurnani and Tang (1999)

characterize the optimal solution to this problem at a retailer that has two instances to order a

seasonal product. Fisher et al. (2001) propose a heuristic solution to solve the two-stage newsven-

dor problem in an application at a catalog retailer. Recently, such two-stage models have also been

used in agro-business (Bansal and Nagarajan 2017). In contrast, integrality requirements in our
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problem are essential because we consider staff planning and, as shown in Table 1, the average

number of anesthesiologists deployed in each service on a given day is small. Recent theoretical

work on integer stochastic dynamic programs includes Gade et al. (2014), Kong et al. (2013), and

Sun et al. (2015). Kim and Mehrotra (2015) consider a two-stage nurse staffing and scheduling

problem. In the first stage, they find the initial staffing levels and schedules, and in the second

stage, they adjust staffing levels after demand is observed. To solve this problem, they employ

a two-stage stochastic integer program. Their modeling approach differs from our work in two

key aspects. First, they assume no uncertainty in the second stage, so staffing adjustments are

made in this period under known demand. Second, the feasible set of second-stage staffing patterns

is constant and does not depend on the first-stage decision. In contrast, our application context

required that we consider uncertainty in both stages, and the second-stage problem depends on

the first-stage decision. These aspects significantly complicate the solution method. In addition, in

their numerical analysis, they assume that the cost of idle time was zero. This was an important

parameter in our setting, and we apply a data-driven approach to estimate the idle time cost of

the anesthesiologists.

Literature related to dynamic optimization based staff planning assumes that all the appropriate

costs are known. As described before, this is often not the case since there are several implicit

costs in staff planning. Dexter and O’Neill (2001) discuss the importance of implicit costs in

creating a staffing plan for anesthesiologists. Therefore, for an optimization model to be useful,

these implicit costs must be estimated and included. In the econometric literature, Rust (1987)

discusses a structural estimation of the costs involved in the dynamic problem of replacement

of machinery. Aguirregabiria (1999) describes the estimation of unknown cost parameters in the

joint pricing and inventory management problem at a retail firm. In the operations management

literature, Allon et al. (2011) use a structural estimation approach to estimate the impact of waiting

time performance on market share in the fast-food industry. Deshpande and Arıkan (2012) estimate

how airline schedules affect flight delays. Structural estimation of operational parameters has also

been used in the call center industry by Aksin et al. (2013) and Aksin et al. (2017) to estimate

customer preferences. In terms of the application context, our paper is closest to Olivares et al.

(2008), who model the operating room time allocation problem as a newsvendor problem. They

then employ a structural estimation approach to assess the relative costs of idle time and overtime

for operating rooms. However, all these papers use the estimates created from structural estimation

primarily for descriptive purposes, and they are not linked with an optimization model. This link

is of significant importance in our application context. Furthermore, structural estimation assumes

that the decision-maker makes optimal decisions and therefore does not capture the errors made by

the decision-maker in the decision process. To overcome this, in our estimation procedure, we use
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an approach similar to Su (2008), Ho et al. (2010), and Bolton et al. (2012), who assume that the

decision-maker is bounded rational. This implies that decision-makers are not perfect optimizers

and make errors resulting from both insufficient information and cognitive limitations.

1.3. Contributions

Our paper makes the following contributions. First, we develop a two-stage integer stochastic

dynamic programming model for medium and short-term planning for anesthesiologists while incor-

porating implicit costs, demand uncertainty, and multiple services. To the best of our knowledge,

this is the first paper to consider this approach in the health care industry. Second, this paper devel-

ops a procedure to estimate implicit cost parameters used in the model. This provides a framework

for creating staff planning models that overcome the shortcomings of dynamic optimization models

in situations where some cost parameters may be implicit, as is often the case in service organi-

zations. Third, we provide structural results and develop a general method for solving two-stage

integer stochastic dynamic programs. These can also be used in other applications. Fourth, we test

our model with real data at the operating services department at the UCLA RRMC and demon-

strate cost savings from such an estimation and optimization approach. We also draw managerial

insights from this work.

The remainder of the paper is organized as follows. In Section 2, we provide the formulation

of the model and describe the variables, parameters, objectives, and constraints. We also provide

the structural properties of the model and describe its solution method. In Section 3, we describe

the data and methodology for the estimation of demand for anesthesia services based on historical

data. In Section 4, we present the procedure to estimate the implicit cost parameters. In Section 5,

we describe the results of the computational analysis. In Section 6, we summarize our work, provide

managerial insights, describe the limitations of our study, and suggest future research directions.

2. Model

We start by presenting a model formulation of the staff planning problem. To provide a precise

definition of the model, let S be the set of services {Cardiothoracic, General, Neuro, Pediatric},
and let T be the set of days in a given month. We define the following variables, which are optimized:

xst: Number of anesthesiologists of service s∈ S placed on regular duty on day t∈ T .

yst: Number of anesthesiologists of service s ∈ S placed on the on-call consideration list on day

t∈ T .

zst: Number of anesthesiologists of service s∈ S called from the on-call list for day t∈ T .

Next, we define the following parameters or inputs:

nst: The number of anesthesiologists of service s available for day t∈ T .

h: The regular hours of work done per day by an anesthesiologist (hours).



8

co: Overtime cost of anesthesiologists ($/hour).

cu: Idle time cost of anesthesiologists ($/hour).

cq: Cost of calling an anesthesiologist from the on-call list ($/day).

c′q: Cost of keeping an anesthesiologist on the on-call list but not calling ($/day).

τ : Threshold parameter, (anesthesiologist per day)

Bst: The distribution of anesthesia hours booked for service s∈ S for day t.

B̃st: Realization of Bst.

Dst: The distribution of anesthesia hours used for service s∈ S at the end of day t

D̃st: Realization of Dst.

f(Dst|Bst),F (Dst|Bst): the marginal density and distribution of Dst given Bst respectively.

Further, for conciseness, let:

a+ = max(0, a).

dae= min{n∈Z|n≥ a} .

bac= max{n∈Z|n≤ a} .

c = (co, cu, cq, c
′
q) .

The staff planning model is a two-stage, integer stochastic dynamic program. The first stage consists

of the Monthly Staff Planning Problem (MSPP ), which determines the number of anesthesiologists

on regular duty and the on-call list for each day of the given month across each service. The second

stage consists of the Daily Staffing Planning Problem for service s in time period t (DSPPst). This

determines how many anesthesiologists to call from the on-call list for service s for day t. We next

describe each of these problems in detail.

In the MSPP , decisions are taken before the beginning of the given month. Thus, at this

point, the planners are only aware of the historical distribution of Bst and the total number

of anesthesiologists available for each day of this month (nst). For each service on each day of

the upcoming month, the planners decide the number of anesthesiologists who should be present

for regular duty (xst) and the number of anesthesiologists who should be a part of the on-call

consideration list (yst). The MSPP is formulated as:

(MSPP) V(n,c) = min
∑

s∈S,t∈T
{EBst

[Wst(xst, yst;c,Bst, nst)]} (1)

subject to,

xst + yst ≤ nst ∀s∈ S, t∈ T (2)

xst, yst ∈N+ ∀s∈ S, t∈ T (3)

The objective (1) represents the total expected monthly costs. This is the sum of expectation of

Wst(xst, yst;c,Bst, nst) over Bst, where the total expectation of the future cost is carried over to the
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beginning of the horizon when the decision is made. Here, Wst(xst, yst;c,Bst, nst) represents the

cost of service s on day t and depends on the decisions xst and yst, cost parameters c, the number of

available anesthesiologists nst, and the booked time Bst. The exact form of Wst(xst, yst;c,Bst, nst)

will be defined in the DSPPst. Constraint (2) enforces the total allocation of anesthesiologists for

each service, and each time period cannot be greater than the total availability of anesthesiologists

on that day and for that service. Constraint (3) ensures that the decision variables are positive

integers.

Next, we describe the second-stage problem, DSPP st, which considers the daily decision of

calling in additional anesthesiologists from the on-call consideration list to support the surgical

schedule for the next day. At this point, the planner is aware of the total booked hours of surgeries

for each service (Bst). Using this information and knowledge of the conditional distribution of the

actual realization of surgery duration (f [Dst|Bst]), the planner decides to call in a certain number of

additional anesthesiologists from the on-call consideration list (zst). Each of these anesthesiologists

will be paid an additional amount (cq). On the day of surgery, the actual surgical duration of each

surgery is realized, which determines the total workload for each service (Dst). Depending on the

total available labor hours of each service (h(xst + yst)), the overtime and idle time costs will be

realized. The DSPP st is formulated as:

DSPPst

W(xst, yst;c,Bst, nst) = min

{[
cqzst + c′q(yst− zst− τ)+

]
+ EDst|Bst

[
co

(
D̃st−h (xst + zst)

)+

+

cu

(
h (xst + zst)− D̃st

)+
]}

(4)

zst ≤ yst (5)

zst ∈N+ (6)

The objective (4) of the DSPP st consists of four terms. The first term, cqzst, is the cost of extra

payments made to the anesthesiologists who are called from the on-call consideration list. The

second term, c′q(yst − zst − τ)+, is the inconvenience cost of not calling anesthesiologists from the

on-call consideration list. As we described in Section 1.1, these costs are incurred only if the total

number of anesthesiologists not called from the on-call list (yst− zst) is greater than threshold τ .

The third term co

(
D̃st−h (xst + zst)

)+

is the overtime pay when the demand realized is greater

than the total workload available for service s. The fourth term, cu

(
h (xst + zst)− D̃st

)+

is the

cost of idle time when the demand falls short of total available work hours. For these costs, the

expectation is taken over the conditional distribution of Dst. Note that the third and fourth terms

together are the expected costs of the day of surgery and are similar to the well-known newsvendor



10

cost (Nahmias and Cheng 2009). Constraint (5) restricts the additional number of anesthesiologists

who can be called to those who are on the on-call consideration list, which is set in the first stage.

Constraint (6) restricts the decision variable zst to be a positive integer.

It is important to note that the staff planning model (consisting of the MSPP and the DSPPst)

is an aggregate planning model over a monthly horizon. Thus, we consider overtime from an

aggregate perspective and ignore the bin-packing problem of scheduling surgeries and the problem

of assigning anesthesiologists to individual surgeries. Olivares et al. (2008) and He et al. (2012) used

similar approaches in aggregating workload by services in a operating room context. In addition, we

assume overtime costs are computed on a daily basis when the workload exceeds 8 hours in a day.

This was the case in our application and also consistent with California law.3 Alternatively, even

in states where daily overtime is not mandated by state law, daily overtime for physicians is often

covered by employment contracts, and individual anesthesia group practices may have contracts

that cover daily overtime costs (Dexter and O’Neill 2001). Furthermore, computing overtime on a

daily basis is common in the literature (Dexter et al. 1999, Dexter and Traub 2002, Olivares et al.

2008). However, our approach is general and can be easily extended to other settings. For example,

if overtime is calculated on a weekly basis when the weekly workload exceeds 40 hours, we would

solve the second stage problem for a week instead of a day.

Finally, we assume the available pool of anesthesiologists is so large that individuals can reliably

set up appointments far in advance and confidently know that there will be enough total people

available that those appointments can be made. This seems reasonable in our setting, where we

consider a hospital in a large urban environment. This is analogous to models to even workload

on surgical wards by adjusting the master surgical schedule. Such models generally assume an

unlimited number of hospital beds (Fügener et al. 2016). However, if we need to configure our model

to a finite number of anesthesiologists, we would appropriately reduce the value of the parameter

nst representing the number of anesthesiologists available for service s on day t. This, in turn,

would require adjustment of the higher-level block schedule specifying the number of surgeries that

can be performed for each specialty on a given day.

2.1. Structural Properties

In this section, we derive structural properties of the model that can be used to develop its solution

method. Let U(zst) denote the objective function of the DSPP st, where U(zst) given as:

U(zst) =

{[
cqzst + c′q(yst− zst− τ)+

]
+ EDst|Bst

[
cu

(
D̃st−h (xst + zst)

)+

+

3 https://www.shrm.org/ResourcesAndTools/tools-and-samples/how-to-guides/Pages/

californiahowtocalculatedailyandweeklyovertimeincalifornia.aspx

https://www.shrm.org/ResourcesAndTools/tools-and-samples/how-to-guides/Pages/californiahowtocalculatedailyandweeklyovertimeincalifornia.aspx
https://www.shrm.org/ResourcesAndTools/tools-and-samples/how-to-guides/Pages/californiahowtocalculatedailyandweeklyovertimeincalifornia.aspx
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co

(
h (xst + zst)− D̃st

)+
]}

(7)

The first proposition provides the optimal solution for the daily staff planning problem

(DSPP st).

Proposition 1. If the distribution of Dst|Bst is stochastically increasing in Bst, then the optimal

solution for DSPPst is given by z∗st(xst, yst;Bst):

z∗st(xst, yst;Bst) =

{
dẑste if U (dẑste)≤U (bẑstc)
bẑstc otherwise

(8)

Where,

ẑst =



0 if Bst ≤BL
st(xst, κ(c))

1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst if BL

st(xst, κ(c))≤Bst ≤BU
st(xst, yst− τ,κ(c))

yst− τ if BU
st(xst, yst− τ,κ(c))<Bst ≤BL

st(xst, κ1(c)),
1

h
F−1
Dst|Bst

[
coh− cq
h(cu + co)

]
−xst if BL

st(xst, κ1(c))≤Bst ≤BU
st(xst, yst− τ,κ1(c))

yst if Bst >B
U
st(xst, yst− τ,κ1(c))

(9)

Where, κ(c) =
coh+ c

′
q − cq

h(cu + co)
and κ1(c) =

c0h− cq
h(cu + co)

.

All proofs are provided in the Appendix. The expressions for threshold values for the lognormal

distribution (used to fit the data in the demand estimation procedure in Section 3.2) are described in

the proof of Proposition 1. This proposition implies that the number of anesthesiologists who should

be called from the on-call list can be described as a threshold policy depending on the booked time

information B̃st that is available the day before surgery. If the booked time is below BL
st(xst, κ(c)),

then the number of anesthesiologists available on regular duty (xst) would be sufficient. If the

booked time is above BU
st(xst), then all the anesthesiologists on the on-call consideration list would

be required. For intermediate values of B̃st, the proposition above provides for the optimal number

of anesthesiologists who should be called from the on-call list.

LetWLP (xst, yst;c,Bst, nst) be the linear programming relaxation of DSPPst with the integrality

constraint (6) relaxed. Then we define the MSPP
′

as:

(MSPP
′
) V ′

(n,c) = min
∑

s∈S,t∈T

{
EBst

[
WLP

st (xst, yst;c,Bst, nst)
]}

(10)

subject to,

(2), (3) (11)

Since WLP (xst, yst;c,Bst, nst) ≤W(xst, yst;c,Bst, nst), V
′
(n,c) ≤ V(n,c). Thus, the MSPP

′
is a

lower bound to the MSPP . The next proposition provides a property of MSPP
′

that will be used

in constructing its solution method.

Proposition 2. The MSPP
′

is discrete convex in (xst, yst).
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2.2. Solution Method

Next, we utilize Proposition 1 and 2 to develop a computationally tractable algorithm to solve

the MSPP . First, we solve the integer convex program MSPP ′. To do so, we approximate the

expectation in MSPP
′

by its sample average approximation (SAA) as:

V ′
(n,c)≈ V̂ ′(n,c) = min

1

M

M∑
m=1

[ ∑
s∈S,t∈T

WLP
st (xst, yst;c, b

m
st, nst)

]
(12)

subject to,

(2), (3) (13)

As shown in Proposition 2, WLP (xst, yst;c, b
m
st, nst) is a discrete convex function. Therefore, the

sample average approximation V̂ ′(n,c) is also a discrete convex problem. We solve V̂ ′(n,c) by first

solving its integer relaxation, employing the subgradient method for constrained problems (Boyd

et al. 2003). As ẑst = 0 is always a feasible solution to WLP (xst, yst;c, b
m
st, nst), there will always be

a solution to WLP (xst, yst;c, b
m
st, nst) for every feasible (xst, yst) at each iteration of the subgradient

method. Furthermore, we stop the subgradient method when the current solution does not improve

the previous best solution by a pre-specified tolerance. Let this current solution be (x∗st, y
∗
st) with

a corresponding objective value of (1/M)
∑M

m=1

∑
s∈S,t∈TWLP (x∗st, y

∗
st;c, b

m
st, nst). This value is a

lower bound to the MSPP . Then, we find the best nearest feasible integer solution (x̂st, ŷst),

and its corresponding objective value (1/M)
∑M

m=1

∑
s∈S,t∈TW(x̂st, ŷst;c, b

m
st, nst). This provides a

heuristic solution to the MSPP .

Define ĝ(x̂st, ŷst), an estimate of the integrality gap at (x̂, ŷst), as:

ĝ(x̂st, ŷst) =
1

M

M∑
m=1

∑
s∈S,t∈T

W(x̂st, ŷst;c, b
m
st, nst)−

1

M

M∑
m=1

∑
s∈S,t∈T

WLP (x∗st, y
∗
st;c, b

m
st, nst) (14)

In the above equation, the integrality gap is defined as the difference between the cost of the nearest

feasible integer solution from its optimal continuous solution, averaged across M realizations of

anesthesia hours by service and day. The heuristic algorithm based on SAA to solve the MSPP is

formalized below.
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Heuristic Algorithm to solve MSPP

1. Set ε > 0 to be sufficiently small and M to be sufficiently large.

2. For a given (s, t), draw M samples of Bst, represented by bkst, k = 1,2, . . . ,M , from the distri-

bution of Bst.

3. Solve the convex program V̂ ′
(n,c) by employing Proposition 2 and the subgradient method. Use

Proposition 1 to compute WLP (xst, yst;c, b
k
st, nst) at each iteration of the subgradient method.

Let the subgradient solution be (x∗st, y
∗
st).

4. Find the best nearest feasible integer solution (x̂st, ŷst) corresponding to the subgradient solu-

tion (x∗st, y
∗
st).

5. Compute the estimate of the integrality gap ĝ(x̂st, ŷst) using (14)

6. If the integrality gap, ĝ(x̂st, ŷst) > ε, increase sample size M and go to Step 2. Otherwise,

(x̂st, ŷst) is the heuristic solution for the given (s, t). Go to Step 7.

7. Repeat Step 2 to Step 6 ∀(s, t).
8. End.

It is apparent from the above algorithm that the MSPP is decomposable by both service and

days. Thus, this problem could potentially be solved by more direct methods, such as complete

enumeration of the first-stage variables. However, as discussed in the literature, these complete

enumeration methods for two-stage stochastic integer programs could be computationally chal-

lenging (Schultz et al. 1998). To test this approach in our context, we decomposed the problems

by service and found that solving this problem across the four services for a given day took about

an hour, and for the whole month, it took about 98 hours or more than four days. This seemed

computationally intensive from a practical standpoint. Furthermore, the analysis in Sections 5.2

through 5.5 required solving several instances of the MSPP. Thus, such complete enumeration-

based methods preclude these types of analysis, which were important from a practical standpoint.

In contrast, our algorithm described above, where ε= 0.05 and M = 500, solved the entire problem

in less than 10 minutes in all the considered test problem instances and was within 2% of the

costs of the solution obtained by the enumeration-based approach. More details are provided in

the Electronic Companion (EC.1). Therefore, it seemed reasonable to employ our solution method

to solve this problem and conduct the associated analysis.

Finally, it is important to note that the value of the solution using this method would natu-

rally depend on the reliability of the cost parameters cq, c
′
q, co, cu. While cq and co are known,

as these are actual dollar payments, the hospital makes to the anesthesiologists, c′q and cu are

implicit. Therefore, we develop an estimation procedure to determine these costs. This procedure
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first requires estimating the demand distributions for each anesthesia service. Thus, in the next

section, we describe our methodology to specify and estimate these distributions.

3. Estimation of Demand Distributions

Estimation of demand distribution for anesthesia services consists of two stages. First, we estimate

the distribution for the booked hours for service s and day t (Bst). The realization B̃st of the

distribution are the booked hours and is known the day before t. To incorporate add-ons and

cancellations that may incur after the booked hours are determined, and before the end of day t,

we estimate Dst|Bst. This represents the distribution of daily anesthesia hours used for service s

at the end of day t, conditional on the distribution of booked hours Bst.

3.1. Estimating Distribution of Booked Hours (Bst)

Surgery requests start coming in sequentially about six months before the day of surgery. Subse-

quently, there are requests for cancellations and add-on cases that keep coming in until one day

before the day of surgery. While these advance bookings might be informative about the actual

realization of Bst, this information is not passed on by the other hospital departments to the oper-

ating services department, as they are subject to change. Only the final booked hours for each

department are sent by admissions to operating services the day before the scheduled surgeries.

This implies that no advance information from early bookings is available when the MSPP is being

solved. The information available is restricted to the day of the week, the month, and whether an

upcoming day is a holiday. Therefore, we use only these variables to estimate the distribution of

Bst. In Figure 1, we plot the empirical distribution of the booked hours for each of the services

(Bst).

Insert Figure 1 here

From Figure 1, we can see that for Cardiothoracic, Neuro, and Pediatric anesthesia services, there

is a concentration of data at zero. This is because these services are specialized, and they are

not performed every day of the week. Meanwhile, general anesthesia service is performed almost

every day, and we do not see such a concentration of data at zero. Therefore, we used a separate

procedure to estimate the anesthesia required for specialized and general surgeries. We refer to

these as specialized services and general services. Next, we describe the procedure to estimate the

demand for these services.

Estimation of Bst for specialized services

We use a two-step estimation method to estimate the distribution of booked anesthesia hours for

services such as Cardiothoracic, Neuro, and Pediatric surgeries. A more detailed description of this

method can be found in Duan et al. (1983) and Min and Agresti (2002). Here, in the first step,
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the dependent variable is a binary outcome variable with Bst = 0, indicating there is no demand

for service s on day t. Conditional on this first-stage binary variable being false (i.e., Bst > 0), we

then estimate the magnitude of Bst.

More specifically, in the first step, the binary outcome variable Bst is modeled by logistic regres-

sion. The specification of this logistic regression is:

logit[P (Bst) = 0] = αs,0 +αs,1×Day of Week t +αs2×Montht +αs3×Holiday t (15)

This can be written concisely as:

logit[P (Bst) = 0] =α
′

sht . (16)

In the second part of the estimation procedure, we estimate the distribution of the magnitude

of Bst, conditional on it being positive. Although the empirical distribution was the best fit, we

elected to use a lognormal specification of the magnitude of Bst to effectively model conditional

distributions. In addition, the log normal distribution was a better fit in comparison to other

distributions such as the Weibull. A lognormal distribution for surgical services demand has been

used by Duan et al. (1983), May et al. (2000), and He et al. (2012). This specification is:

log(Bst|Bst > 0) = βs0×Day of Week +βs1×Month+βs2×Holiday+ εst (17)

We simplify the above as:

log(Bst|Bst > 0) =β
′

sht + εst, (18)

where εst ∼ N (0, σ2
s). Following Duan et al. (1983) and Min and Agresti (2002), the maximum

likelihood of the two-part model is given by:

`(αs,βs, σ) = `1(αs)`(βs, σ) (19)

and

`2(βs, σs) =
∏
Bst>0

σ−1
s φ

(
log(Bst)−β′sht

σs

)
. (20)

As the likelihood function is separable in the parameters, we can estimate αs,βs, and σ by

independently solving the maximum of the two likelihood functions, `1(αs) and `2(βs, σs).

We summarize the results of the estimation procedure in the Electronic Companion (EC.2). From

these results, we can conclude that the procedure is very effective in estimating Bst for specialized

anesthesia services at the UCLA RRMC.

Estimation of Bs,t for general service

We can observe from Figure 1 that the distribution of booked anesthesia hours for general surgeries

is bimodal. This is because, while general surgeries are performed on most days, there is a lower

demand on weekends and holidays, while there is higher demand on regular days. Therefore, we

model the distribution of anesthesia booked for general surgeries as a mixture of two Gaussian
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distributions. This approach for modeling bimodal distributions has been suggested by Allenby

et al. (1998) for capturing a wide variety of heterogeneity in demand distributions. In Gaussian

mixture models, the distribution of the mixture is given by the weighted sum of the two Gaussian

distributions. Thus, the conditional distribution g(Bst|ht) is given by:

g(Bst|ht) =
∑

k∈{1,2}
πkφk(Bst|htk;βk), (21)

where πk are weights assigned to the two-component distributions and φk(Bst|htk;βk) are the two-

component distributions with regression parameters ht1 and ht2, and coefficients β1 and β2. We

estimate this Gaussian mixture model using the flexmix package in R (Grün and Leisch 2007).

The results of the two-component regressions are summarized in the Electronic Companion (EC.2).

Here again, these results show that this is an effective procedure to estimate Bst for general surgeries

at the UCLA RRMC.

3.2. Estimation of Dst|Bst
We first used the approach outlined in Dexter and Epstein (2018) to verify that staff scheduling

did not affect anesthesiologist workload. More details are provided in the Electronic Companion

(EC.3). We then choose a lognormal specification for F (Dst|Bst), as it provides a good fit (as

shown in the Electronic Companion). In addition, the lognormal specification has been used in

the literature for modeling demand for surgical services (Strum et al. 1997, He et al. 2012). While

the normal and Weibull distribution worked well in Strum et al. (1997), we found the lognormal

distribution to be a better fit with our data. The specification of the regression model for Dst was:

log(Dst) = γ log(Bst) + ξs ∀s∈ S, t∈ T. (22)

Here, ξs ∼N (0, σ
′2
s ). We present the results of the estimation of Dst|Bst across each service in the

Electronic Companion (EC.4). These results validate the choice of the lognormal specification to

estimate Dst|Bst.

4. Estimation Procedure for Implicit Cost Parameters

To estimate the implicit cost parameters, we adapt the approach followed in the estimation of

discrete choice models (McFadden 1974, McFadden and Manski 1981). To enable this, we assume

that the staff planner does not know the numerical value of the implicit costs but is aware of the cost

trade-offs when making staff planning decisions. Therefore, the planner has subconscious relative

weights in mind and uses these costs imperfectly. We observe the historical daily decisions of the

staff planner on how many anesthesiologists were actually called from the on-call consideration

list. We then employ a maximum likelihood optimization to estimate the implicit cost parameters

in a manner that best explains the staff planner’s decisions observed in the data. The estimation

procedure for implicit cost parameters consists of the following steps:
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1. We develop a decision model of the staff planner.

2. Based on this decision model, we derive the likelihood of obtaining the observed data as a

function of the cost parameters.

3. Finally, we estimate the implicit cost parameters, which maximize the likelihood of observing

the data.

We next describe each step in detail.

4.1. Decision Problem of Staff Planner

The literature related to operating room staff planning shows experimental evidence that operating

room planners demonstrate errors and biases from the optimal solution (Wachtel and Dexter 2010).

Therefore, we model the staff planner as a bounded rational decision-maker who is not a perfect

optimizer but makes errors owing to the limited availability of information or because of cognitive

limitations. Furthermore, consistent with quantal choice theory (McFadden 1976), we assume that

when the planner is faced with alternative staff planning options, instead of selecting the optimal

staffing plan, he or she selects better options with higher probability.

The above evidence that the staff planner is a bounded rational decision-maker precludes the

use of data on the monthly decisions for estimating the cost parameters. These decisions include

the number of anesthesiologists on regular duty and the number of anesthesiologists on the on-

call consideration list for each specialty. This is a two-stage stochastic dynamic problem. Thus,

modeling the monthly decisions of the staff planner would require a structural model of dynamic

discrete choices. Estimating parameters in dynamic discrete choices requires the assumption that

the decision-maker is a rational agent. In the literature related to the structural estimation of

dynamic discrete choices, this is a standard assumption and referred to as the rational expectations

assumption (Aguirregabiria and Mira 2010). Because we assume that the staff planner is not

rational but is bounded rational and makes errors in staff planning, we do not assume rational

expectations, and we exclude the monthly data in our estimation procedure.

Alternatively, we use data on daily decisions and the logit choice model to evaluate the proba-

bility of the staff planner selecting a certain number of anesthesiologists to call from the on-call

consideration list. The logit model is suitable in our context for two reasons. First, it allows for dis-

crete choices, such as the number of anesthesiologists. Second, it leads to an analytically tractable

maximum likelihood model. Our context is similar to Su (2008), who uses the multinomial logit

choice model and provides empirical evidence that a logit choice model provides a good fit for a

bounded rational newsvendor.
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According to the logit choice model, the probability of selecting a decision x is proportional to

eU(x), where U(x) is the utility of selecting the decision x (McFadden 1974). Consequently, if the

domain of decisions is X, the probability of selecting choice x is given by:

p(x) =
eU(x)∑
x∈X e

U(x)
. (23)

Next, we use the above logit choice probability to derive the likelihood of the staff planner calling

a certain number of anesthesiologists from the on-call consideration list.

4.2. Deriving the Likelihood Function for Staff Planning Decisions

For conciseness, we represent U(c, zst, ystBst) as follows:

U(c, τ, zst, yst,Bst) =

{[
cqzst + c′q(yst− zst− τ)+

]
+ EDst|Bst

[
cu

(
D̃st−h (xst + zst)

)+

+

co

(
h (xst + zst)− D̃st

)+
]}

(24)

The utility of calling zst anesthesiologists from the on-call consideration list for a given choice of

cost parameter c, threshold parameter τ , booked time Bst and yst over all other feasible z
′
st, is given

as the negative of the cost incurred, or, −U(c, τ, zst, ystBst). Therefore, from (23), the probability

of choice zst is:

pst(c, τ, zst, ystBst) =
exp(−U(c, τ, zst, ystBst))∑

z
′
st≤yst

exp(−U(c, τ, z
′
st, ystBst))

(25)

Therefore, the likelihood of observing zst for all s, t in the data for a given choice of c will be

given by:

L(c) = Πs∈SΠt∈Tpst(c, τ, zst, ystBst) (26)

4.3. Determining Costs to Maximize the Likelihood Function

Maximizing the likelihood function, as described in (26), is challenging because computing the

likelihood requires the multiplication of |S|×|T | probabilities. The resultant likelihood becomes

extremely small, and we run into floating-point errors when this function is maximized. In order to

mitigate this, it is common practice to maximize the log-likelihood (Cameron and Trivedi 2005).

Since the logarithm function is monotonically increasing, the optimal solution will not change. The

estimate of c, which maximizes the log-likelihood, is given by:

ĉ= arg max
c

logL(c). (27)

Using (26), this simplifies to:

ĉ= arg max
c

∑
s∈S,t∈T

log {pt(c, τ, zst, ystBst)} . (28)

We first show that the above optimization problem is concave in c and then propose an estimation

procedure.
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Proposition 3. logL(c) is concave in c.

In light of Proposition 3, a local solution of a nonlinear solver would be the global optimum. We

use the nonlinear solver NLOPT (Johnson 2014) with a Python programming interface to solve

the maximum likelihood problem for a given data set. For computational stability, during the

nonlinear optimization, we normalize cq to 1. We also employ a nonparametric bootstrap analysis

for our estimation procedure. The bootstrap analysis allows us to compute an approximation of the

confidence interval of the cost estimates. To perform bootstrap analysis, we follow the procedure

described in (Greene 2003). We take J samples with replacement from our data set. We compute

the cost estimates for each sample by solving equation (28) for the sampled data set. Thus, we

have J cost estimates {ĉ1, . . . , ĉJ}. The mean of the cost estimates is given by, c̄ =
1

J

∑
j ĉJ , and

we use the 2.5th and 97.5th percentile of these cost estimates to obtain the 95% confidence interval

of the estimates. In our estimation so far, we assumed that the threshold τ was fixed. To find the

best value of τ , we first calculated τ̄ = maxs,t {yst− zzt}. We then repeat the estimation procedure

for c for all values of τ between 0 and τ̄ . Finally, we choose τ as the value that maximizes the log-

likelihood function defined in (28). We found that this corresponded to τ = 1, and the associated

values of costs are reported in Table 2. Note that the cost estimates are scaled such that cq = 1.

Additionally, we performed sensitivity analysis around the value of τ , and the results are reported

in the Electronic Companion (EC.5).

Insert Table 2 here

We observe in Table 2 that the estimated cost of not calling an anesthesiologist on the on-call

consideration list is 1.63 times the cost of actually calling the anesthesiologist. This seems plausi-

ble, as the anesthesiologist loses not only the additional income from being on-call but potentially

forgoes the opportunity to make income from other sources during that day. Dexter and O’Neill

(2001) discuss the impact of these implicit costs of on-call staffing, but such costs have not been

quantified in the literature thus far. Incorporating such implicit costs is important because not

including them would lead to a longer on-call consideration list. While maintaining a longer on-call

consideration list may provide the staff planner the flexibility to react to updated information

without incurring supplemental financial expenses at the hospital, this would lead to more anes-

thesiologists being on the on-call list but not getting called. Olmstead et al. (2014) discuss the

inconvenience to employees from being on the on-call list. This inconvenience could potentially

lead to higher employee dissatisfaction (Gander et al. 2007). This, in turn, can lead to increased

employee turnover, which could be detrimental to the hospital.

When we scale cq to 1, the corresponding value of the explicit costs of overtime co = 0.18. This

implies that the idle cost of an anesthesiologist is 1.55 times the overtime cost. This result is
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consistent with Olivares et al. (2008), who found that the cost of OR idle time was observed to

be 60% higher than the cost of OR overtime. Our study demonstrates that a similar effect is in

place for managing on-call anesthesiologists. Furthermore, given that the overtime cost is $180

per hour, the implicit cost of idle time is $180×1.55 = $280/hour. Since the cost of idle time

should be consistent with the hourly cost of regular time, we used these costs to compute the

annual cost of an anesthesiologist based on our estimate. The anesthesiologists at the operating

service department work seventeen 8 hour shifts per month. This implies the annual cost should

be $280/hour×8 hours/shift×17 shifts/month×12 months/year = $456,960/year. At the UCLA

RRMC, this includes an overhead rate of 30% of salary to account for health and retirement

benefits. This implies an annual salary of $456,960/1.3 = $351,507, which is close to the median

anesthesiologist salary of $433,000 at the UCLA Medical Center and $392,000 nationwide.4 This

shows that the staff planner has a good sense of these costs and also validates the implicit cost of

idle time estimated by our methodology.

To better understand how the estimates of implicit costs changed with factors such as the data

time frame, day of the week, and service, we conducted additional analyses, summarized in the

Electronic Companion (EC.6-EC.8). From this analysis, we can conclude that the implicit costs

were quite stable and did not vary significantly with these factors. This shows that staff planning

decisions were made in a consistent manner at the operating services department at this hospital,

and no service was preferred over the other. This is very desirable from the perspective of staff

morale.

Finally, the staff planner’s problem can be broadly considered as a newsvendor problem, with

overstock costs corresponding to the implicit costs of not calling an anesthesiologist from the on-

call list and the costs of idle capacity. Similarly, the understock costs will be the costs of calling

an anesthesiologist from the on-call list and overtime costs. Studies have shown that decision-

makers exhibit systematic biases (Schweitzer and Cachon 2000, Bostian et al. 2008, Ho et al. 2010)

whenever there are such newsvendor trade-offs between overstock and understock costs. One such

common and well-studied bias is anchoring decisions on mean demand. This means that instead

of ordering the optimal expected profit-maximizing quantity, decision-makers order a quantity

between the optimal quantity and the quantity required to meet the mean demand (Bostian et al.

2008). Wachtel and Dexter (2010) also discuss a situation in which staff planners for anesthesiolo-

gists demonstrate anchoring on mean demand. As described in the Electronic Companion (EC.9),

using the approach in Bostian et al. (2008), we also found evidence to indicate that the staff plan-

ner’s decisions could be driven by a mean anchoring bias. Quantal choice theory has been used

4 https://www.medscape.com/slideshow/2019-compensation-anesthesiologist-6011324
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to explain the mean anchoring bias in several applications in operations management (Chen and

Song 2019). Therefore, this provides more validation to represent the staff planner’s decisions using

quantal choice theory.

5. Computational Analysis

In this section, we first perform computational analysis to validate the performance of the esti-

mation procedure described in Section 4. Then we show the benefits of using the solution method

described in Section 2.2 over current practice. We also use our model to evaluate the impact

of changes in costs, booked time variability, and the impact of hiring more anesthesiologists for

particular services.

5.1. Validation of estimated cost parameters

In order to validate the cost estimation procedure, we demonstrate that our model can accurately

predict the decisions of the staff planner using the estimated costs. We follow a 10-fold cross-

validation procedure to quantify the prediction accuracy of our model. Kohavi et al. (1995) provide

a detailed discussion of the advantages of using k-fold models for cross-validation. They propose

k= 10 for discrete models such as the multinomial logit. In a 10-fold cross-validation approach, we

divide our data set ∆ into ten mutually exclusive subsets (folds) {∆1, . . . ,∆10} of approximately

equal size. We then use the estimation procedure (described in Section 4) ten times. Each time,

the cost parameters are estimated using data set ∆ \∆i. Let these estimated parameters be ĉi.

Next, given these estimates, we use equation (25) to compute the predicted choice probability

p̂st(ĉi, zst, yst,Bst) for each feasible zst for the data set ∆i. Then, because the staff planner’s choice

is modeled as a multinomial logit, the predicted decision of the staff planner will be the decision

that has the highest predicted probability. Thus, the predicted decisions for the test data set ∆i

will be:

ẑist = arg max
zst

{p̂st(ĉi, zst, yst,Bst)} ∀(s, t)∈∆i∀i∈ {1,2, . . . ,10}. (29)

We compute the Root Mean Square Error (RMSE) of the above predicted decisions ẑist with

respect to the actual historical decisions of the staff planner z̃ist for each of the 10 data sets ∆i.

Then, we compute the average RMSE across the 10 sets of predictions as:

RMSE =
1

10

10∑
i=1

√∑
(s,t)∈∆i

(z̃ist− ẑist)2

|∆i|
. (30)

We also compute the accuracy of the model as the percentage of times the model predicted

the correct decision. If ẑist = z̃ist, we denote Iẑist=z̃ist = 1. Therefore, the accuracy for the data set

∆i is acci = 1
|∆i|
∑

s,t∈∆i
Iẑist=z̃ist . The average of the accuracy across the ten folds would be acc=

1
10

∑10

i=1 acci. We found that the estimation procedure is able to exactly predict zst about 49% of



22

the time. In addition, the error in prediction accuracy was also small, with the average RMSE

around 0.48. We also calculated the mean average percentage error between the prediction and

staff planner’s decisions for the overtime and idle time hours. The results are summarized in the

Electronic Companion (EC.10) and show the predicted and actual decisions are close.

We also modeled the staff planner’s decision to determine the number of anesthesiologists called

from the on-call list (zst) as a linear regression of the observable characteristics, such as the num-

ber of anesthesiologists on regular duty (xst), the number of anesthesiologists on the on-call list

(yst), and the total booked hours for surgery (Bst). Estimating operational parameters assuming a

linear managerial decision rule has been applied previously in Foreman et al. (2010). The results,

summarized in the Electronic Companion (EC.11), show that the average RMSE for the linear fit

is 0.89. The logit choice model is a better fit to model the staff planner’s decisions because it better

captures the nonlinear dependence of zst on yst, xst, and Bst. This, in turn, provides validity for

the implicit cost estimation procedure described in Section 4.

5.2. Comparison of decisions and costs with current practice

The current planning process to make these decisions uses an experience-based practitioner’s heuris-

tic. Such heuristics have been reported in the literature (Dexter and O’Neill 2001, Cardoen et al.

2010, Rath et al. 2017). The practitioner’s heuristic employed at the hospital studied consists of two

stages. In the first stage, monthly decisions are made by first calculating the mean and standard

deviation of daily demand for a service on a given day. This is done by using historical data for each

day of a week in a given month. As per the practitioner’s heuristic, the anesthesiologists on regular

duty (x̃st) are used to meet the mean daily demand. The anesthesiologists on the on-call list (ỹst)

are planned to cover three standard deviations of the daily demand. Together, (x̃st, ỹst) constitute

the decisions in the first stage of staff planning. In the second stage, once booking information

for the day of surgery is available, the staff planner decides to call a certain number (z̃st) of anes-

thesiologists from the on-call list previously decided. We model this second stage decision-making

process in detail in Section 4.1.

The practitioner’s decision-making is sub-optimal for the following reasons. The first-stage

decision-making does not consider the costs of these decisions and does not effectively incorpo-

rate uncertainty or the second-stage problem. In the second stage, as discussed in Section 4.1, the

practitioner is modeled as a bounded rational newsvendor who makes sub-optimal decisions.

We use the estimated implicit costs to fully specify the MSPP and DSPPst. We can now

compute the total costs of using a model-based solution and compare this to the cost incurred by

current practice. When calculating the cost benefits of using the model-based solution described
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in Section 2.2 with respect to the actual decisions of the staff planner, we first define the ex-post

cost of a decision (xst, yst, zst) as:

U(xst, yst, zst) =

{[
cqzst + c′q(yst− zst− τ)+

]
+

[
cu

(∼
Dst−h (xst + zst)

)+

+ co

(
h (xst + zst)−

∼
Dst

)+
]}

(31)

Here, U(xst, yst, zst) is the cost when decisions (xst, yst, zst) are taken for day t, and the actual

realization of the total durations of surgeries of service s is
∼
Dst.

Let, (xmst, y
m
st , z

m
st ) be the decisions computed by the model-based solution procedure described in

Section 2.2, and (x̃st, ỹst, z̃st) are the actual decisions of the staff planner. We employ U(xst, yst, zst)

to compare the benefits of the model-based solutions to the actual decisions of the staff planner

by calculating the percentage relative cost improvement as:

δst = 100%× |U(xmst, y
m
st , z

m
st )−U(x̃st, ỹst, z̃st)|

U(x̃st, ỹst, z̃st)
(32)

We report the average cost improvement by service and overall average cost improvement in

Table 3. This table shows the average cost savings using the model-based solution on historical

data is 16.49%. In addition, we observe that the model-based solution improves costs across all the

services. However, we note that there is a significant difference in cost savings across services. We

found that this was due to the differences in the scale of the forecast errors between the booked

anesthesiology hours (Bst) and the used anesthesiology hours (Dst) between services. When these

errors were small, the cost savings between the practitioner’s heuristic and our methods were

small. However, when these errors were large, the cost savings were much higher, as our methods

were more suited to deal with such errors. More details are provided in the Electronic Companion

(EC.12).

Insert Table 3 here

To better understand the reasons for this improvement, we compared the model-based solution

with the staff planner’s plan in more detail. The results summarized in Table 4 show that the

model-based solution has lower average daily overtime and idle time than current practice. This

is because the algorithm employed to solve the MSPP optimally chooses xst and yst to minimize

total expected costs. More specifically, since regular staffing has lower costs than on-call staffing,

the model-based solution has higher regular staff (xst) and lower on-call staff (yst) than current

practice. This is also shown on Table 4. Also, observe from this table that, on average, the model-

based solution uses more anesthesiologists from the on-call consideration list. While this allows for

greater flexibility to react to the uncertainty in the booked time (Bst), there are costs to having

more flexibility. However, the model-based solution still manages to reduce overall costs because

it creates an on-call consideration list for fewer days than the staff planner. We also analyzed by

service the percentage of days when there were no on-call consideration lists and when physicians
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were not called. These results are summarized in the Electronic Companion (EC.13). The results

here show services that have the least reduction in the coefficient of variation when we update the

demand distribution of used anesthesiology hours will get the least benefit from using an on-call

staffing plan. Thus, it will be beneficial to staff these services using regular shifts.

Insert Table 4 here

Finally, for this model to be accepted by the anesthesiologists, it is important it captures the

implicit costs considered by the staff planner, and these costs have to be consistent with past

practice. Our maximum likelihood procedure estimates these costs from the past decisions of the

staff planner. This provides reassurance to the anesthesiologists that we have not only captured

implicit costs but have estimated their value based on past decisions that were acceptable to them.

In addition, the optimization approach more precisely balances the implicit and explicit costs,

which leads to lower total costs. As noted above, compared to past practice, our model reduces

total costs on average by 16.49%. Here, the reduction in explicit cost was 11.19%. In addition, the

reduction in implicit cost was 35.12%, which was greater than the percentage reduction in total

costs. Thus, the model-based solution should be at least as acceptable as the solution provided by

the staff planner.

5.3. Impact of changes in cost

Anesthesiologists are among the most expensive labor categories in the United States, and the

mean annual wage has undergone an increase of 14% between 2016 and 2017 (Bureau of Labor

Statistics 2018). Increases in salaries imply a proportional increase in on-call (cq) and overtime

payments (co). Our model-based solution allows us to evaluate the impact of these cost increases.

In Figure 2, we plot the impact of the change in on-call and overtime costs. From this figure, as

expected, we can see that the total cost increases with the on-call and overtime costs. However,

we can also observe that on a percentage basis, the overall cost is more sensitive to changes in the

overtime cost than the on-call cost. This is because overtime costs are incurred on more days than

on-call costs. Thus, a percentage change in overtime cost leads to a greater relative change in the

overall cost. We also observed how the solution changed when we ran the model for lower values

of cq shown in Figure 2. Here we found that with decreasing cq, the optimal solution decreases the

number of anesthesiologists on regular duty (xst) while increasing the number of anesthesiologists

on the on-call consideration list (yst) and the number of anesthesiologists actually called (zst). We

also found that the rate of increase in zst was higher than the rate of increase in yst. Conversely,

when we ran the model for higher values of cq, xst increased, while yst and zst decreased. Detailed

results are provided in the Electronic Companion (EC.14).

Insert Figure 2 and 3 here
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We also considered the impact of changes in c
′
q, the cost of not calling an anesthesiologist from the

on-call list on overall costs. These results are also presented in Figure 2 and show that overall costs

are least sensitive to these costs. This is because for these costs to incur, an on-call list needs to

be generated. As indicated in Table 4, this does not happen on 56% of the days. Even when this

list is generated, one needs to exceed a threshold τ of anesthesiologists not-called from the on- call

list before these costs are accrued.

5.4. Impact of changes in booked time variability

In this section, we analyze the change in cost when the variability of booked time (Bst) or demand

for anesthesia services is reduced. To isolate the effect of reducing the variability of Bst, we take the

statistical model of Bst as described in equation (17). Then we systematically reduce the standard

deviation σs and create simulations of Bst. We compute the model-based optimal solutions and the

ex-post cost based on simulations of this modified model of Bst.

As shown in Figure 3, even a relatively modest reduction in the standard deviation of Bst

can lead to cost reductions. In practice, a reduction in the variability Bst would just require

additional information to better forecast demand a month in advance. Some of the ways the UCLA

RRMC can potentially do this include incorporating early booking information when deciding the

monthly staff planning (Tiwari et al. 2014) and using preoperative consultations, text, and phone

reminders to reduce no-shows (Knox et al. 2009, Milne et al. 2006, Haufler and Harrington 2011).

All these initiatives could potentially reduce variability in booked durations without significant

capital investment and still reduce overall costs. Our model provides an impetus for doing this by

quantifying the benefits of reducing booked time variability.

5.5. Impact of hiring anesthesiologists by service

We can use the MSPP to evaluate the impact of hiring additional anesthesiologists across services.

For this analysis, we systematically increase nst for each service s and compute the resulting cost

as defined in (31). The results for each service are shown in Figure 4. We can observe from the

figure that overall costs are reduced across all services, but there are decreasing returns to scale

from hiring additional anesthesiologists. This is because, at some point, there are not enough hours

of anesthesia required, and additional anesthesiologists do not provide any benefit. We can also see

from Figure 4 that the marginal benefit of hiring an additional anesthesiologist is highest for general

surgeries, followed by Cardiothoracic, Neuro, and Pediatric surgeries. Therefore, this analysis can

help the hospital management prioritize hiring decisions by service. We also conducted additional

analysis on the impact of cross training anesthesiologists and this is summarized in the Electronic

Companion (EC.15).

Insert Figure 4 here
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6. Conclusions

In this paper, we consider the anesthesiologist staffing problem typically found in large multi-

specialty hospitals. In this problem, the planner makes monthly and daily staffing decisions about

the number of anesthesiologists across each service to minimize overall costs. We model the staff

planning problem as a two-stage integer stochastic dynamic program, provide its structural proper-

ties, and use this to develop a sample average approximation-based algorithm to solve this problem.

While some of the cost components of this model are explicitly known, other cost components are

implicit. We assume that the staff planner is aware of the trade-offs between explicit and implicit

costs but is not a perfect optimizer and makes errors in decisions. To capture this, we develop

a decision model of a bounded rational staff planner. Using this decision model and available

historical data of decisions taken by the staff planner, we estimate the implicit costs. This leads to

a fully specified model of staff planning. We then compare the costs of the model-based solution

with the costs resulting from the historical decisions of the staff planner. Based on this analysis,

we find that our approach can potentially save around 16% in costs, which translates to a total

of about $2.17 million on an annual basis in explicit and implicit costs. We provide a detailed

breakdown of this cost in the Electronic Companion (EC.16).

In addition, the estimated costs and the optimization model have generated several manage-

rial insights. First, the cost of not calling an anesthesiologist on the call list is significantly more

expensive than actually calling the anesthesiologist. This implies that staff planners need to effec-

tively incorporate these costs when constructing on-call lists. Second, the costs of idle time are

substantially higher than the costs of overtime. Thus, it is important for staff planners to consider

this aspect when determining how many anesthesiologists they need to call from regular duty.

Together, the first two insights suggest that it is important to have a data-based understanding

of implicit costs in order to make effective staff planning decisions. Third, average daily idle time

and overtime costs can be reduced by ensuring that the optimal number of total anesthesiologists

are available on the day of the surgery. Furthermore, it may be efficient to have more anesthesi-

ologists on the on-call consideration list, as long as the days requiring an on-call list are chosen

carefully. The model-based approach outperforms the current practice as it makes these decisions

more effectively. Fourth, our analysis showed that a small reduction in demand variability could

considerably reduce costs. Such variance reduction could be achieved by earlier and more timely

sharing of demand information between other hospital departments and operating services. Fifth,

the marginal benefits of hiring across specialties are notably different. A good understanding of

these differences using a data-driven analytical model can reduce overall staffing costs.

Our study has the following limitations. First, it is possible that there is some unobserved

heterogeneity across individual anesthesiologists, depending on seniority or other factors. Some
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anesthesiologists may bear a higher cost of not getting called or have costlier idle time. While it

is possible to incorporate this heterogeneity and estimate the different costs across the individual

anesthesiologists, we were restricted by our lack of data availability at the individual anesthesiol-

ogist level. Second, in the current staffing plan, the monthly plan is adjusted only once, and this

is done the day before the surgery. However, it may be possible to update the staff planning when

each elective procedure is booked. This has been suggested by Tiwari et al. (2014) and Xie and

Zenios (2015). In such a dynamic schedule updating framework, there will also be implicit costs.

Our procedure can potentially be extended to evaluate these implicit costs. However, we could not

to perform this analysis because the UCLA RRMC only recorded the booking data when it was

finalized, the day before the procedures. Third, this work does not consider the next stage that

determines the work schedules for each individual anesthesiologist either for a week or month and

deciding which particular anesthesiologist will be scheduled to work on regular duty or placed on

the on-call list. This could necessitate changes in the aggregate schedule provided by the model. In

such situations, the model solution could overestimate the true cost savings. Finally, our analysis

on the impact of hiring anesthesiologists by service is restricted to the costs considered in the

model. However, there could be additional costs of hiring anesthesiologists, such as recruitment

costs, bonuses, and on-boarding costs. Furthermore, the decision to hire anesthesiologists special-

ized in certain services would depend on the hospital’s longer-term strategy of attracting demand

for certain kinds of procedures or hiring faculty physicians of certain services to meet teaching

requirements at the medical school. Since we did not have information on these aspects and the

additional costs, we were unable to conduct a more comprehensive and longer-term analysis to

determine the right sizing of the anesthesiology staff by service.

This paper opens up several opportunities for future research. First, we could extend this frame-

work to other industries outside of healthcare. While this paper adds to the evidence that idle time

is considered more expensive in the healthcare context, it is not obvious whether that is true for

other industries like retail, call centers, and airlines that have overtime, on-call, and idle-time costs.

Second, as described above, we can extend our framework to the context of dynamic staff planning,

where staff planning has more than two stages. However, this will require significant modifications

to the model and solution procedure.

In conclusion, we believe that the methods presented in this paper provide an effective way to

estimate implicit costs and to conduct optimized staff planning.

Appendix
Proofs of Propositions

Proof of Proposition 1
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We begin by proving that the integer relaxation of DSPPst is convex in zzt. The objective

function of DSPPst is given by:

U(zst) =
[
cqzst + c′q(yst− zst− τ)+

]
+ EDst|Bst

[
cu (Dst−h (xst + zst))

+
+

co (h (xst + zst)−Dst)
+

]
(33)

The first term
[
cqzst + c′q(yst− zst− τ)

]
is convex in zst. The second term is the newsvendor cost

function, which is convex in zst (Nahmias and Cheng 2009). Therefore, the integer relaxation of

DSPP st is convex in zst.

From the first-order condition,

dU(zst)

dzst
= 0 (34)

Case 1: zst ≤ yst− τ
Substituting U(zst) and writing the expectation as integration, the above simplifies to,

cq − c
′

q +
d

dzst

{∫ ∞
h(zst+xst)

co [Dst−h(xst + zst)]f(Dst|Bst)dDst

+

∫ h(zst+xst)

0

cu [h(xst + zst)−Dst]f(Dst|Bst)dDst

}
= 0

(35)

Differentiating under the integral sign and solving for zst, we get,

z∗s,t =
1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst (36)

Where FDst|Bst is the CDF of Dst|Bst.
As zst is constrained to be positive and less than yst− τ , therefore the following conditions hold:

1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst ≤ 0 =⇒ z∗st = 0 (37)

1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst ≥ yst =⇒ z∗st = yst− τ (38)

0≤ 1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst ≤ yst− τ =⇒ z∗st =

1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst (39)

Expressing
coh+ c

′
q − cq

h(cu + co)
as κ(c). From (37) we have zst = 0 if,

FDst|Bst(hxst)≥ κ(c) (40)

Assuming Dst|Bst is stochastically increasing in Bst, then, there exists, some BL
st(xst, κ(c)) such

that for Bst ≤BL
st(xst, κ(c)), FDst|Bst(hxst)≥ κ(c), and therefore, z∗st = 0. Similarly, from (38), there

exists some BU
st(xst, yst− τ,κ(c)), such that if Bst ≥BU

st(xst, yst− τ,κ(c)), FDst|Bsth(xst + yst− τ)≤
κ(c), and therefore, z∗st = y. Thus, the solution to the integer relaxation of DSPPst can be written
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as:

ẑst =


0 if Bst ≤BL

st(xst, κ(c))

1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst if BL

st(xst, κ(c))≤Bst ≤BU
st(xst, yst− τ,κ(c))

yst− τ if Bst >B
U
st(xst, yst− τ,κ(c))

(41)

Case 2: zst > yst− τ We define κ1(c) =
c0h− cq
h(cu + co)

. Performing analysis similar to above, we get

ẑst =


y− τ if Bst ≤BL

st(xst, κ1(c))
1

h
F−1
Dst|Bst

[
coh− cq
h(cu + co)

]
−xst if BL

st(xst, κ1(c))≤Bst ≤BU
st(xst, yst− τ,κ1(c))

yst if Bst >B
U
st(xst, y

′
st, κ1(c))

(42)

Combining the above cases, we have:

ẑst =



0 if Bst ≤BL
st(xst, κ(c))

1

h
F−1
Dst|Bst

[
coh+ c

′
q − cq

h(cu + co)

]
−xst if BL

st(xst, κ(c))≤Bst ≤BU
st(xst, yst− τ,κ(c))

yst− τ if BU
st(xst, yst− τ,κ(c))<Bst ≤BL

st(xst, κ1(c)),
1

h
F−1
Dst|Bst

[
coh− cq
h(cu + co)

]
−xst if BL

st(xst, κ1(c))≤Bst ≤BU
st(xst, yst− τ,κ1(c))

yst if Bst >B
U
st(xst, y

′
st, κ1(c))

(43)

Since the integer relaxation of the DSPP st is convex in zst its integer solution will be:

z∗st(xst, yst;Bst) =

{
dẑs,te if U (dẑste)≤U (bẑstc)
bẑstc otherwise

(44)

As discussed in Section 3.2, we model Dst|Bst as a lognormal distribution. Therefore, we derive

closed-form expressions for BL
st(xst) and BU

st(xst) for the case when Dst|Bst has a lognormal distri-

bution. Here, F (xst) = 1
2

+ 1
2
erf

(
ln(xst)−µ√

2σ

)
, where µ is the mean of the log of the random variable.

In this case µ= E[lnDst|Bst]. Therefore, from (37), zst = 0 if,

1

2
+

1

2
erf

(
ln(hxst)−E[lnDs,t|Bs,t]√

2σ

)
≥ κ(c) (45)

Simplifying,

ln(hxst)−E[lnDst|Bst]≥
√

2σerf−1 (2κ(c)− 1) (46)

Replacing E[lnDst|Bst] with γst lnBst and simplifying,

Bs,t ≤
(

hxst√
2σerf−1 (2κ(c)− 1)

)1/γs,t

(47)

Therefore for the feasibility of DSPPst,

Bs,t ≤
(

hxst√
2σerf−1 (2κ(c)− 1)

)1/γs,t

=⇒ zst = 0 (48)

Therefore,

BL
st(xst) =

(
hxst√

2σerf−1 (2κ(c)− 1)

)1/γs,t

(49)
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The second constraint on zst is zst ≤ yst. Therefore, from (38) for feasibility,

1

h
F−1

[
coh+ c

′
q − cq

h(cu + co)

]
−xst ≤ yst (50)

Employing a similar approach, this constraint can be simplified as:

Bst ≥
(

h(xst + yst)√
2σerf−1 (2κ(c)− 1)

)1/γs,t

=⇒ zst = yst (51)

Therefore,

BH
st (xst, yst) =

(
h(xst + yst)√

2σerf−1 (2κ(c)− 1)

)1/γs,t

(52)

Proof of Proposition 2

To show that MSPP
′

is discrete convex in (xst, yst), it is sufficient to show that the MSPP
′

is

convex for continuous (xst, yst). In effect, we need to show the integer relaxation ofMSPP ′ is convex

in (xst, yst). We start by proving that WLP (xst, yst;c,Bst, nst) is convex in (xst, yst) ∀Bst ∈ [0,∞).

For conciseness we drop the subscripts s, t and we represent WLP (x, y;c,B,n) by WLP (x, y). Note

that we cannot express WLP (x, y) in closed form, as we are required to take the expectation of

the second period costs over the lognormal distribution. This is a complicated integral that cannot

be expressed in closed form. Therefore, in this case, we use the approach outlined by Rockafellar

(1970). To do so, we let (x1
st, y

1
st) correspond to the optimal solution z1 ofWLP (x1, y1) and (x2

st, y
2
st)

correspond to the optimal solution z2 of WLP (x2, y2). Furthermore, let λ∈ [0,1], and let xλ, yλ, zλ

be defined as:

xλst = λx1
st + (1−λ)x2

st (53)

yλst = λy1
st + (1−λ)y2

st (54)

zλst = λz1
st + (1−λ)z2

st (55)

Next, define WLP (xλ, yλ) as:

WLP (xλ, yλ) = min
z≤yλ

{
cqz+ c

′

q(y
λ− z− τ)+ + E

[
co(D−h(xλ + z))+ + cu(h(xλ + z)−D)+

]}
(56)

Note that zλ is a feasible solution to the mathematical program in (56) as:

z1 ≤ y1 and z2 ≤ y2 =⇒ λz1 + (1−λ)z2 ≤ λy1 + (1−λ)y2 =⇒ zλ ≤ yλ (57)

Thus,

WLP (xλ, yλ)≤ cqzλ + c
′

q(y
λ− zλ− τ)+ + E

[
co(D−h(xλ + zλ))+ + cu(h(xλ + zλ)−D)+

]
. (58)

We substitute for xλ and zλ inside the expectation and simplify to get,

WLP (xλ, yλ)≤ cqzλ + c
′

q(y
λ− zλ− τ)+

+ E
[
co(λ(D−h(x1 + z1)) + (1−λ)(D−h(x2 + z2)))+

+ cu(λ(h(x1 + z1)−D) + (1−λ)(h(x2 + z2))−D)+
]
. (59)
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As max{0, a+ b} ≤max{0, a}+ max{0, b}, we can simplify the above inequality as:

WLP (xλ, yλ)≤ cqzλ + c
′
q(y

λ− zλ− τ)+

+ E
[
λco(D−h(x1 + z1))+ + (1−λ)co(D−h(x1 + z1))+

]
+ E

[
λcu(h(x1 + z1)−D)+ + (1−λ)cu(D−h(x1 + z1))+

]
. (60)

Substituting for zλ and yλ and collecting terms together, we get:

WLP (xλ, yλ)≤ λ
{
cqz

1 + c′q(y
1− z1− τ)+ + E

[
co(D−h(x1 + z1))+ + cu(h(x1 + z1)−D)+

]}
(1−λ)

{
cqz

2 + c′q(y
2− z2− τ)+ + E

[
co(D−h(x2 + z2))+ + cu(h(x2 + z2)−D)+

]}
.

(61)

Since z1 and z2 are optimal solutions forWLP (x1, y1) andWLP (x2, y2) respectively, we can simplify

the above as:

WLP (xλ, yλ)≤ λWLP (x1, y1) + (1−λ)WLP (x2, y2). (62)

Therefore, WLP (x, y) is convex in (x, y).

Since WLP (xst, yst;c,Bst, nst) is convex in (xst, yst) and the expectation operator preserves con-

vexity ∀Bst ∈ [0,∞), the MSPP
′

is convex in (xst, yst). This in turn implies that the MSPP
′

is

also discrete convex in (xst, yst) ∀Bst ∈ [0,∞).

Proof of Proposition 3

From equations (25) and (26) we have:

logL(c) =
∑
s,t

{
−U(c, τ, zst, ystBst)− log

[ ∑
z̃st≤ỹst

exp (−U(c, τ, zst, ystBst))

]}
(63)

To prove that logL(c) is concave in c, we prove that −U(c, τ, zst, yst,Bst) −
log
[∑

z̃st≤ỹst exp (−U(c, τ, zst, yst,Bst))
]

is concave in c ∀s, t.
We first make the transformations wz =−U(c, τ, zst, yst,Bst) and w = (w1, . . . ,wỹ). Let:

fst(w) =wz − log

[∑
z̃≤ỹ

exp (wz)

]
. (64)

Then, the Hessian of f(w) is:

∇2fst(w) =−∇2 log

[∑
z̃≤ỹ

exp (wz)

]
, (65)

where log
[∑

z̃≤ỹ exp (wz)
]

is the log-sum-exp function. The Hessian of the log-sum-exp function

is positive semidefinite (Boyd and Vandenberghe (2004) p. 74). Therefore, from equation (65) the

Hessian of fst(w) is negative semidefinite and thus, fst(w) is concave in w. From the definition

of U(c, τ, zst, ystBst) in equation (24), we can see that U(c, τ, zst, ystBst) is a linear function of c.

Therefore, wz is a linear transform in c. This implies that fst(w) is also concave in c. Since the

sum of concave functions is also concave, logL(c) =
∑

st fst(w) is concave in c.
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Tables and Figures

Table 1 Summary statistics for historical anesthesiologist planning by service

Service Staff type Average Max Min Standard Deviation

Cardiothoracic
Regular 4.93 10 0 1.63
On-call consideration 1.18 6 0 1.04
On-call actually called 0.45 5 0 0.74

General
Regular 8.65 16 0 2.58
On-call consideration 4.61 7 0 1.76
On-call actually called 1.85 10 0 1.85

Neuro
Regular 2.72 6 0 0.85
On-call consideration 0.72 4 0 0.77
On-call actually called 0.30 3 0 0.56

Pediatric
Regular 1.69 6 0 0.76
On-call consideration 0.53 4 0 0.73
On-call actually called 0.24 4 0 0.47

Total
Regular 17.48 26 0 3.12
On-call consideration 6.89 11 0 2.07
On-call actually called 2.77 9 0 1.32

Table 2 Maximum Likelihood Estimates of Implicit Cost Parameters

Cost Parameters Maximum
Likelihood
Estimate*

95% Confidence Intervals
(Bootstrap)

c
′

q 1.63 (1.42,1.83)
cu 0.28 (0.12,0.34)

*Values scaled such that cq = 1
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Table 3 Daily Average Percent Cost Saving of Model Based Solution Over Current Practice

Service Daily Average Cost Saving (%) 95% confidence interval

Cardiothoracic 8.59 (6.76,10.03)
General 15.02 (12.43, 19.02)
Neuro 28.88 (21.88, 34.27)
Pediatric 18.98 (15.76, 21.4)

Average 16.49 (14.87, 19.03)

Table 4 Comparison of Model Based Staffing Plan to Current Practice

Model Based
Staffing Plan

Current
Practice

Average daily overtime (hours) 51.43 67.76
Average daily idle time (hours) 24.71 29.36
Average number of anesthesiologists on regular duty 18.46 17.48
Average number of anesthesiologists on on-call consideration list 5.91 6.89
Average number of anesthesiologists called 3.22 2.77
Average number of anesthesiologists not called 2.69 4.12
Percentage of days with no on-call consideration list 56.22% 31.35%

Figure 1 Distribution of anesthesiology booked time by service

(a) Cardiothoracic (b) General

(c) Neuro (d) Pediatric
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Figure 2 Impact of change in cost parameters
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Figure 3 Impact of change in standard deviation of booked
time (Bst)
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Figure 4 Impact of hiring additional anesthesiologists
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EC.1. Computational Analysis for Performance of Proposed Heuristic
Method

In Table EC.1 we compute the relative gap given by:

Percentage Relative Gap =
Model Based Solution Objective −Complete Enumeration Solution Objective

Complete Enumeration Solution Objective
× 100%

(EC.1)

We set ε= 0 and M = 0, and compute the percentage relative gap for different problems sizes.

Each problem consists of all S = {Cardiothoracic,General,Neuro,Pediatric} services and T days

as given in Table EC.1 below.

Table EC.1 Relative gap and solution time of Model based solution and complete enumeration based solution

Problem Size
(T )

Percentage
Relative Gap

Computation time of enumera-
tion based method (in hours)

Computation time of model
based solution (in hours)

1 0.53 0.87 0.01
5 0.75 3.25 0.01
10 1.23 14.37 0.06
20 1.88 37.33 0.08
30 1.94 98.24 0.15
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EC.2. Estimation Results for Distribution of Booked Hours by Service
(Bst)

1. Cardiothoracic Surgeries

Table EC.2 Logit Regression for Cardiothoracic Surgeries Bs,t = 0

Dep. Variable: CARDIOTHORACIC No. Observations: 591
Model: Logit Df Residuals: 587
Method: MLE Df Model: 3

Pseudo R-squ.: 0.2702
Log-Likelihood: -133.51

LL-Null: -182.95

coef std err z P>|z| [95.0% Conf. Int.]

intercept 3.1611 0.248 12.759 0.000 2.676 3.647
Monday 3.6758 1.455 2.526 0.012 0.824 6.528
Sunday -2.7066 0.333 -8.127 0.000 -3.359 -2.054
True -4.6557 1.126 -4.136 0.000 -6.862 -2.450

Table EC.3 Log Normal Regression for Cardiothoracic Surgeries Bst

Dep. Variable: CARDIOTHORACIC R-squared: 0.677
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 72.80
Date: Mon, 18 Sep 2017 Prob (F-statistic): 4.12e-117
Time: 17:22:37 Log-Likelihood: -356.06
No. Observations: 536 AIC: 744.1
Df Residuals: 520 BIC: 812.7
Df Model: 15

coef std err t P>|t| [95.0% Conf. Int.]

Wednesday -0.3104 0.061 -5.087 0.000 -0.430 -0.190
Friday -0.3476 0.060 -5.760 0.000 -0.466 -0.229
Saturday -1.6969 0.066 -25.835 0.000 -1.826 -1.568
Sunday -1.6141 0.073 -21.985 0.000 -1.758 -1.470
February 0.4576 0.115 3.970 0.000 0.231 0.684
March 0.3712 0.090 4.141 0.000 0.195 0.547
April 0.2721 0.092 2.971 0.003 0.092 0.452
May 0.3816 0.092 4.170 0.000 0.202 0.561
June 0.4020 0.092 4.393 0.000 0.222 0.582
July 0.5096 0.092 5.565 0.000 0.330 0.690
August 0.5706 0.092 6.233 0.000 0.391 0.750
September 0.3650 0.090 4.058 0.000 0.188 0.542
October 0.6102 0.097 6.269 0.000 0.419 0.801
November 0.3453 0.114 3.036 0.003 0.122 0.569
True -1.4289 0.163 -8.771 0.000 -1.749 -1.109
intercept 3.3031 0.068 48.612 0.000 3.170 3.437
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2. Neuro Surgeries

Table EC.4 Logit Regression for Neuro Surgeries Bst = 0

Dep. Variable: NEURO No. Observations: 591
Model: Logit Df Residuals: 587
Method: MLE Df Model: 3

Pseudo R-squ.: 0.4526
Log-Likelihood: -142.64

LL-Null: -260.57

coef std err z P>|z| [95.0% Conf. Int.]

intercept 4.9031 0.580 8.460 0.000 3.767 6.039
Saturday -4.7382 0.619 -7.653 0.000 -5.952 -3.525
Sunday -5.2113 0.620 -8.409 0.000 -6.426 -3.997
True -3.9868 0.828 -4.814 0.000 -5.610 -2.364

Table EC.5 Log Normal Regression for Neuro Surgeries Bst

Dep. Variable: NEURO R-squared: 0.820
Model: OLS Adj. R-squared: 0.818
Method: Least Squares F-statistic: 372.3

Prob (F-statistic): 9.69e-179
Log-Likelihood: -268.48

No. Observations: 496 AIC: 551.0
Df Residuals: 489 BIC: 580.4
Df Model: 6

coef std err t P>|t| [95.0% Conf. Int.]

Wednesday -0.1799 0.053 -3.367 0.001 -0.285 -0.075
Friday -0.1660 0.053 -3.114 0.002 -0.271 -0.061
Saturday -2.3148 0.067 -34.357 0.000 -2.447 -2.182
Sunday -2.4899 0.075 -33.276 0.000 -2.637 -2.343
October 0.1910 0.071 2.695 0.007 0.052 0.330
True -1.8760 0.135 -13.896 0.000 -2.141 -1.611
intercept 3.8456 0.027 140.079 0.000 3.792 3.900
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3. Pediatric Surgeries

Table EC.6 Logit Regression for Pediatric Surgeries Bst = 0

Dep. Variable: PEDS No. Observations: 591
Model: Logit Df Residuals: 583
Method: MLE Df Model: 7

Pseudo R-squ.: 0.3025
Log-Likelihood: -278.94

converged: True LL-Null: -399.91

coef std err z P>|z| [95.0% Conf. Int.]

intercept 2.0440 0.205 9.962 0.000 1.642 2.446
Monday -1.2851 0.316 -4.069 0.000 -1.904 -0.666
Saturday -3.0456 0.317 -9.603 0.000 -3.667 -2.424
Sunday -3.8254 0.362 -10.555 0.000 -4.536 -3.115
Tuesday -2.6601 0.307 -8.664 0.000 -3.262 -2.058
December 1.0096 0.483 2.092 0.036 0.064 1.955
October 0.8964 0.423 2.119 0.034 0.067 1.725
True -2.4334 0.651 -3.741 0.000 -3.708 -1.158

Table EC.7 Log Normal Regression for Pediatric Surgeries Bst

Dep. Variable: PEDS R-squared: 0.279
Model: OLS Adj. R-squared: 0.271
Method: Least Squares F-statistic: 33.27

Prob (F-statistic): 1.82e-23
Log-Likelihood: -306.77

No. Observations: 349 AIC: 623.5
Df Residuals: 344 BIC: 642.8
Df Model: 4

coef std err t P>|t| [95.0% Conf. Int.]

Tuesday -0.6983 0.112 -6.252 0.000 -0.918 -0.479
Thursday 0.1670 0.079 2.115 0.035 0.012 0.322
Saturday -0.8640 0.124 -6.942 0.000 -1.109 -0.619
Sunday -1.0534 0.162 -6.493 0.000 -1.372 -0.734
intercept 1.7966 0.041 43.501 0.000 1.715 1.878
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4. General Surgeries

Table EC.8 First Component for Gaussian Mixture Regression for general
Surgeries Bst

Estimate Std. Error z value Pr(> |z|)
Intercept 4.696350 0.036904 127.2578 < 2.2e− 16 ***
Monday -0.082861 0.031581 -2.6238 0.008696 **
Saturday -2.074641 0.065896 -31.4835 < 2.2e− 16 ***
Sunday -2.353900 0.097178 -24.2226 < 2.2e− 16 ***
Tuesday 0.061990 0.029223 2.1213 0.033898 *
December 0.209230 0.053643 3.9005 9.601e− 05 ***
January 0.112182 0.052875 2.1216 0.033869 *
July 0.101713 0.044038 2.3097 0.020907 *
June 0.083648 0.042617 1.9628 0.049669 *
November 0.216889 0.054965 3.9460 7.948e− 05 ***
September 0.103088 0.044365 2.3236 0.020145 *
holiday -1.466390 0.111126 -13.1958 < 2.2e− 16 ***

Table EC.9 Second Component for Gaussian Mixture Regression for
general Surgeries Bs,t

Estimate Std. Error z value Pr(> |z|)
Intercept 4.359169 0.239888 18.1717 < 2.2e− 16 ***
Saturday -1.531509 0.212058 -7.2221 5.118e− 13 ***
Sunday -2.318971 0.209306 -11.0793 < 2.2e− 16 ***
December -1.072790 0.289969 -3.6997 0.0002159 ***
holiday -2.020018 0.236400 -8.5449 < 2.2e− 16 ***

EC.3. Analysis of Schedule Impact on Anesthesiologist Workload

To analyze if staff scheduling itself impacts anesthesiologist workload, we used the approach in

Dexter and Epstein (2018). In Dexter and Epstein (2018), the authors look at ten years of data of

cases booked on regular days, and on days when the annual meeting of the American Society of

Anesthesiologists (ASA) took place. They show that the number of cases scheduled on a day did

not depend on whether it was a day during the Annual ASA meeting. One could think of the ASA

meeting as a pseudo natural experiment on the availability of anesthesiologists. If the number of

cases scheduled on a day did not change for the ASA days, then one could make the claim that

the availability of anesthesiologists does not affect the number of cases scheduled on a day. The

duration of our data was 1.5 years and there was one ASA Annual conference within this time

horizon. With this data, we showed that the number of cases (stratified by day of week) during

the ASA conference was within 95% confidence interval of the mean number of cases on days other

than the ASA conference in the table below. This suggests that for our data, staff scheduling did

not affect anesthesiologist workload.
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Table EC.10 Comparison of Number of Cases During ASA 2013 and Other days

Day of Week Number of Cases During ASA
2013 (Oct 12-16 San Francisco,
California)

Mean Number of cases on other
days (95% confidence interval)

Saturday 162 164.43 (153.5, 175.28)
Sunday 25 25.83 (24.65, 27.01)
Monday 17 17.05 (16.09, 18.00)
Tuesday 172 175.57 (169.17, 181.97)
Wednesday 167 174.02 (167.02, 181.02)

EC.4. Estimation Results for Distribution Hours by Service
Conditioned on Booked Hours (Dst|Bst)

1. Cardiothoracic Surgeries

Table EC.11 Regression model for Ds,t for Cardiothoracic surgeries

Dep. Variable: Ds,t R-squared: 0.978
Model: OLS Adj. R-squared: 0.978
Method: Least Squares F-statistic: 2.434e+04

Prob (F-statistic): 0.00
Log-Likelihood: -341.43

No. Observations: 536 AIC: 684.9
Df Residuals: 535 BIC: 689.1
Df Model: 1

coef std err t P>|t| [95.0% Conf. Int.]

Bs,t 0.9369 0.006 156.000 0.000 0.925 0.949

2. General Surgeries

Table EC.12 Regression model for Ds,t for General surgeries

Dep. Variable: Ds,t R-squared: 0.991
Model: OLS Adj. R-squared: 0.991
Method: Least Squares F-statistic: 6.648e+04

Prob (F-statistic): 0.00
Log-Likelihood: -280.81

No. Observations: 587 AIC: 563.6
Df Residuals: 586 BIC: 568.0
Df Model: 1

coef std err t P>|t| [95.0% Conf. Int.]

Bs,t 0.9896 0.004 257.828 0.000 0.982 0.997

3. Neuro Surgeries
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Table EC.13 Regression model for Ds,t for Neuro surgeries

Dep. Variable: Ds,t R-squared: 0.982
Model: OLS Adj. R-squared: 0.982
Method: Least Squares F-statistic: 2.714e+04

Prob (F-statistic): 0.00
Time: 11:59:14 Log-Likelihood: -298.17
No. Observations: 496 AIC: 598.3
Df Residuals: 495 BIC: 602.6
Df Model: 1

coef std err t P>|t| [95.0% Conf. Int.]

Bs,t 0.9313 0.006 164.734 0.000 0.920 0.942

4. Pediatric Surgeries

Table EC.14 Regression model for Ds,t for Pediatric surgeries

Dep. Variable: Ds,t R-squared: 0.858
Model: OLS Adj. R-squared: 0.858
Method: Least Squares F-statistic: 1.35e+04

Prob (F-statistic): 0.00
Log-Likelihood: -336.17

No. Observations: 349 AIC: 598.3
Df Residuals: 348 BIC: 602.6
Df Model: 1

coef std err t P>|t| [95.0% Conf. Int.]

Bs,t 0.8662 0.019 45.866 0.000 0.829 0.903

EC.5. Sensitivity with respect to τ

Table EC.15 Sensitivity to τ

τ Estimate of c
′

q Estimate of cu Out-of-sample
RMSE

0 1.59 0.38 0.67
0.5 1.61 0.32 0.62
0.8 1.62 0.31 0.55
1 1.63 0.28 0.48
1.2 1.75 0.26 0.56
2 1.77 0.24 0.61
3 1.83 0.22 0.64
4 1.84 0.20 0.84
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EC.6. Estimation and Validation Results for Model with Different
Implicit Costs for Each Service

Table EC.16 Maximum Likelihood Estimates of Implicit Cost Parameters

Service (s) c
′

q cu

Cardiothoracic 1.59 (0.94-2.18) 0.29 (0.11-0.37)
General 1.52 (0.98-2.36) 0.21 (0.09-0.27)
Neuro 1.44 (0.91-1.67) 0.18 (0.10-0.41)
Pediatric 1.81 (1.69-1.91) 0.21 (0.18-0.37)

Average RMSE: 1.38
Average Accuracy: 33.21%
Numbers in brackets indicate 95% confidence
interval

EC.7. Estimation Results for Model with Different Implicit Costs for
Two Halves of the Data Set

Table EC.17 Maximum Likelihood Estimates of Implicit Cost Parameters

c
′

q cu

First half of data set 1.72 (1.58, 1.91) 0.31 (0.19, 0.42)
Second half of data set 1.79 (1.53, 1.94) 0.27 (0.11, 0.40)
Numbers in brackets indicate 95% confidence
interval

EC.8. Estimation Results for Model with Different Implicit Costs for
Each Day of Week

Table EC.18 Maximum Likelihood Estimates of Implicit Cost Parameters by day of week

c
′

q cu

Monday 1.81 (1.63, 2.11) 0.31 (0.21, 0.42)
Tuesday 1.73 (1.41, 2.05) 0.29 (0.19, 0.43)
Wednesday 1.68 (1.33, 1.98) 0.25 (0.15, 0.43)
Thursday 1.49 (1.21, 1.71) 0.29 (0.21, 0.43)
Friday 1.73 (1.43, 2.19) 0.25 (0.16, 0.43)
Numbers in brackets indicate 95% confidence
interval

EC.9. Evidence of Mean Anchoring Bias

In this section, we test if the staff planner demonstrates mean anchoring bias. We follow Bostian et

al. (2008), to show that if the staff planner demonstrates mean anchoring bias, then the observed

number of anesthesiologists actually called (zobsst ) will be given by:

zobsst − z̄st = α(zoptst − z̄st) + ε
′

(EC.2)

Here, zoptst is the optimal number of anesthesiologists to call, obtained by applying Proposition

1, z̄st is the number of anesthesiologists to call to meet the mean demand. The mean demand,
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as described in Section 3.2 would be D̄st = γBst. Since there are xst anesthesiologists already on

regular duty, the number of anesthesiologists to call to meet the mean demand would therefore be,

z̄st = (D̄st−hxst)+/h rounded up to the nearest integer value.

If we regress zobsst − z̄st on zoptst − z̄st, we get an estimate for α. As described in Bostian (2008),

if α ∈ (0,1), then the decision of the staff planner would be consistent with mean anchoring. We

report the results of the regression below and we can observe that the estimates of α is in (0,1)

which would be consistent with mean anchoring of decisions by the staff planner.

Table EC.19 Regression model for Mean Anchoring Bias

Dep. Variable: zobsst − z̄st R-squared: 0.824
Model: OLS Adj. R-squared: 0.824
Method: Least Squares F-statistic: 2582.

Prob (F-statistic): 4.09e-210
Log-Likelihood: -748.24

No. Observations: 552 AIC: 1498.
Df Residuals: 551 BIC: 1503.
Df Model: 1

coef std err t P>|t| [95.0% Conf. Int.]

α 0.6622 0.013 50.816 0.000 0.637 0.688

EC.10. Predictive Performance of Decision Model on Outcome
Variables: Overtime and Idle time Hours

To demonstrate that the outcome variables as predicted by the decision model closely track the

outcome variables from the practitioner’s solution, we performed the following analysis:

1. First, as described in Section 5.1 for each fold of data ∆i, we have zist, the actual decisions of

the staff planner. From zist, we can compute the actual overtime hours (Dst − h(xst + zst))
+

and the actual idle time hours (h(xst + zst)−Dst)
+.

2. Next, for each fold of data ∆i, we also have we have zist, the model-predicted decisions of

the staff planner. Consequently, we will also have the predicted overtime hours (Dst−h(xst +

zst))
+, and the predicted idle time hours (h(xst + zst)−Dst)

+.

3. We can then compute the mean absolute percentage error (MAPE) of the predicted outcome

with respect to the actual outcome for each of these outcomes of interest.

We used this procedure and computed the MAPE for the outcomes of interest. This is summarized

in the table below. We can observe from above that the outcomes from the predicted version of

the decisions and the actual decisions are close.
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Table EC.20 Mean Absolute Percentage Error for Overtime and Idle Time
Prediction

Measure Mean Absolute Percentage Error

Overtime 3.5%
Idle Time 7.3%

EC.11. Modeling Decision Model of Staff Planner as a Linear Decision
Rule

Regression results assuming the staff planner follows a linear decision rule, as given below:

zst =Bst +xst + yst + e (EC.3)

Table EC.21 Regression model for Linear Decision Rule

Dep. Variable: z R-squared: 0.638
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 323.1

Prob (F-statistic): 8.20e-121
Log-Likelihood: -720.04

No. Observations: 552 AIC: 1446.
Df Residuals: 549 BIC: 1459.
Df Model: 3

coef std err t P>|t| [95.0% Conf. Int.]

Bs,t 0.0578 0.024 2.438 0.015 0.011 0.104
xs,t -0.0785 0.017 -4.602 0.000 -0.112 -0.045
ys,t 0.4917 0.023 21.065 0.000 0.446 0.538

Average RMSE for k-fold out of sample prediction = 0.89

EC.12. Analysis of Differences in Percentage Savings Across Services

To better understand the difference in percentage cost savings across services, as shown in Table 3

of the main paper, we considered the difference between the realized booked anesthesiology hours

(B̃st) and the realized used anesthesiology hours D̃st for service s on day t. We then computed ψs=√∑N

t=1

((
B̃st− D̃st

)
/D̃st

)2

N
representing the average root mean square error between B̃st and D̃st

as a fraction of D̃st for each service. The results are summarized in the table below.

Table EC.22 Average root mean square error between B̃st and
D̃st by service

Service ψs Daily Average Cost Savings (%)

General 0.51 15.02
Cardiothoracic 0.41 8.59
Neuro 0.68 28.88
Pediatric 0.56 18.98
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The results show that ψs is smallest for Cardiothoracic surgery. This implies that the forecast

error between the booked and actual hours is the smallest for this service, and in this case, we can

expect the experience-based practitioner’s heuristic (described in Section 4.1) to perform reasonably

well for this service. This, in turn, implies that the cost savings from our method would be the

smallest for this service. Conversely, since ψs is highest for Neuro surgeries. We can expect the

forecast errors to be highest here. In this situation, the practitioner’s heuristic does not perform

very well, and the gain from our method would be the highest.

Thus, we can conclude that the difference in cost savings across services is due to the differences

in the magnitude of the forecast errors between the booked anesthesiology hours and the used

anesthesiology hours between services, and that our method was more suitable to deal with larger

forecast errors.

EC.13. Analysis of Differences in On-Call Use Across Services

To analyze in on-call use across services, we first broke down the results in Table 4 by services and

then recorded the percentage of days when there is no on-call consideration list and the percentage

of days on which there are no physicians called. This is shown in the table below. In this table, we

also list by service, the average coefficient of variation of the distribution of used anesthesiology

hours (Dst) and the coefficient of variation of the updated distribution of used anesthesiology hours

(Dst|Bst).

Table EC.23 Analysis of Differences in On-Call Use Across Services

Service Average Coefficient
of Variation of Dst

Average Coefficient of
Variation of Dst|Bst

% of Days without
On-Call List

% of Days without
Physicians Called

General 0.3 0.09 5.7 30.9
Cardiothoracic 0.33 0.15 29.7 67.6
Neuro 0.38 0.14 44.2 74.1
Pediatric 0.68 0.45 59.3 79.6

This table shows that Neuro or Pediatric services have the least reduction in the coefficient

of variation when we update the demand distribution of used anesthesiology hours. Thus, these

services will get the least benefit from using an on-call staffing plan, and it will be more beneficial to

staff using regular shifts. Conversely, General and Cardiothoracic services have the most reduction

in coefficient of variation when we update the demand distribution of used anesthesiology hours.

Thus, these services will get the most benefit from using an on-call staffing plan.
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EC.14. Solution Changes with Changes in On-Call Costs

We varied on-call costs (cq) from the base case from -40% to 40% in increments of 10%. We than

ran our model for these values and calculated the change in the staffing plan from the base case.

The percentage change in the average number of anesthesiologists in regular duty (xst), on-call

(yst)) and actually called from the on-call list (zst) are shown in the table below

Table EC.24 Summary statistics for historical anesthesiologist planning by service

% change in cq % change in average xst % change in average yst % change in average zst

-40 -2.89 6.28 16.2
-30 -2.11 4.54 15.03
-20 -1.43 2.72 8.74
-20 -1.27 3.04 8.64
-10 -0.73 1.54 5.4
0 0 0 0
10 0.49 -1.05 -2.33
20 0.76 -2.04 -7.6
30 1.11 -2.39 -13.04
40 1.37 -3.04 -14.02

EC.15. Impact of Cross Training Anesthesiologists

To analyze the impact of cross training anesthesiologists, we considered several combinations of

cross-training, ran our model and calculated the percentage change in costs from the base case

with no cross training across services.. The results are shown in the table below.

Table EC.25 Summary statistics for historical anesthesiologist planning by service

Cross Trained Services Change in Costs from Base Case With-
out Cross Training

All Services -26.50%
Cardiothoracic, Neuro, Pediatric -23.91%
Neuro, Pediatric -16.93%

We can observe from above table that cross training can provide significant cost savings. In

particular, when Neuro and Pediatric services are cross trained, there is a 18.64% reduction in

costs. In addition, when all specialized (Neuro, Pediatric, Cardiothoracic) services are cross trained,

this will lead to 21.28% reduction in costs. Finally, when all services are cross trained (Neuro,

Pediatric, Cardiothoracic, General), this leads to 27.64% decrease in costs. This reduction in costs

across all these scenarios is due the reduction of the on-call list, which in turn reduces the number

of anesthesiologists being on-call and not called. In addition, the flexibility that results from cross

training also reduces the costs of idle time of anesthesiologists on regular duty.
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EC.16. Cost Breakdown

Table EC.26 Breakdown of Cost Improvement

Model Based Solution Current Practice % Savings

Average Cost of Overtime 9,761 12,196
Average Cost of Calling Anesthesiologists 3,530 2,770
Average Explicit Costs 13,291 14,966 11.19
Average Cost of Not Calling Anesthesiologists 3,537 6,096 41.98
Average Idle Costs 4,609 6,459 28.64
Average Implicit Cost 8,146 12,555 35.12
Total Average Cost 21,437 27,522 16.49
Average Annual Total Cost 7,631,750 9,797,903 16.49
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